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We exploit the many-body self-consistent Green’s function method to analyze finite-temperature properties
of infinite nuclear matter and to explore the behavior of the thermal index used to simulate thermal effects in
equations of state for astrophysical applications. We show how the thermal index is both density and temperature
dependent, unlike often considered, and we provide an error estimate based on our ab initio calculations. The
inclusion of three-body forces is found to be critical for the density dependence of the thermal index. We also
compare our results to a parametrization in terms of the density dependence of the nucleon effective mass. Our
findings point to possible shortcomings of predictions made for the gravitational-wave signal from neutron-star
merger simulations with a constant thermal index.
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I. INTRODUCTION

The nuclear equation of state (EOS) is an essential relation
between pressure, density, and temperature, which provides
proper closure for the solution of the equations of motion in
relativistic hydrodynamics [1]. These equations are numer-
ically implemented to simulate, among others, the merger
of neutron stars [2]. The outcome of these astrophysical
simulations provides insights to the gravitational-wave signal
produced by such events or the modeling of short gamma-ray
bursts arising from the merging [3–7]. During these phenom-
ena, the temperature of matter can rise to extremes, T ∼ 100
MeV. In order to obtain reliable results from these simulations,
it is then mandatory to consider EOSs that correctly describe
the thermal effects of dense matter [8].

In view of the recent detection of a gravitational-wave
signal from the merger of two neutron stars [9], it is timely
for theoretical studies to provide accurate results to meet the
needs for correct interpretation of observational outcomes.
Apart from the complexity in solving the equations of rela-
tivistic hydrodynamics, the modeling of mergers needs to be
improved regarding the knowledge of the nuclear matter EOS
[10–14]. This is caused by the challenges in understanding the
properties of nuclear interactions and dense matter, which are
governed by the theory of quantum chromodynamics (QCD).
At nuclear densities, the relevant degrees of freedom are
nucleons and pions (and possible � isobars), and most studies
of nuclear structure, reactions, and matter employ systematic
many-body methods with internucleon interactions (see, e.g.,
Refs. [15–17]) or by means of density functional theory (see,
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e.g., Refs. [18,19]). While the former are based on nuclear
forces constructed to reproduce nucleon-nucleon scattering
and properties of light nuclei [20–23], the latter are fit to
selected nuclei and often nuclear matter [24]. In this work,
we use modern nuclear forces derived from chiral effective
field theory (EFT) [21–23] and solve the nuclear many-body
problem by means of a nonperturbative many-body approach,
the self-consistent Green’s function (SCGF) method [25,26].
Nuclear matter at finite temperature has also been studied
based on chiral low-momentum interactions within many-
body perturbation theory (see, e.g., Refs. [27,28]). Moreover,
while nuclear matter at T = 0 has been the target of many
works, there have been a range of more recent advances based
on chiral interactions, including Refs. [29–41].

Being derived from a low-energy expansion of QCD, chi-
ral EFT interactions are organized using a power counting
scheme in terms of powers of a low-momentum scale over
the breakdown scale [42,43]. The high-energy details, which
are not resolved at low energies, are then encoded in the
strength of short-range contact interactions. The remaining
contributions are given by pion exchanges, and can include
also � degrees of freedom. In this study, we will consider two-
nucleon (2N) interactions up to third (N2LO) [44] or fourth
order (N3LO) [45] in the chiral expansion, while the three-
nucleon (3N) forces will be considered at N2LO [46,47]. We
use different chiral two- and three-nucleon interactions within
the finite-temperature SCGF method to study the properties
of infinite nuclear matter. This approach is particularly suited
because it is implemented directly at finite temperature, and
so it provides the full thermodynamical properties of nuclear
matter. The method is nonperturbative providing a self-energy,
which resums all particle-particle and hole-hole diagrams,
leading to a fully dressed definition of the single-particle
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Green’s function, from which the nuclear matter bulk prop-
erties are accessed [48–50].

