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Hybrid equation of state with pasta phases, and third family of compact stars
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The effect of pasta phases on the quark-hadron phase transition is investigated for a set of relativistic
mean-field equations of state for both hadron and quark matter. The results of the full numerical solution with
pasta phases are compared with those of an interpolating construction used in previous works, for which we
demonstrate an adequate description of the numerical results. A one-to-one mapping of the free parameter of the
construction to the physical surface tension of the quark-hadron interface is obtained for which a fit formula is
given. For each pair of quark and hadron matter models the critical value of the surface tension is determined,
above which the phase transition becomes close to the Maxwell construction. This result agrees well with earlier
theoretical estimates. The study is extended to neutron star matter in beta equilibrium with electrons and muons
and is applied to investigate the effect of pasta phases on the structure of hybrid compact stars and the robustness
of a possible third family solution.
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I. INTRODUCTION

The recent discovery of pulsars with precisely measured
masses close to 2M� such as PSR J0348+0432 [1] and
PSR J0740+6620 [2] provides a new observational constraint
on the equation of state (EoS) of cold dense matter under
compact star (CS) conditions of β equilibrium and global
charge neutrality. It allowed excluding many models of CS
matter for which the EoS is too soft to describe pulsars with a
mass as high as 2M�. A new quality in the quest for the high-
density EoS will be achieved when the NICER experiment
[3] on board of the International Space Station will provide
an accurate radius measurement with a 0.5 km uncertainty
scale of the nearest millisecond pulsar PSR J0437-4715 with a
known mass of 1.44 ± 0.07 M� [4]. Further constraints on the
EoS are provided by the measurement of gravitational waves
from the inspired phase of the binary CS merger GW170817
[5].
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In this context it is interesting to study various possible
phase transitions in the strongly interacting CS medium. One
of them is the transition from the hadronic to the deconfined
quark matter phase. Its possible description and effects on the
CS mass-radius diagram were studied by many authors, see
[6] and references therein. One of the potentially observable
phenomena is the existence of a third CS branch in the CS
mass-radius diagram, disconnected from that of neutron stars
(NSs). Such a third family branch can exist if there is a strong
first-order phase transition [7], e.g., from hadrons to quarks
with a sufficiently large jump in the energy density taking
place inside the CS [8]. A robust observation of pulsars with
similar masses and substantially different radii (CS twin con-
figurations) would reveal the existence of the first-order phase
transition at zero temperature and thus prove the existence of
the QCD critical endpoint [9].

One of the features of the first order hadron-quark phase
transition is the appearance of finite-size structures. They
can appear in the CS matter due to the existence of two
separately conserved charges: baryon number and electric
charge, for which the chemical potentials have to be equal
in both phases to satisfy the Gibbs conditions (GC) for the
phase equilibrium. The electric charge has to be globally equal
to zero for gravitationally bound objects like NSs. Reference
[10] suggested the presence of a wide region of mixed phase
at any first-order phase transition in multicomponent systems
of charged particles; cf. further discussion of this subject
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in [11]. If the global electric neutrality and the existence
of the surface tension between hadron and quark matter are
taken into account, then the ground state of the mixed phase
consists of finite-size droplets of one phase inside another of
various geometries and sizes which has been dubbed “pasta
phase.” As has been demonstrated in [12], for the appearance
of the structured mixed hadron-quark phase the Coulomb
plus surface energy per droplet of the new phase should
have a minimum, as a function of the droplet size. Charge
screening effects were disregarded. However, as was shown
in [13,14], taking into account the charge rearrangement due
to the charge screening in the pasta phases has a large effect
on the mixed hadron-quark phase. In particular, for a given
pair of hadron and quark EoSs there exists such a critical
value of the surface tension parameter σc, governed by the
charge screening effects, that for any σ > σc the resulting
mixed phase will be given by the Maxwell construction (MC)
case. Reference [15] argued for the importance of taking into
account finite-size effects at the hadron-quark transition in
heavy hybrid stars with masses as high as M � 2M�.

The presence of structures in the mixed phase in the phase
transition region results in a blurring of the energy jump,
which may lead to the disappearance of the third family.
Also it leads to an increase of the pressure P(μc) over the
constant value Pc of the MC, which can be characterized by
a relative pressure excess �P = �P(μc)/Pc, where μc is the
baryon chemical potential corresponding to the MC. In order
to estimate the impact of the mixed phase existence on the
high-mass twin (HMT) phenomenon, in [16] a phenomeno-
logical approach [17] was used to mimic the deviation of the
pressure from the MC due to the structure formation; see also
Ref. [18]. It was found that the third family branch of hybrid
stars joins the branch of hadronic neutron stars so that mass
twin stars cease to exist, if the pasta phase leads to �P > 0.05;
for some models this occurs already at �P > 0.02 (see, e.g.,
Refs. [16,19]).

