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Macroscopic manifestations of rotating triaxial superfluid nuclei
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Recently, Allmond and Wood [J. M. Allmond and J. L. Wood, Phys. Lett. B 767, 226 (2017)] were able
to extract the three moments of inertia J; of a dozen of superfluid triaxial nuclei from experimental data.
The observed dependence of the J; on the deformation parameters is rather smooth. Here we show that these
moments of inertia can be surprisingly well explained by a semiclassical cranked Hartree-Fock-Bogoliubov
(HFB) calculation in which the velocity field is a simple superposition of rigid and irrotational flows.
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Introduction. It is a well-known fact that superfluidity has
an important influence on nuclear rotation. This for instance
induces a strong reduction of the moment of inertia of super-
fluid nuclei by factors of two, three, or more.

In the past this feature was revealed in the great majority
of cases for rotation of axially symmetric nuclei. Rotation
of triaxially deformed nuclei is much scarcer and less well
borne out (see, e.g., Ref. [1] for an early work and Ref. [2] for
one of the latest developments). Very recently, Allmond and
Wood [3] made a very nice analysis of a dozen of the clearest
triaxially deformed nuclei in deducing experimentally their
moments of inertia around the three axes. In Fig. 1, we show
a reproduction of their figure for the three moments of inertia
corresponding to the three axes. Besides very few exceptions
the experimental results (red crosses) lie with relatively little
scatter around a straight line. This new and surprising feature
calls for a simple explanation.

As early as in 1959, Migdal developed a statistical de-
scription of rotating superfluid nuclei where he applied some
sort of Strutinsky smoothing of a superfluid contained in a
deformed harmonic oscillator potential while making also
some estimates of how things would change with a hard-wall
box potential [4]. He was able to well explain the general trend
of the superfluid quadrupole moment of inertia as a function
of deformation and neutron number, see Fig. 1 in [4]. In 1985,
Durand, Schuck, and Kunz [5] translated Migdal’s statistical
approach into a semiclassical transport model. The formulas
for the moment of inertia stayed unchanged, only it was then
possible to also calculate the current distributions. It was
shown that the current distribution in rotating superfluid nuclei
evolves as a function of the gap value from the rigid rotation
for small gaps to irrotational flow patterns for very large gaps.
Realistic values of the gap show intermediate features of the
flow.

From the late 1990s, experimentalists achieved the pro-
duction of atomic Bose-Einstein condensates in traps.
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Anticipating that it would become possible to trap also
fermionic atoms and cool them down to superfluidity, Farine
et al. used the theory originally developed for nuclei to
compute the moment of inertia of atomic Fermi gases [6]. In
2003, we elaborated a more advanced semiclassical transport
approach to rotating superfluid fermionic atoms including
the temperature dependence [7]. Indeed, a few years later,
the experiment of a rotating Fermi gas was realized by the
Innsbruck group and the reduction of the moment of inertia
below the superfluid critical temperature was observed [8].

Concerning now the measurements of the moments of
inertia in triaxially deformed superfluid nuclei, we only had to
reactivate our past calculations and adopt them to the triaxial
deformation. As we will see, we get very good agreement
with the experimental values. Since these results come from
a semiclassical approach where shell effects are absent, the
agreement between theory and experiment reveals a macro-
scopic behavior of triaxially deformed superfluid nuclei. This
is, maybe, a somewhat surprising but nice finding for such
a subtle feature as triaxial rotation. For completeness let us
repeat our analytic formulas which we will use to explain
the measurements of the moments of inertia as well as those
needed for the calculation of the flow patterns.

Formalism. As stated above, we repeat the harmonic oscil-
lator model of Migdal, generalized to triaxiality as in [6]. The
starting point is a cranked Hartree-Fock-Bogoliubov (HFB)
calculation to which a semiclassical approximation is applied.
The formulas (1)—(5) are given in our earlier publication [7]
and for completeness repeated here. Let us start with the
superfluid moment of inertia, which is given by
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where wy are the frequencies of the triaxially deformed har-
monic oscillator potential and w+ = w, & w,, Jrga is the
corresponding rigid-body moment of inertia, and the functions
G are given by
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FIG. 1. Moments of inertia J; as a function of 82 sin2(y — %”k) which is proportional to Jy i (dashed line). The theoretical results were
computed with the experimental deformation parameters 8 and y [3] and the HFB pairing gaps A,(Pp's) [10] (blue boxes) and with the pairing

gaps Aff; from the 5-point formula (green circles). The error bars of the theoretical results include only the experimental uncertainties of 8
and y. The results are compared with the experimental moments of inertia of Ref. [3] (red crosses).

where A is the gap at equilibrium at the Fermi level and
arcsinh(x)

xV1+x2

From Eq. (1) one sees that in the limit of very strong pairing,
A > hw; (i.e., G+ — 1), the moment of inertia reduces to its
irrotational value
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These formulas are arranged for a rotation around the z axis,
but rotation about the other two axes is easily achieved by
permuting the axes.