Presenting first-principle calculations of the nuclear-matter
energy and pressure at finite temperature, we demonstrate the
shortcoming of taking an ideal gas to model the thermal con-
tributions to the EOS in astrophysical simulations [3,5,7,8,51–
53]. With our ab initio calculations, we explore how the ther-
mal index �th, which describes the thermal effects of the EOS,
in fact depends on density (and to a lesser extent temperature)
in a way that has not been explored in simulations. This
inevitably leads us to the conclusion that a constant �th value
provides only a crude approximation to the EOS of dense
matter and may lead to shortcomings in the predictions when
simulations involve higher temperatures. The effects of using
a constant versus varying index in the EOS has been analyzed
in studies of the gravitational-wave signal from merging neu-
tron stars [54]. Furthermore, this had been investigated in the
propagation of fast magnetosonic shocks in relativistic fluids
[55]. Recent studies within Fermi liquid theory and mean-field
approaches, have also highlighted the nonconstant behavior of
the thermal index [56,57]. We point out that several studies of
neutron star mergers already include fully finite-temperature
EOS (see, e.g., Refs. [58–61]), however based on the mean-
field approximation.

The paper is organized as follows. In Sec. II we discuss
the many-body SCGF formalism used to study nuclear matter.
We then follow with our results in Sec. III, which is divided
into three parts. First, we present results for the thermal
energy, thermal pressure, and thermal index employing one
particular chiral two- and three-nucleon interaction and ana-
lyze the behavior with density and temperature. Second, we
provide an error estimate for the thermal effects using several
chiral Hamiltonians. Then, we characterize the thermal index
through the density dependence of the nucleon effective mass,
which we obtain directly from our SCGF calculations as well.
Finally, we conclude in Sec. IV and give an outlook.

II. FORMALISM: FINITE-TEMPERATURE PROPERTIES
OF NUCLEAR MATTER

To access nuclear matter at finite temperature we use the
SCGF approach. As already introduced, this method fits well
for our present study because it is implemented directly at
finite temperature [48,49]. Furthermore, it in principle pro-
vides a thermodynamically consistent description of matter,
meaning that physical properties calculated microscopically
or through macroscopical (thermodynamic) relations should
equal one another [62,63]. The method is based on the
definition of a self-energy, which resums an infinite series
of particle-particle and hole-hole diagrams, also known as
ladder approximation for the self-energy. This self-energy is
then employed to construct a fully dressed single-particle
propagator, the Green’s function G, from the free Green’s
function G0, via solution of the Dyson equation:

G(p, ω) = G0(p, ω) + G0(p, ω)��(p, ω)G(p, ω) , (1)

where p and ω are the single-particle momentum and energy,
and �� is the irreducible self-energy. The imaginary part of
the Green’s function yields the spectral function, which is the

central quantity used to calculate both microscopic as well
as bulk properties of the many-body system. The spectral
function describes the probability of adding or removing a
particle with momentum p and energy ω to or from the many-
body system.

In the past years, the SCGF approach has been extended
to include three-body forces, i.e., to start from a Hamilto-
nian H = Tkin + V where the interacting part includes two-
and three-nucleon interactions, V = V2N + V3N [64]. Through
knowledge of the spectral function, one can access the energy
per nucleon E/A of the system employing the Galitskii-
Migdal-Koltun sum rule [65,66]:

E

A
= ν

n

∫
dp

(2π )3

∫
dω

2π

1

2

[ p2

2m
+ ω

]
A(p, ω) f (ω) − 1

2
〈V3N 〉,

(2)

where ν is the degeneracy of the system, n the number density,
A(p, ω) is the spectral function, f (ω) is the Fermi-Dirac
distribution function. 〈V3N 〉 is the expectation value of the
three-body operator; at present we only approximate this
quantity with its first-order term but calculate it employing
fully dressed propagators [36]. The free energy F is then
obtained from

F

A
= E

A
− T

S

A
. (3)