The purpose of the present work is to investigate the
correspondence between the phenomenological construction
used before and the properties of an actual pasta calculation.
In order to do this, we compute numerically the EoS of hybrid
star matter with pasta structures for a set of surface tension
values σ and then find a correspondence between σ and �P.
As an input we use recently developed relativistic mean-field
(RMF) EoSs for hadron [20] and quark matter [21], labeled
as KVORcut and SFM, respectively. Each of them contains
a free parameter, allowing one to change their stiffness and
thus to control the features of the mass-radius (M-R) diagram.
We choose two hadronic and two quark parametrizations, such
that all the pairs of hybrid EoSs pass the 2 M� constraint for
the maximum CS mass. After obtaining the �P(σ ) relation
for all the combinations of the models, we compare it with
the analytical expression and provide a fit formula for this key
result of the present paper.

With this prerequisite we reexamine the question of the
robustness of third family branches in the mass-radius relation
of hybrid compact stars. We discuss the model dependence
and the maximum possible impact of pasta phases on other
observable CS properties, such as the moment of inertia and
the tidal deformability.

II. HYBRID EQUATION OF STATE WITH PASTA PHASES

In this section, we outline the description of a quark-hadron
hybrid EoS with structures in the mixed phase (so-called
pasta phases) following Ref. [15] and describe the recently
proposed effective mixed phase construction [16,17] with the
parameter �P that may in turn be related to the value of the
surface tension σ . The input to the pasta phase calculations is
the energy per particle in the hadron (H) and quark (Q) matter
phases, respectively. Both these functions are parameterized
as

E (H,Q)(nB, β ) = E (H,Q)
sym (nB) + β2

(H,Q)E
(H,Q)
asym (nB), (1)

where E (H,Q)
sym and E (H,Q)

asym are the energies per particle in sym-
metric matter and the asymmetry energy, respectively, in the
hadron (H) and quark (Q) matter phases, and the asymmetry
parameters for hadron and quark matter are defined as

β(H ) = 1 − 2
np

nB
,

β(Q) = nd − nu

nd + nu
= nd − nu

3nB
.

As the microscopical input to the pasta phases code, we
provide polynomial fit formulas for these EoSs.

A. Hadronic phase

The description of the hadronic matter phase is based on a
RMF model with hadron masses and couplings dependent on
the scalar field σ developed in [20,22]. Within this approach
all the hadron effective masses decrease in the medium with
the same rate as functions of the mean σ field, in accor-
dance with the idea of the partial chiral symmetry restoration.
Phenomenological scaling functions enter the EoS only in
combinations

ηM (σ ) = �2
M (σ )

χ2
M (σ )

, (2)

where the subscript M = σ, ω, ρ, φ labels the meson fields
included into the model. In this framework the KVORcut
family of the models was constructed, which allows for a
high maximum CS mass and simultaneously fulfills a majority
of other constraints. We focus here on the KVORcut02 and
KVORcut03 models, in which the additional stiffness is in-
troduced as outlined in [23] to allow for the description of
pulsars with a mass of ≈2M� [1] even when hyperons and
� resonances are present in the EoS. The KVORcut02 model
is the stiffest one, while the softer KVORcut03 model passes
constraints for the pressure as a function of the baryon den-
sity following from analyses of flows in heavy-ion collisions
[24,25].

The hadronic EoS can be parametrized with

E (H )
sym (nB) =

20∑
i=0

aiu
i, E (H )

asym(nB) =
20∑

i=0

biu
i, (3)

where u = nB/n0 is the nuclear compression with n0 =
0.16 fm−3 being the nuclear saturation density. The coeffi-
cients ai, bi are the fit parameters given in Table I.
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TABLE I. Parameters of the hadronic EoS fits given by Eq. (3), in units of MeV.

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 103 a10

KVORcut02 0.81351 −34.683 33.997 −56.44 72.585 −47.173 18.49 −4.7982 0.8607 −0.10787 9.2105
KVORcut03 1.3516 −36.250 19.305 7.0831 −16.110 13.457 −6.3007 1.8621 −0.36858 0.049935 −4.5546

104 a11 106 a12 107 a13 108 a14 1010 a15 1011 a16 1012 a17 1013 a18 1015 a19 1017 a20

KVORcut02 −4.8153 8.2274 7.5668 −5.4597 3.6447 12.955 −8.1609 2.4357 −3.8209 2.5408
KVORcut03 2.5440 −5.0889 −3.7728 3.0135 −2.8021 −6.9601 4.5957 −1.4064 2.2473 −1.5170

b0 b1 b2 b3 b4 b5 b6 b7 b8 103 b9 104 b10

KVORcut02 0.48339 47.238 −29.873 21.027 −8.8474 2.1619 −0.23286 −0.027407 0.014986 −2.7789 2.9860
KVORcut03 0.75228 43.283 −17.843 8.7129 −4.8032 2.8450 −1.2560 0.37458 −0.076074 10.623 −10.016

105 b11 106 b12 108 b13 109 b14 1011 b15 1011 b16 1012 b17 1014 b18 1016 b19 1018 b20

KVORcut02 −1.8742 0.45587 2.5343 −2.3493 2.9652 0.52260 −0.36619 1.1538 −1.8825 1.2923
KVORcut03 5.8272 −1.2946 −8.1827 7.1581 −8.4830 −1.6147 1.1263 −3.5671 5.8735 −4.0798

B. Quark matter phase

For description of the quark phase we use the recently
developed RMF density functional [21], inspired by the
string-flip model [26,27]. This approach gives a simple way
to model the confinement of quarks via introducing diver-
gent quark masses for low baryon densities and the density-
dependent screening effect. The effective screening is de-
scribed analogously to the excluded volume effect in models
of hadronic matter with density-dependent couplings.