The current corresponding to a rotation with angular veloc-
ity = Qe, is given by

J(r) = p(r)v(r)
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Again, one sees that with increasing gap, the velocity field
changes continuously from the rigid rotation

Vigid = £ X1 (6)
to the irrotational one
w? — w?
y X
Virrot = ﬁVXy . (7)
wy + w;

Equations (1) and (5) can be summarized in the compact
form

J=010- ) jrigid + C Jirrot » (8)

V= (1 - C) Vrigid + CVirrot ’ (9)
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Results and discussion. To produce numbers, we have to
determine the parameters entering Eq. (8). The rigid-body
moment of inertia for rotation about the k axis (k =1,2,3
corresponding to x, y, z) is approximated as (see, e.g., [9])

il 5 2
Jk,rigid = Brigid 1-— Eﬂ cos|y — —3 k , (11)
2
Biga = SmAR; = 0.01384°7 P MeV™!, (12)

with m the nucleon mass, Ry = 1.2 fm A'/? the nuclear radius,
and § and y the deformation parameters (Hill-Wheeler coor-
dinates). The oscillator frequencies wy are inversely propor-
tional to the radii, i.e., up to corrections of higher order in 8,

/ 2
oy =41 MeVA~3( 1 — i,3cos v = k). a3
4 3

To leading order in 8, one thus obtains from Eq. (4)
15 2
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In this work, we will consider the 12 triaxial nuclei whose
B and y values are listed in Table 1 of Ref. [3]. [We corrected
a typo in that table: For ""Ru, the correct value is f =
0.310(11) as can be inferred from the value of the quadrupole
moment Qp = 3ZeRgﬁ / T [9] given in the same table.]

We furthermore need the pairing gaps. The fact that neu-
tron and proton gaps A, and A, are different can easily be
accounted for by replacing [4]

(14)

jk,irrot =

J(A) EJ(A ) zZ](A ) (15)
( —> A n +A p/-

As explained in [6], what we need in our semiclassical approx-
imation are the average gaps on the Fermi surface. They can
be extracted, e.g., from HFB calculations with the D1S Gogny
force [10] which describe the ground-state properties of these
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TABLE 1. Values 8 sin’(y — % k) computed from § and y given in [3], pairing gaps A"} computed with the D1S Gogny force [10],
and AEf; obtained from nuclear masses [12] using the 5-point formula, for the 12 triaxial nuclei considered in Ref. [3] and in the present paper.

Nucleus — B?sin*(y —27/3)  p*sin*(y —4m/3) B*sin’ y AP (MeV) AP MeV) AP (MeV) AP (MeV)
10RY 0.096(7) 0.025(8) 0.023(8) 0.82 1.10 1.20 1.40
150Nd 0.0711(16) 0.0464(10) 0.00261(8) 1.08 0.90 1.05 1.19
156Gd 0.093(9) 0.068(7) 0.0021(3) 1.39 1.08 1.00 0.97
166 gy 0.1046(7) 0.0719(6) 0.00306(14) 0.92 1.49 0.90 0.92
168y 0.103(6) 0.073(5) 0.00254(24) 1.09 1.18 0.77 0.88
12yp 0.090(9) 0.074(8) 0.0008(3) 1.25 1.17 0.73 0.89
182y 0.0513(22) 0.0341(15) 0.00175(11) 1.20 2.01 0.80 0.81
184y 0.0491(22) 0.0309(14) 0.00210(15) 1.23 2.08 0.75 0.85
18605 0.0417(13) 0.0174(8) 0.0052(4) 1.30 1.01 0.91 1.01
1880 0.0361(4) 0.0155(3) 0.00432(14) 1.28 1.02 0.96 1.00
1900g 0.0332(8) 0.0128(4) 0.00479(24) 1.31 1.00 0.97 1.06
19205 0.0301(4) 0.0099(3) 0.00549(22) 1.44 1.45 091 1.11

nuclei (including deformations) very well. More precisely,
we denote by A{P!S) the HFB gaps averaged with u?v? as
explained in Ref. [11]. An alternative and much simpler way
to obtain values for the gaps is to compute them from the
experimental nuclear masses M [12] using the 5-point formula
[13]

A = H-M(N —2,Z)+4M(N — 1,Z) — 6M (N, Z)
+4M(N +1,Z) — M(N + 2, 2)], (16)

and analogously for Af). In contrast to the simpler 3-point
formula, this formula eliminates mean-field effects to a large
extent [13]. As can be seen in Table I, the agreement with the
HFB gaps is on the average not too bad, although the A® tend
to be smaller than the A®P!S),