The entropy S/A = −∂
/∂T |μ is evaluated following the
Luttinger-Ward formalism, which demonstrates that it is pos-
sible to define the grand-canonical potential 
 in terms of the
Green’s function G [67]. Detailed description of the calcula-
tion of the entropy can be found in Ref. [68]. From the free
energy one can then directly access the pressure P via

P = n2 ∂F/A

∂n
. (4)

As we stated above, the SCGF method is a thermodynamically
consistent approach, so in principle we could also calculate
the pressure starting from the microscopic chemical potential,
μ̃, via

P̃ = n

(
μ̃ − F

A

)
, (5)

where μ̃ is obtained inverting the density sum rule,

n = ν

∫
dp

(2π )3

∫
dω

2π
A(p, ω) f (ω) (6)

with f (ω) = [1 + e(ω−μ̃)/T ]−1.
In view of the thermodynamical consistency of this ap-

proach, the equality P = P̃ should hold, up to numerical
errors. We have tested wether our calculations reproduce this
equality and have encountered some discrepancies which are
density dependent (see Ref. [69] for details). In fact these
differences depend on the strength of the three-body forces.
Calculations with only two-nucleon interactions prove the
equality true. We consider the error as coming from the
approximation we perform on the 〈V3N 〉 expectation value
in the evaluation of the energy sum rule, Eq. (2). Improve-
ments that go beyond this are work in progress. However,
given that the thermal index �th depends on differences of
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FIG. 1. Energy per nucleon (at T = 0, black dots/lines) and free energy per nucleon for T = 20, 30, 40, and 50 MeV as function of density
for SNM (left) and PNM (right), obtained from SCGF calculations with the 2.0/2.0 (EM) chiral two- and three-nucleon interactions. Symbols
correspond to calculated data, solid lines represent the fits of the free-energy (see text for details).

pressures, P(T ) − P(T = 0), at a fixed density, and that these
discrepancies are mostly density dependent and only mildly
temperature dependent, we can rely on the use of either P or
P̃ to obtain �th. A detailed analysis of this will be discussed in
future work [70], but overall uncertainties are small compared
to the combined SCGF and interaction uncertainties.

In this work, we use the pressure obtained as a derivative
of the free energy, Eq. (4). In order to perform the density
derivative, we fit the calculated SCGF results with a similar
function to that presented in Ref. [71] and extended to finite
temperature in Ref. [69]:

F

A
(n, T ) = a(T ) +

νmax∑
ν=2

aν (T )

(
n

n0

)ν/3

, (7)

where νmax = 6–10 is used depending on the two- and three-
nucleon interactions, and n0 is a fiducial density taken to be
the saturation density 0.16 fm−3. In Fig. 1 we plot the energy
per nucleon at T = 0 and the free energy per nucleon for
four different temperatures, T = 20, 30, 40, and 50 MeV, for
symmetric nuclear matter (SNM) and pure neutron matter
(PNM). The results shown are based on the 2.0/2.0 (EM)
chiral two- and three-nucleon interactions (see Ref. [30] for
details). The points give the SCGF results obtained from
Eqs. (2) and (3). The goodness of the fit given by Eq. (7) can
be appreciated through the solid lines. Correspondingly, the
pressure obtained from Eq. (4) is presented in Fig. 2 for SNM
and PNM.

III. RESULTS: THERMAL EFFECTS OF THE NUCLEAR
EQUATION OF STATE

In astrophysical applications, the thermal contributions to
the EOS are often modelled following an ideal gas [72]. In this
case, the pressure as a function of the number density n and
the energy density E/V is expressed in terms of an adiabatic
index �:

Pth(n, E ) = Eth

V
(� − 1) (8)

with the volume V = A/n. Unlike a polytropic EOS, which
describes isentropic processes, i.e., adiabatic and reversible,
the pressure given by Eq. (8) allows nonisentropic irre-
versible transformations, such as “shock heating”, by means
of which kinetic energy can be transformed into internal
energy, thus increasing the temperature of the system. These
shocks could be produced, as an example, during the merging
of two neutron stars. For this reason, one usually writes the
pressure as