Together with these features, the model incorporates a
repulsive vector interaction with a higher-order density depen-
dence. It gives a relatively soft EoS near the phase transition
point, which becomes much stiffer as the density increases.
This stiffness allows for description of the 2M� CS mass
constraint for hybrid stars. However, the soft behavior near
the phase transition (PT) leads to the possibility of mass twin
CS configurations, which appear if the density jump is large
enough for the existence of a separate branch of hybrid stars
dubbed the “third family” of CSs. Further details on these
models can be found in [21].

This EoS can be parametrized using

E (Q)
sym(nB) = αs + βsu

−1/3 + γsu
1/3 + δ u,

E (Q)
asym(nB) = αau

1 + γau2
+ βau2/3, (4)

where αa,s, βa,s, γa,s, and δ are the fit parameters given in
Table II.

C. Pasta phase calculation

In order to study the finite-size structures, we require the
GC

P(H ) = P(Q), μ
(H )
B = μ

(Q)
B , μ(H )

e = μ(Q)
e (5)

to be fulfilled within the mixed phase region. In the Wigner-
Seitz (WS) approximation the space is considered to be
tesselated by cells of a given geometry depending on the
dimensionality d: spheres for d = 3, cylinders for d = 2,
and slabs for d = 1 with a volume VW . Within each of the
cells the quark phase of the volume VQ is embedded into the
surrounding hadron phase of the volume VH or vice versa.
If the hadron phase is dominant the structures are dubbed
“droplets” and “rods” for d = 3 and d = 2, respectively,
and “bubbles” or “tubes” otherwise. The boundary layer is
assumed to be smaller than any of the characteristic lengths
of the problem, and thus the surface effects are captured by
introducing the surface tension parameter σ . The value of σ

is highly model dependent and uncertain. In this work we
vary σ in a wide range with a small step, which allows us
to determine numerically the critical surface tension σc for all
pairs of hadron and quark models under consideration.

In the Thomas-Fermi approximation the Helmholtz free
energy of a cell reads

ε =
∫

VH

d3rE (H )[{nh(r)}]

+
∫

VQ

d3rE (Q)[{nq(r)}] + εe + εC + εS, (6)

where h = n, p and q = u, d; E (H ) = nB(E (H ) + mN ) and
E (Q) = nBE (Q) are the free energy densities of hadron and
quark matter, respectively, and εe, εC , εS stand for the contri-
butions to the energy per cell from free electron gas, Coulomb
effects, and the surface term, respectively. The nucleon mass
is mN = 938 MeV. First in Sec. III we will consider the
formation of pasta without taking muons into account, and
then in Sec. IV we will study the impact of their contribution
on the pasta properties.

TABLE II. Parameters of the quark SFM EoS fits given by Eq. (4). All units are MeV except for γa,s which are dimensionless.

αs βs γs δ αa βa γa

α = 0.2 −1.7641 1.6654 0.33419 0.98796 −0.02570 0.052563 0.0085143
α = 0.3 −6.8814 3.3411 4.5326 0.21680 −0.029531 0.056170 0.018573
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The Coulomb contribution to the energy per cell is given
by

εC = e2

2

∫
VW S

d3r d3r′ nch(�r)nch(�r ′)
|�r − �r ′| , (7)

where the charge density is

ench(�r) =
∑

h

Qhnh(�r) +
∑

q

Qqnq(�r) − e(ne + nμ). (8)

Accordingly, the screened Coulomb potential φ(r) is defined
as

φ(r) = −
∫

VW S

d3r′ e2 nch(�r ′)
|�r − �r ′| + φ0, (9)

where φ0 is an arbitrary constant representing the gauge
degree of freedom. It is fixed by the condition φ(RW S ) = 0;
see Ref. [15]. The self-consistent field fulfills the Poisson
equation

�φ(r) = 4πe2nch(r). (10)

The equations are solved for a given baryon density

nB = 1

VW S

[∑
h

∫
VH

d3r nh(r) + 1

3

∑
q

∫
VQ

d3r nq(r)

]
(11)

together with the charge neutrality condition∫
VW S

d3r nch(r) = 0. (12)

D. Fit formula for the phase transition

In [16,17] a simple modification of the MC was employed
to mimic the effect of the pasta structures on the quark-
hadron phase transition. If the EoSs of quark and hadron
matter are given in terms of the pressure as a function of the
baryon chemical potential P(H )(μ) and P(Q)(μ), respectively,
the pressure with this construction is given by