In Fig. 1 we show the resulting moments of inertia J; of
the 12 triaxial nuclei considered in [3], plotted as a function of
the combination of deformation parameters 82 sin>(y — 2T’Tk),
which is proportional to Jy o, for the two choices of pairing
gaps. To make the identification between points in the figures
and nuclei easier, we have listed the values of B2 sin’(y —
2T”k) for each nucleus in Table I. For each of the three axes

k=1,2,3, the moments of inertia lie more or less on a
smooth curve between Jy jrror and Ji rigia-

The overall agreement between theoretical (blue boxes and
green circles) and experimental (red crosses) moments of
inertia is surprisingly good. Of course there are some cases
where it works less well, as expected for a semiclassical
theory which does not include shell effects. In particular, there
are some outliers, such as ''’Ru for which especially J, and
J3 are clearly too large. In general, the moments of inertia
computed with A® tend to be too large, which is related
to the fact that in most cases A® < AP Maybe A® is
not always a good estimate for the average gap on the Fermi
surface.

It is interesting to see where, for a given nucleus, the
difference in J;/Biigiq depending on the axis k comes from.
To answer this question, one can look at the velocity fields. As
an example, we show in Fig. 2 the velocity fields computed
for the nucleus "°Nd for rotations about the three axes (the
Aff; pairing gaps were used in this example). As one can see,
the velocity field is neither that of a rigid rotation nor purely
irrotational. But in the case of the rotation about the x axis,
the rotational component is clearly larger than in the case of
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FIG. 2. Velocity fields in '*°Nd for rotations about the three principal axes. For better visibility, in the first two panels, the

momentum is larger by a factor of two than in the third panel.

angular
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the rotation about the z axis where the velocity field is closer
to the typical form of irrotational flow. And since Jiyo iS very
small if the nucleus is almost symmetric with respect to the
rotation axis, this explains why J3 is so much smaller than
J1. In the present example, our calculation gives J,/J; ~ 17
which is close to the ratio of the experimental moments of
inertia J,/J3 ~ 14.

Conclusions. In this work, we calculated the three moments
of inertia of triaxial superfluid nuclei as they were deduced
experimentally in a recent paper by Allmond and Wood [3].
We used for that a semiclassical approach which we had
developed earlier for rotating superfluid atomic clouds [6,7]
and which is actually based on a very early work of Migdal
concerning rotating superfluid axially symmetric nuclei [4],
see also [5]. In the case of cold atoms, a semiclassical ap-
proach seems very well justified since the number of atoms
can reach around a million. In finite nuclei, expectation values
of observables are often overshadowed by strong shell fluctu-
ations and a semiclassical approach can only yield an average
value. However, as the work by Allmond and Woods shows
[3], apparently the moments of inertia J; exhibit a rather
smooth behavior as a function of the variable 8% sin’(y —
2T”k) (proportional to the moment of inertia in the case of
purely irrotational flow) where 8 and y are the Hill-Wheeler
coordinates. So we used our analytic formulas given in [6]
for the calculation of the three moments of inertia for each
one of the 12 nuclei considered in [3]. To our surprise, the
agreement with experiment can be judged as good to very
good. Actually the experimental data show rather little shell

fluctuations, which hints at the rotation of superfluid triaxial
liquid drops. In this sense, a semiclassical description may
be valid for quantal objects as small as nuclei. The moments
of inertia lie halfway between rigid rotation and irrotational
flow. To reproduce this feature is not trivial at all and
confirms that triaxial nuclear rotation exhibits macroscopic
aspects.

One may wonder why this is so. Actually, out of all nuclei,
the triaxially deformed ones are closest to a nuclear liquid
drop (absence of shell effects). It is a well-known fact that
shell fluctuations diminish with the number of broken sym-
metries. One can establish the following hierarchy: spherical-
normal fluid — spherical-superfluid — axially deformed-
superfluid — triaxially deformed-superfluid. This hierarchy
goes along with a more and more smooth single-particle level
density. Therefore, the semiclassical theory can be expected
to describe qualitatively and even semiquantitatively the mo-
ments of inertia, and it is very exciting that this is so well
confirmed experimentally.

With our approach we were also able to calculate the flow
patterns. Not surprisingly, we see a mixture of irrotational and
rotational motion. Naturally the rotation around the axis with
the least deformation shows the most pronounced irrotational
behavior (and vice versa for the strongest deformation axis). It
is very nice that analytic formulas are able to catch essentially
all the subtle features of rotation of superfluid triaxial nuclei
very well.
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