P = P0 + Pth , (9)

where only the thermal part of the pressure, Pth, is modelled
employing Eq. (8), while the cold part, P0 = P(T = 0), can
also be a polytropic function or a microscopic EOS at T = 0.
We note that Eq. (8) has at least two shortcomings. First,
the adiabatic index � in Eq. (8) is often taken as a constant
because it is associated with the ratio of the specific heats in
the fluid [72]. Second, Eq. (8) has been shown to be incom-
patible with relativistic kinetic theory for arbitrary values of
�, whose value should instead depend on the quantity P/n in
order to fulfill the so-called Taub’s inequality [72,73]. In view
of these considerations, it is better to express the thermal index
in terms of the thermal pressure and thermal energy as

�th = 1 + Pth

Eth/V
, (10)

where Pth = P(T ) − P0 and Eth = E (T ) − E (T = 0) are the
thermal pressure and thermal energy, respectively. It should
be noted that this formulation is consistent with relativistic
kinetic theory and Taub’s inequality [55]. Given that we have
access to the thermal pressure and thermal energy from our
SCGF calculations, we can then investigate the behavior of
the thermal index, as diagnostic of the thermal effects, based
on modern two- and three-nucleon interactions. Using the
thermal index �th obtained in this way to replace the constant
adiabatic � index in Eq. (8) will provide a more accurate
representation of the thermal effects of nuclear matter.
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FIG. 2. Pressure for T = 0, 20, 30, 40, and 50 MeV as function of density for SNM (left) and PNM (right), obtained from SCGF
calculations with the 2.0/2.0 (EM) chiral two- and three-nucleon interactions.

A. Thermal energy, thermal pressure, and thermal index
from ab initio calculations

We present in Fig. 3 the thermal energy, thermal pressure,
and thermal index for SNM (left panels) and PNM (right
panels). We employ the same chiral two- and three-nucleon
interactions as the one used in Figs. 1 and 2. The thermal
quantities are presented for four different temperatures, T =
20, 30, 40, and 50 MeV.

The thermal energy decreases with increasing density for
all studied temperatures and for both SNM and PNM. At low
densities, up to n = A/V = 0.05 fm−3, the decrease appears
steeper, especially in the case of PNM. This is because at
constant temperature, matter is more nondegenerate at low
density leading to stronger thermal effects in the low density
regime, while as the density increases, the difference between
the finite-temperature energy and its value at zero tempera-
ture becomes smaller. For low temperatures, T = 20 MeV,
the thermal energy becomes very weakly density dependent
already around twice saturation density. However, as T in-
creases, the thermal energy decreases up to twice saturation
density, which is the limit in densities we consider for our
calculations. This means that, as the temperature rises, the in-
crease in energy is stronger even at intermediate densities, and
the difference with its zero-temperature counterpart slowly
reduces with density. A steeper decreasing behavior appears
in PNM with respect to SNM, meaning that the energy at zero
temperature in PNM is already a quite stiff quantity, leading
to a smaller thermal energy.

We must point out that twice saturation density is close
to the limit of validity of the chiral interactions consid-
ered. In fact, especially for PNM, one is already probing
the range of the resolution scale λSRG = 2.0 fm−1 for this
particular Hamiltonian, where λSRG defines the similarity-
renormalization-group resolution scale (see Ref. [30] for de-
tails). We explore the uncertainty in the high-density region
(up to twice saturation density) by presenting calculations em-
ploying several chiral two- and three-nucleon interactions (see
Fig. 4 and following discussions), but note that the sensitivity

to different interactions at high densities is probably only a
lower bound on the uncertainty.