P(μ) =
⎧⎨⎩P(H )(μ), μ < μcH ,

P(M )(μ), μcH < μ < μcQ,

P(Q)(μ), μcQ < μ,

(13)

where

P(M )(μ) = a(μ − μc)2 + b(μ − μc) + (1 + �P )Pc (14)

is a parabolic ansatz [16,17] for the pressure in the mixed
phase and Pc = P(H )(μc) = P(Q)(μc) is the intersection point
of hadron and quark matter EoS at μ = μc corresponding
to the MC. From this expression the baryon density can be
calculated as nB(μ) = dP/dμ. The four parameters a, b, μcH ,
μcB can be determined from the conditions of continuity of
pressure and baryon number density nB(μ) at both μ = μcH

and μ = μcQ, so there is only one free parameter �P left. For
other ansätze interpolating between the hadronic and quark
matter phases with fixed endpoints, see Ref. [18].

III. NUMERICAL RESULTS

In this section we show the results of the fits for ev-
ery combination of the models. Below we use the “H-Q”

FIG. 1. Pressure as a function of the density for all the combina-
tions of models under consideration with the MC (thin lines) and the
GC with σ = 0 and no electrostatic contribution (thick lines) for the
case without muons.

notation for the pairs of hadronic (H) and quark (Q) models,
where H = H1, H2 corresponds to KVORcut[02, 03] models,
respectively, and Q = Q1, Q2 denotes the SFM model with
α = 0.2, 0.3, respectively.

For each pair of the models Fig. 1 demonstrates two
limiting cases of the MC and the GC with σ = 0 and no
Coulomb energy contribution. For a given quark EoS the
transition density and pressure are lower for a stiffer hadronic
EoS H1, and for a given hadronic EoS the transition happens
earlier for the softest quark EoS Q2. Thus the onset of the
phase transition proves to be the lowest for the H1-Q2 case,
because in this case the hadronic EoS is the stiffest one and
the quark EoS is the softest in the low density region. After
taking into account the continuity of the electron chemical
potential, the pressure becomes nonconstant within the mixed
phase region. It can be seen from Fig. 1 that the pressure
difference on the GC increases with an increase of the Pc of
the MC. This broadening is to be compared with the critical
PT broadening from [16] in order to understand whether the
third branch phenomenon can be, in principle, eliminated by
the pasta phases formation.

A. Comparison with phenomenological description

Possible applications of the construction (13) require
knowledge of the limits for realistic values of the parameters.
The parameter �P is greater than zero by definition and
limited from above, with the maximum possible �P corre-
sponding to zero surface tension. The exact correspondence
of �P to the surface tension σ is presented in this section.

We performed the least-squares fit of the P(nB) derived
from Eq. (14) to describe the numerical data, using �P as a
variational parameter. We demonstrate the results of the fitting
in Figs. 2 and 3 in terms of P(μ) and P(n), respectively, for
the examples of the combinations H2-Q1 (top panels) and
H1-Q2 (bottom panels). The choice of surface tension values
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FIG. 2. Pressure as a function of the chemical potential for the H2-Q1 model for the surface tension σ = [0, 40, 80] MeV/fm2 (upper
panel) and the H1-Q2 model with σ = [0, 16, 32] MeV/fm2 (lower panel). Solid lines denote the quark and hadron EoSs, symbols denote the
numerical results with structure types indicated in the legend, and the dashed lines show the best-fit curves using Eq. (13).

shown there, σ = [0, 40, 80] MeV/fm2 for H2-Q1 and σ =
[0, 16, 32] MeV/fm2, roughly corresponds to [0, σc/2, σc] for
each pair of models. Symbols show the numerical results
for the pasta structures, solid lines denote the initial hadron

and quark EoSs, and the best fit by formula Eq. (13) is
shown by the dashed line. We see that the phenomenological
construction we employed in previous works can adequately
describe the exact numerical result. The quality of the fit can

TABLE III. Critical pressure Pc, energy density Ec, and energy density jump �E in units of MeV/fm3, together with the best fit parameters
of Eq. (17) and the theoretical estimates for all the combinations of models without muons (upper table) and with muons (lower table).
Numerical values of the critical surface tension σc and the analytic results σ̃c are given by Eq. (20) in units of MeV/fm2. The Debye lengths
λ

(Q)
D and λ

(H )
D are given in units of fm.