The thermal pressure Pth, shown in the second row of
Fig. 3, presents a very different behavior from the thermal
energy and, unlike Eth, it is not only quantitatively different,
but also qualitatively different between SNM and PNM. For
SNM, the thermal pressure first increases, reaching a maxi-
mum around 0.20 fm−3 for all temperatures, and then keeps
decreasing with increasing density. For PNM, the increase
at low densities is much softer, with a maximum reached
around saturation density, and the subsequent decrease being
washed out with increasing temperature. From a quantitative
point of view, the thermal pressure for SNM is bigger for
intermediate densities, given that nuclear matter has negative
zero-temperature pressure in this density region; the equiv-
alent quantity for PNM is smaller, approaching nevertheless
a higher value with respect to SNM at higher densities.
This shows that, for increasing density, the pressure at finite
temperature is stronger in PNM than SNM, and this strength
rises with temperature. This is clearly visible in Fig. 2. Note
that the high-density behavior of the thermal pressure is the
one influencing the characteristics of the thermal index in this
region.

In the last row of Fig. 3 we give the thermal index ex-
tracted using Eq. (10). The qualitative behavior between SNM
and PNM is similar, nevertheless quantitative differences
appear. At low densities, the thermal index approaches the
value of the adiabatic index for a nonrelativistic ideal gas
with � = 5/3; a small-dotted line is shown in the panels to
guide the eye. The behavior observed for densities below
n = 0.05 fm−3, especially for SNM at low temperatures, can
be traced to the difficulty in fitting the free-energy in the
low-density region (see Fig. 1). For low temperatures, we
observe a maximum for the thermal index which exceeds the
value of 5/3. This maximum is more pronounced in SNM
and appears around saturation density, while it is smaller
for PNM, emerging in this case around half saturation den-
sity. However, as the temperature increases, this maximum
smoothens due to a balance between the thermal pressure
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FIG. 3. Thermal energy (first row), thermal pressure (second row), and thermal index (third row) for T = 20, 30, 40, and 50 MeV as
function of density, for SNM (left panels) and PNM (right panels), obtained from SCGF calculations with the 2.0/2.0 (EM) chiral two- and
three-nucleon interactions.

and the thermal energy. For higher densities, the behavior
is dictated by the thermal pressure, as discussed above. In
fact, while for SNM in Fig. 3 the thermal index shows a
constant decrease, for PNM the decrease in �th is levelled as
the temperature increases, as it was observed for the respective
thermal pressures. Note that for very high temperatures the
system should behave as a relativistic gas, and relativis-
tic effects should be taken into account. According to the

limits imposed by Taub’s inequality and to be consistent with
relativistic kinetic theory, the adiabatic index should never
exceed the value of 5/3, and should approach the value of 4/3
in the limits of high temperature [55]. Indeed, even though
we are performing a nonrelativistic calculation of nuclear
matter, the thermal index seems like not exceeding 5/3 for
higher temperatures and approaching the 4/3 value as density
increases.
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FIG. 4. Thermal energy (first row), thermal pressure (second row), and thermal index (third row) for T = 30 MeV as function of density
for SNM (left panels) and PNM (right panels), using six different chiral two- and three-nucleon interactions (see text for details). Note that the
2N N3LO (EM) results are for two-nucleon interactions only.

We now turn to assessing an error estimate of the thermal
effects employing several chiral Hamiltonians. We show in
Fig. 4 the thermal energy, thermal pressure, and thermal index
for T = 30 MeV for SNM and PNM. We use six different
chiral interactions: the evolved chiral two- and three-nucleon
interactions labeled 1.8/2.0 (EM), 2.0/2.0 (EM), and 2.8/2.0
(EM) are taken from Ref. [30]; the two-nucleon potential only
from Entem and Machleidt [45] labeled 2N N3LO (EM); the

2N N3LO (EM) + 3N N2LO with a three-nucleon interaction
fit to the triton beta decay from Ref. [74] (using the nonlocal
500/500 fit); and the N2LOsat two- and three-nucleon inter-
action from Ref. [44].