Without muons

Pair �P(0) σc β Pc �E Ec σ̃c λ
(Q)
D λ

(H )
D

H1-Q1 0.053 ± 0.001 52.3 ± 1.27 0.64 ± 0.03 82 306 433 49.2 3.79 5.87
H1-Q2 0.053 ± 0.002 30.2 ± 1.90 0.62 ± 0.08 39 306 309 25.4 3.96 6.40
H2-Q1 0.048 ± 0.001 74.1 ± 0.94 0.77 ± 0.05 135 215 585 73.3 3.71 5.44
H2-Q2 0.060 ± 0.001 38.6 ± 1.06 0.67 ± 0.04 56 232 401 38.5 3.93 6.00

With muons

Pair �P(0) σc β Pc �E Ec σ̃c λ
(Q)
D λ

(H )
D

H1-Q1 0.046 ± 0.001 43.3 ± 0.89 0.65 ± 0.03 85 297 444 42.1 3.77 5.22
H1-Q2 0.049 ± 0.002 29.0 ± 1.53 0.43 ± 0.04 40 302 314 22.5 3.96 5.79
H2-Q1 0.039 ± 0.001 59.4 ± 0.97 0.84 ± 0.07 144 203 607 62.3 3.69 4.78
H2-Q2 0.052 ± 0.001 35.7 ± 0.92 0.63 ± 0.03 58 226 409 33.8 3.93 5.38
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FIG. 3. Pressure as a function of the baryon density for the H2-Q1 model for the surface tension σ = [0, 40, 80] MeV/fm2 (upper panel)
and the H1-Q2 model with σ = [0, 16, 32] MeV/fm2 (lower panel). Solid lines denote the quark and hadron homogeneous matter EoSs,
symbols denote the numerical results with the structure type indicated in the legend, and the dashed lines show the best-fit curves using
Eq. (13). For comparison, we show also the MC by a dotted line. In the rightmost panels where σ > σc we use the symbols for homogeneous
phase also in the coexistence region because the space is divided just into two phases and no structures can be identified.

be characterized by the root-mean-square deviation, defined
as

χ =
√√√√ 1

N

N∑
i=1

(
Pfit

(
n(i)

B

) − Pi

Pi

)2

, (15)

where Pi and n(i)
B are the calculated numeric data points,

Pfit (nB) is given by Eq. (13), and N is the number of data points
in the range of densities where the pasta structures exist. For
the cases shown in the upper panel of Fig. 3, the rms deviation
χ equals to 3.5%, 1.0%, 1.6% for σ = [0, 40, 80] MeV/fm2,
respectively. With such a precision the use of the interpolating
construction, given by Eq. (13), for mimicking the pasta phase
effects on the EoS is justified.

Similar fits were performed for a set of surface tension val-
ues in the range (0–80) MeV/fm2. In Fig. 4 we show by solid
lines the so-obtained curves �P(σ ) for all the combinations of
the models. It is clearly seen that if the surface tension exceeds
some critical value σc, the effect of the finite-size structures
becomes negligible. However, the pressure excess �P does
not become exactly zero, since in the MC case the WS cell size
would become infinite, but the numeric code has a large but

finite limiting cell size. Thus the code we used is applicable
only for σ < σc. Nevertheless, the resulting pressure in the
σ > σc is very close to the MC line, and is best fitted by a
very low �P.

B. Model dependence of the critical surface tension

Because of nonexact reproduction of the MC line in the
case of large surface tension σ , we need to perform an
additional step to define the critical surface tension σc in a
reproducible manner. For this we used a fit of the �P(σ ) curve
with the following ansatz:

�P(σ ) = �P(0)S(σ/σc; β ), (16)

S(x; β ) = e−x(1 − xβ )θ (1 − x), (17)

where �P(0), β, and σc are the parameters of the fit, and θ (x)
is the step function. The parameter values thus determined are
summarized in Table III. The solid lines in the upper panel of
Fig. 4 show the best fit curves given by Eq. (17).

The dimensionless function S(x) shown in the lower panel
of Fig. 4 is only weakly model dependent. By the solid line
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FIG. 4. Upper panel: Relative pressure shift �P at the MC chem-
ical potential μc as a function of the surface tension σ for all the
combinations of models. Solid lines show the results of the fit with
use of Eq. (17), and the dashed lines are plotted with use of the
mean value of β (18) and the best-fit �

(0)
P and σc for each model.

Lower panel: The dimensionless function S(x) (17) for our models.
The solid line with dots shows S(x) for the mean value β, and the
shaded area indicates the change of S(x) for the variation of β with
�β = 0.18.

with dots we show the function S(x; β ), where

β = 0.68 (18)

is the mean value of the β parameter. The region covering all
the S(x) for our models is given by symmetrically varying β

with �β = 0.18. It is shown by the shaded area and labeled
by �β in the legend. The same shaded area is plotted as a
function of the dimensionful σ in the upper panel for the
H1-Q1 model as an example, with the mean value �P(0) =
0.053. It is interesting to note that this maximal value for the
parameter of the mixed phase construction (13) is in the same
range of 5% that was found in Ref. [16] as the critical value
above which the third family solution for hybrid compact stars
would cease if it existed for the MC. For the hybrid EoS
example considered here this would concern the cases with

FIG. 5. Critical surface tension σc as a function of the pressure on
the MC line Pc for all the combinations of models considered. Full
symbols denote the results of the numerical calculation, and open
symbols are the analytical estimates using Eq. (20). The dashed line
shows a linear fit given by Eq. (21) and the gray area denotes its
estimated uncertainty.

H1, the stiffer hadronic EoS. This finding means that even
for the GC with σ = 0 a third family of compact stars can
be obtained, as was the case for the work of Glendenning
and Kettner [28], where the notion of mass twin stars was
introduced. Our results for the properties of compact star
sequences will be discussed in detail in Sec. V below.

In order to describe the model dependence of the critical
surface tension σc we choose the pressure on the MC line Pc

as the parameter characterizing a pair of models. We show
the dependence of σc on Pc in Fig. 5 by solid symbols. It is
clear that within the current set of models the critical surface
tension monotonically grows with an increase of the pressure
Pc. It is interesting to compare this dependence with the ex-
pression for σc obtained in [14] obtained analytically using the
linearized Poisson equation. The resulting expression involves
the Debye screening lengths and the values of the electric field
in both phases. At the critical chemical potential μB = μ

(H )
c,B

of the phase transition we have μe,Gibbs = μ
(H )
e,bulk. When the

quark matter fraction is small, the size of the hadron phase is
much larger than the screening length. Thus we can consider
it to be electrically neutral with μe = μ

(H )
e,bulk. The electron

contribution to the quark matter charge can be neglected [14].
Hence all the values are to be evaluated at μB = μ

(H )
c,B and

μe = μ
(H )
e,bulk for hadronic matter and μe = 0 for quark matter.

The Debye screening lengths are

[
λ

(H,Q)
D

]−2 = −4πe2 ∂n(H,Q)
ch

∂μe

∣∣∣∣
μB

, (19)

where e2 = 1/137 and n(H,Q)
ch (μB, μe) is the charge density

of the phase H or Q. They can be expressed through Landau
parameters of beta-equilibrium matter, though in this work we
calculated the derivatives numerically. The expression for the
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critical surface tension is (see Eq. (77) of Ref. [14])

σ̃c =
(
U II

0 − U I
0

)2

8πe2
(
λ

(H )
D + λ

(Q)
D

) , (20)

where the parameters of the electric field contribution
are U II

0 � −μ
(H )
e,bulk and U I

0 = −4πe2(λ(Q)
D )2n(Q)

ch (μB = μc,

μe = 0).
The so-obtained values of the parameters and σ̃c are sum-

marized in Table III. In Fig. 5 we show by the open symbols
the theoretical values of the critical surface tension σ̃c from
Eq. (20) against the pressure Pc of the MC. We see that
these values are consistent with those obtained from fitting
the numerical result. Thus we confirm that the numerical
calculation correctly captures the essential physics of the pasta
phase formation and proves the usability of the linearized
Poisson equation for the description of the electric field.

We also show by the dashed line the linear fit to these data
points,

σc = d (Pc − P0) + σ0, (21)

where σ0 = 30.3 ± 0.83 MeV/fm2, P0 = 40 MeV/fm3, and
d = 0.28 ± 0.01 fm. Equation (21) is a key result of this
work. This relationship, together with Eqs. (16), (17), and
the mixed phase construction (13), (14) allows one to obtain
the family of hybrid equations of state equivalent to those
of the pasta phase construction, with the surface tension σ as
a free parameter, just from the knowledge of two EoSs for the
pure phases which define the critical pressure Pc of their MC.

IV. INCLUSION OF MUONS

The condition of beta equilibrium inevitably leads to an
appearance of muons when the electric chemical potential
reaches the value μQ = mμ = 105 MeV. Their appearance
impacts both the EoS and the screening lengths in the medium.
In [13–15] for simplicity only electrons were considered. In
this section we describe the effect of muons on the properties
of the pasta phases. The corresponding parameters are given
in the lower part of Table III.

It is known that the influence of muons on the EoS and,
in turn, on the properties of compact stars is rather weak.
But, despite that, we see that their impact on the Debye
screening length in the hadronic phase is more pronounced,
which affects the values of the critical surface tension. The
dependence of the mixed phase parameter �P on the surface
tension σ according to Eq. (16) is given in the upper panel
of Fig. 6, while its scaled form in terms of dimensionless
variables according to Eq. (17) is shown in the lower panel
of that figure. Now the solid line on the lower panel denotes
the function S(x; β

′
), with

β
′ = 0.64

denoting the mean value of the β parameter with the inclusion
of muons. As in Fig. 4, the shaded area reflects a symmetric
variation of β covering all the lines, with an uncertainty now
being taken as �β = 0.2.

The crucial dependence of the critical surface tension
σc in Eq. (16) on the critical pressure Pc of the Maxwell

FIG. 6. Same as Fig. 4 but with inclusion of muons.

construction obeys again Eq. (21) with the same offset in
pressure P0 and the offset in the surface tension σ0 = 31.6 ±
1.19 MeV/fm2 being in accordance within error bars with
the one found for the case without muons. Just the slope
d = 0.45 ± 0.02 fm is about 5/3 as large as in the case
without muons; see Fig. 7. This noticeable change in the slope
shows that the inclusion of muons is important for further
phenomenological studies of the pasta phases.