In the first row of Fig. 4, the thermal energy at T = 30 MeV
follows the behavior already described in Fig. 3: the thermal
energy decreases with increasing density. The spread provided
by the use of different nuclear forces is more pronounced in
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SNM than in PNM. In SNM the extremes of the band are
encompassed by the 2N-only calculation, for the lower part,
and the corresponding 2N + 3N calculation, for the upper
part. This shows the importance of three-nucleon interactions
for the thermal energy. Chiral three-nucleon forces provide
important repulsive contributions that increase with density,
both in PNM [29] and SNM [30,34]. This is also the case
at finite temperature and leads to larger thermal energies at
higher densities. For PNM this effect is still visible, however
the softer evolved interactions [1.8/2.0 (EM), 2.0/2.0 (EM),
and 2.8/2.0 (EM)] result in thermal energies that are below
the 2N-only calculation, meaning that three-nucleon effects
are weaker for these interactions at higher densities. It is
interesting to note that this is also the case for the N2LOsat
two- and three-nucleon interactions, which provide an even
smaller thermal energy in PNM.

In second row of Fig. 4, we present the thermal pres-
sure obtained for the same chiral Hamiltonians. A striking
characteristic is observed for both SNM and PNM: in the
case of the 2N-only calculation the thermal pressure is a
growing quantity with density, unlike observed for all other
cases. This hints at the fact that the zero temperature pres-
sure is too soft without three-nucleon interactions, while
the finite-temperature pressure stiffens caused by thermal
components, providing a stronger thermal pressure. For all
chiral two- and three-nucleon interactions, the thermal pres-
sure decreases with density after having reached a maximum
around n = 0.20 fm−3. The decrease is a combined effect
between how stiff the pressure is at zero temperature and
how rapidly the finite-temperature pressure grows as density
increases.

Finally, the thermal index is shown in the last row of Fig. 4.
As described above, an increase is observed at intermediate
densities, for both SNM and PNM, followed by a rapid
decrease as density grows. However, the case where only
2N interactions are included in the calculation presents a
thermal index with a nearly density independent behavior,
in comparison to the other cases. It is worth noting that
for the unevolved potentials, namely 2N N3LO (EM) + 3N
N2LO and N2LOsat, a higher maximum is reached; this is
mostly caused by the stronger thermal pressure obtained with
these chiral Hamiltonians. These interactions also show a
steeper decrease in the PNM case, which is a direct con-
sequence of the thermal pressure trend. This is caused by
the fact that the zero-temperature pressure for these interac-
tions is stiffer due to stronger three-nucleon forces at high
densities and so the thermal pressure is smaller at higher
densities.

We conclude from this analysis that the thermal index
behavior strongly depends on the inclusion of three-nucleon
forces, on how important thermal effects are at intermediate
densities for both energy and pressure, and on how stiff the
pressure is at zero temperature in the high-density region.
We observe a maximum value of ≈1.7, which varies slightly
depending on the temperature (see last row of Fig. 3) or
nuclear forces considered (see last row of Fig. 4). As density
increases, �th reaches lower values down to ≈1 or around
1.3–1.4 at higher temperatures. We never observe a value as
high as �th = 2, which has been assessed as a reasonable value

to simulate neutron-star mergers events [52,54]. Note that a
larger value for �th refers to stiffer thermal effects, which
leads to a smaller peak frequency in the gravitational-wave
signal of the post-merger remnant and a longer time delay
to black-hole collapse [54]. Finally, while we do not show
uncertainty estimates from the many-body SCGF calculations,
this is expected to be smaller than the spread in the different
chiral Hamiltonians considered (see Refs. [69,70]).

B. Characterizing thermal effects through the nucleon
effective mass

In this section, we show how knowledge of the nucleon
effective mass sheds light on the behavior of the thermal
index. To this end, we explore a functional form, which is
based on Fermi liquid theory of a weakly interacting non-
relativistic system of quasiparticles with a density-dependent
effective mass m∗. In fact, assuming an ideal gas of nucleons
with density-dependent m∗(n) yields for the thermal index the
following form (see, e.g., Ref. [56]):

�m∗
th = 5

3
− n

m∗
∂m∗

∂n
, (11)

which in the limit of zero density approaches the nonrelativis-
tic ideal gas index 5/3.

In Fig. 5, we compare the thermal index for T = 30 MeV
extracted from the thermal energy and thermal pressure using
Eq. (10) to �th based on the density dependence of the
effective nucleon mass, Eq. (11). The results are shown for
the 2N N3LO (EM) and 2N N3LO (EM) + 3N N2LO
chiral interactions for SNM and PNM. Similar results are
found for the other temperature and Hamiltonians studied
before. It is remarkable how well the functional form given
by Eq. (11) captures the behavior of the thermal index,
with only small quantitative differences. This demonstrates
that by far the dominant thermal effects are determined by
the density-dependent effective mass of the nucleons. We
note that the reason why the dashed lines in Fig. 5 do not
capture the low-density behavior can be traced to how we
determine the effective mass at finite temperature. In fact, we
calculate the effective mass from the single-particle spectrum
where the single-particle energy equals the chemical poten-
tial (see Ref. [75] for a recent review on nucleon effective
masses):

m∗

m
= p

m

(
∂ε(p)

∂ p

)−1∣∣∣∣
ε(p)=μ,p=pμ

, (12)

where pμ defines the momentum where the single-particle
energy ε(p) equals the chemical potential. In the low-density
regime, especially at higher temperatures, the chemical poten-
tial becomes very negative and no solution is encountered for
the equality ε(p) = μ, which is why the dashed lines stop at
certain low-density values, for both SNM and PNM.

In Fig. 6 we plot the effective mass for T = 30 MeV
as determined by Eq. (12), exploring the different chiral
Hamiltonians for SNM and PNM. We find a qualitatively
similar behavior for SNM and PNM. The effective mass first
decreases and then increases with density, except for the 2N-
only calculation, where the effective mass keeps decreasing
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FIG. 5. Thermal index for T = 30 MeV as function of density for SNM (left) and PNM (right). The black solid lines are extractions of
the thermal index from the thermal energy and thermal pressure using Eq. (10) while the green dashed lines are for �th based on the density
dependence of the effective nucleon mass, Eq. (11). Results are shown for the 2N N3LO (EM) and 2N N3LO (EM) + 3N N2LO chiral
interactions.

for SNM, while it slightly grows for PNM, when reaching
twice saturation density. It is worth noting that for PNM the
effective mass is much closer to 1, and reaches values above
1 as density increases. The inclusion of three-nucleon forces
provides important repulsive contributions to the self-energy,
which was already discussed for the thermal index in Fig, 4,
and can be clearly seen also for the effective mass in Fig. 6.
We have checked that at low temperatures our effective masses
compare reasonably well with zero temperature results from
Refs. [28,76–79]. Finally, we note that at densities where
the three-nucleon contributions are small, the results for the
effective mass are consistent with previous studies [28,76].

To understand the behavior of the effective mass, we
present in Fig. 7 its different momentum- and energy-
dependent contributions, the so-called k and ω mass. We
focus on the same T = 30 MeV temperature and the same
chiral two- and three-nucleon interactions studied in Fig. 5.

Considering the different contributions the full effective mass
of Eq. (12) can be written as a product of the k and ω mass,
mk and mω,

m∗

m
= mωmk , (13)

where mω is given by the energy derivative of the real part of
the self-energy,

mω = 1 − ∂Re�(p, ω)

∂ω
, (14)

and mk by the momentum derivative,

mk =
(

1 + m

p

∂Re�(p, ω)

∂ p

)−1

. (15)

Re�(p, ω) describes the real part of the self-energy which
we calculate within the SCGF approach. Note that at the
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FIG. 6. Effective mass for T = 30 MeV as function of density for SNM (left) and PNM (right), extracted from the single-particle energy
at the chemical potential [see Eq. (12)] using six different chiral two- and three-nucleon interactions.
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FIG. 7. Effective mass for T = 30 MeV as function of density for SNM (left panels) and PNM (right panels) using the 2N N3LO (EM) +
3N N2LO (upper row) and 2N N3LO (EM) (lower row) chiral interactions. The full m∗ as well as mω and mk are shown, extracted from the
single-particle energy at the chemical potential, m(pμ), or at the Fermi momentum, m(pF ).