V. PROPERTIES OF COMPACT STARS

Given the EoS for cold, degenerate hybrid star matter, one
can analyze the properties of the corresponding compact star
configurations following from the general relativistic equa-
tions of hydrostatic equilibrium. Here we follow the analysis
step as described, e.g., in Ref. [29] and the literature re-
ferred to therein. In particular, we find the characteristic M-R
relationship from solving the Tolman-Oppenheimer-Volkoff
(TOV) equations. Having obtained the sequence of compact
star configurations, one can analyze the moment of inertia I
as a function of the gravitational mass M of the star. In a
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FIG. 7. Same as Fig. 5 but with inclusion of muons.

perturbative treatment, one can analyze the response of the
star to tidal deformations, defining the tidal deformability �.

In Fig. 8 we show the M-R relationship for the pairs of
models under consideration for two limiting cases of the
mixed phase. Solid lines denote the case with the phase
transition described by the Maxwell construction, which is
valid for σ � σc. Dashed lines show the results for the mixed
phase described by the construction (13) with a maximum
possible �P within each model, which in physical terms
corresponds to a vanishing surface tension parameter. The thin

FIG. 8. M-R relationship for the four pairs of EoSs discussed in
this work. Solid lines denote the results for the Maxwell construction
(σ > σc), and the dashed lines denote the results for σ = 0. Unstable
CS configurations are shown by thin dotted lines. The horizontal
bands denote the CS mass measurements for PSR J0348+432 [1]
and for PSR J0740+6620 [2]. The magenta cross-hatched regions are
excluded by the GW observations from GW170817 with arguments
for the left region provided in [30] and for the right region in [31],
respectively.

dotted lines stand for unstable CS configurations and their
presence indicates the existence of a third family branch for
the cases involving the stiff hadronic EoS H1. Since in this
case the third branch of compact stars exists for all σ values,
it is robust against the formation of pasta structures (which
occur for σ < σc) for the EoS of the present work. We note
that for other EoS combinations, e.g., the DD2 EoS for the
hadronic phase and the higher order NJL model for the quark
matter phase, the third family branches are less robust [16].

The horizontal bands show the mass range 2.01 ± 0.04M�
measured for pulsar PSR J0348+0432 and the recent mass
measurement 2.17+0.11

−0.10 M� for pulsar PSR J0740+6620 [2].
For both models employing the stiffer H1 hadronic EoS there
appears a third family of CSs, while both the models based
on the softer H2 EoS predict no unstable CS configurations
until the maximum CS mass is reached. Therefore, within the
models under consideration the stiffness of the hadronic EoS
essentially determines whether the third family exists or not
for a given pair of EoSs.

The maximum predicted NS masses equal [2.08, 2.14] M�
for H1-[Q1,Q2] models and [2.12, 2.15] M� for H2-[Q1,Q2]
models. All the four hybrid EoSs pass the maximum NS mass
constraint, including the recent result of [2] for the mass of
PSR J0740+6620. The change in the maximum NS mass
due to the mixed phase formation is tiny even for the lowest
possible surface tension, σ = 0.

The predictions for the radius of a canonical CS with M =
1.4 M� are 14.2 km for both H1-[Q1,Q2] models and 13.3 km
for H2-[Q1,Q2] models in the MC case with σ > σc. For the
H2-Q2 model with a rather low transition mass the radius can
be changed by including the mixed phase. For the limiting
case of σ = 0 it equals 13.09 km.

Preliminary results for mass and radius of PSR
J0030+0451 obtained from an analysis of data taken by the
NICER experiment within a dual-temperature two-polar-caps
model were reported [32] as M = 1.44+0.17

−0.18 M� and
R = 13.84+1.18

−1.25 km. These values indicate that there might
be tension with the mass-radius region excluded by the tidal
deformability constraint from GW170817 shown as the right
cross-hatched region in that figure. Such a tension could be
resolved by the existence of mass twin stars in that mass
interval around 1.4 M�, which are a feature accompanying
the existence of a third family of compact stars and thus
testify for a strong phase transition with a large jump of the
energy density in compact star matter [8,9]. We look forward
to the further NICER analyses for this and other millisecond
pulsars, with smaller statistical and systematic errors.

In Fig. 9 we show the moment of inertia as a function of the
compact star mass for the four hybrid EoS cases considered in
this work. For orientation, we show the mass of star (A) in
the double neutron star system J0737-3039 [33], for which a
measurement of the moment of inertia will be accomplished as
soon as it reappears as pulsar. Since the measurement of mass
and moment of inertia at high accuracy would allow extraction
of a precise value of the radius for the same compact object,
this would provide a strong constraint for the EoS [34].