Hartree-Fock level or in the mean-field approximation, the
effective mass would be given by k mass only. Figure 7 shows
clearly that mω from energy-dependent correlations causes the
increase of the effective mass with density. However, although
mω is larger in SNM than in PNM, it is nevertheless balanced
by a smaller value for mk in the former case, producing a
smaller total effective mass. When three-nucleon forces are
not included (in the second row of Fig. 7), the effects of mω are
not as strong, both in SNM and PNM, and a combined effect
with a decreasing mk as function of density is the main cause
of the nearly density independent effective mass at higher
densities, as observed in Fig. 6. In all panels of Fig. 7 we
also show for comparison the effective mass calculated at the
Fermi momentum determined from the density; we see that
differences are larger at low densities, where thermal effects
are stronger and pμ differs more from pF.

We thus find important contributions to the effective mass
beyond the Hartree-Fock level or mean-field approximation,
and that a full description of the effective mass, as given
by Eq. (13), is important to describe thermal effects for the
nuclear EOS and to reproduce the behavior of the thermal
index.

IV. CONCLUSIONS AND OUTLOOK

We have presented first ab initio SCGF calculations of
thermal effects on the nuclear EOS using different chiral two-
and three-nucleon interactions. In particular, we analyzed for
SNM and PNM the thermal energy and thermal pressure,
from which we accessed the behavior of the thermal index
used widely in astrophysical simulations. Our calculations
show how a density-dependent �th, which is, e.g., based on
ideal-gas thermal contributions, does not capture the thermal
effects based on ab initio calculations.

We have provided uncertainty estimates employing differ-
ent chiral Hamiltonians. Overall the thermal index was found
to vary between about 1–1.7 according to changes in density
or temperature, and including the nuclear physics uncertain-
ties. The behavior of the thermal index is strikingly affected
by the inclusion of three-nucleon forces in our calculations;
furthermore the stiffness of the pressure at zero temperature
influences the decrease of �th at high densities. Our results
clearly point to smaller values for the thermal index, compared
to the range of �th up to 2 used in astrophysical simulations.
Such low values are also expected to have a very interesting
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impact on core-collapse supernova simulations, based on the
recent work of Ref. [80].

We have also explored a functional form for �th based on
the density dependence of the nucleon effective mass, which
captures the behavior of the thermal index remarkably well. In
particular, this shows that a calculation of the effective mass,
beyond the Hartree-Fock level or mean-field approximation, is
necessary to capture these thermal effects. This work is a first
step towards a more comprehensive analysis of thermal effects
in the nuclear EOS and a full finite-temperature description
based on realistic nuclear interactions. This will help shed
light on the dependence of the threshold mass to prompt
collapse in neutron star mergers as a function of the maxi-
mum compactness [81,82], and also establish more realistic
lower bounds for the binary tidal deformability extracted

from electromagnetic counterparts [83]. Future improvements
will concentrate on asymmetric matter in beta-equilibrium,
as well as extensions to explore higher densities, relevant for
astrophysical applications.

ACKNOWLEDGMENTS

We thank A. Arcones, K. Hebeler, L. Rezzolla, S. Schäfer,
C. Wellenhofer, and H. Yasin for useful discussions. This
work was supported in part by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – Project
No. 279384907 – SFB 1245 and by “PHAROS” COST Ac-
tion CA16214. Calculations for this research were conducted
on the Lichtenberg high-performance computer of the TU
Darmstadt.

[1] M. D. Duez and Y. Zlochower, Rep. Prog. Phys. 82, 016902
(2019).

[2] L. Baiotti and L. Rezzolla, Rep. Prog. Phys. 80, 096901
(2017).

[3] M. Shibata, K. Taniguchi, and K. Uryū, Phys. Rev. D 71,
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