In Fig. 10 we compare the tidal deformabilities for our
set of EoSs with the constraints derived from the observation
of GW170817 in the �1-�2 diagram. Even with our very
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FIG. 9. Moment of inertia as a function of the compact star
gravitational mass. Solid lines show the results for the MC case (σ >

σc), and dashed lines for σ = 0. Thin dotted lines denote unstable
CS configurations. The vertical line indicates the precisely measured
mass of star (A) in the binary CS system J0737-3039 [33] for which
a determination of the moment of inertia with high precision is under
way.

restricted set of example EoSs, there are many scenarios
possible. The best one among those is that of a binary merger
consisting of two hybrid stars (HS) described with the softer
hadronic EoS (H2) and an early onset of the deconfinement
phase transition via a mixed phase with vanishing surface
tension; see Fig. 10. In this case, the hybrid star branch
of the CS sequence is connected with the hadronic branch

FIG. 10. Relation between tidal deformabilities �1 and �2 of the
two compact stars that merged in the event GW170817 with the chirp
mass M = 1.188 M�. Solid lines show the results for the MC case
(σ > σc), and dashed lines for σ = 0. The dotted line shows the NS-
HS branch, possible within the H1-Q2 model. For a comparison, the
90% and 50% confidence level regions from the analysis of the GW
signal by the LIGO-Virgo Collaboration [35] are also shown.

and does not develop a third family. However, examining
Fig. 8 one may speculate that already a small change in the
quark matter EoS (Q2), lowering the onset mass of the phase
transition by about 0.1 M� would be sufficient to change the
situation qualitatively by allowing a HS-HS binary scenario
for GW170817 with HS on a rather compact third family
branch with much smaller tidal deformability, thus fulfilling
the constraint from the LIGO-Virgo Collaboration analysis
[35] much better. A systematic investigation of HS EoS in the
available parameter space under the available observational
constraints will be subject to a Bayesian analysis study that
we defer to a subsequent work.

VI. CONCLUSIONS

In this work we investigated the modification of quark-
hadron hybrid equations of state due to the formation of
structures (pasta phases) in the mixed phase. We performed
a numerical study of the pasta structures for a set of modern
relativistic mean-field equations of state of quark and hadron
matter. The surface tension between quark and hadron matter
was treated as a free parameter and its value varied in the
range σ ≈ 0–80 MeV/fm2. We have demonstrated that for
all values of σ the numerical results for the pressure in the
mixed phase can be described reasonably well by a simple
polynomial interpolation, which was recently introduced to
study the robustness of the occurrence of a third family branch
of compact stars against the formation of pasta phases. This
finding justifies the application of such a construction to
compact stars [16].

The parameter �P of the construction has the meaning
of an additional contribution to the pressure relative to the
critical pressure of the MC, taken at the critical chemical
potential of the MC. It has its origin in the finite size of the
structures in the pasta phases. As a result of the fit we obtained
the functional dependence of �P(σ ). This map exhibits the
characteristic features of such a phase transition, which we
examined quantitatively. The curve �P(σ ) decreases mono-
tonically with increasing σ , and its maximum value �P(0)
does not exceed 6% for any combination of the hadronic and
quark matter models considered here. In [16] the upper limit
of �P for existence of a third family of compact stars was
found to be of the same order. This means that in the realistic
case of a nonzero σ the third branch of compact stars is
robust against the formation of pasta structures for practically
all values of σ < σc for the EoSs of the present work. We
have confirmed this expectation by explicit calculation of the
hybrid star sequences for the examples considered in this
work. Less robust third family branches were obtained for the
combination of the DD2 EoS for the hadronic phase and the
higher order NJL model for the quark matter phase. The actual
value of �P(0) for a given combination of hadronic and quark
matter EoSs can be obtained from a fit to the GC of that case.

It is known that when one accounts for the electric field,
there exists a critical value of the surface tension σc, such
that for any σ > σc the formation of structures becomes en-
ergetically disfavored and the phase transition degenerates to
a Maxwell construction with �P � 0. We found the resulting
values of σc for the models under consideration. Interestingly,
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σc increases monotonically with the critical pressure Pc of the
Maxwell construction for a given pair of hadron and quark
models. We adapted the analytical consideration of [14] to
our models and showed that the analytically evaluated critical
surface tension is quantitatively consistent with the numerical
results. The existence of the third family requires the phase
transition to happen at rather low densities. Therefore, lower
values of Pc correspond to models with twin star configu-
rations. Consequently, the critical surface tension for such
models should be also lower, and a larger range of σ values
will not spoil the existence of the third family.

With the corresponding fit formula we provide a quantita-
tive relationship that is very useful for practical applications.
It allows one to construct the mixed phase equivalent to a full
pasta phase calculation for any choice of the quark-hadron
surface tension provided a hadronic and a quark matter EoS
are given which imply the knowledge of the parameters of
both the MC and the GC between them.

We have provided explicit solutions for observable com-
pact star properties for the hybrid EoS examples considered in
this work—M-R relationships, moments of inertia, and tidal
deformabilities—and discuss their present-day constraints

from observations. We have demonstrated the robustness of
third family solutions against the formation of pasta phases
and illustrated the considerations by a conjecture about the
possible verification of the existence of third family solutions
and thus strong first-order phase transitions with or without
pasta structures in the mixed phase. If NICER will measure
a pulsar radius in the mass range of GW170817 which is
significantly larger than the upper limit for the radius corre-
sponding to the tidal deformability range deduced from the
gravitational wave signal of the inspiral phase of GW170817,
then a solution for this puzzle would be the existence of two
distinct branches of compact stars in this mass range, leading
to “mass twins.”
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