
PHYSICAL REVIEW C 100, 025801 (2019)

Thermal quasiparticle random-phase approximation calculations of stellar
electron capture rates with the Skyrme effective interaction
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A microscopic thermodynamically consistent approach is applied to compute electron capture (EC) rates and
cross sections on nuclei in hot stellar environments. The cross-section calculations are based on the Donnelly-
Walecka multipole expansion method for treatment of semileptonic processes in nuclei. To take into account
thermal effects, we express the electron capture cross section in terms of temperature- and momentum-dependent
spectral functions for respective multipole charge-changing operators. The spectral functions are computed by
employing the self-consistent thermal quasiparticle random-phase approximation (TQRPA) with the Skyrme
effective interaction. Three different Skyrme parametrizations (SkM∗, SGII, and SLy4) are used to investigate
thermal effects on EC for 56Fe and 78Ni. For 56Fe, the impact of thermally unblocked Gamow-Teller GT+
transitions on EC is discussed and the results are compared with those from shell-model calculations. In
particular, it is shown that for some temperature and density regimes the TQRPA rates exceed the shell-model
rates due to violation of the Brink-Axel hypothesis within the TQRPA. For neutron-rich 78Ni, the full momentum
dependence of multipole transition operators is considered and it is found that not only thermally unblocked
allowed 1+ transitions but also thermally unblocked first-forbidden 1− and 2− transitions favor EC.
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I. INTRODUCTION

The knowledge of low-energy nuclear weak-interaction-
mediated processes is crucial for understanding the late stage
of massive stars’ evolution [1,2]. Among them, electron cap-
ture strongly influences the precollapse stage as well as the
gravitational collapse of the iron core, leading to the super-
nova explosion. The collapse starts when the core exceeds
the Chandrasekhar limit and electrons begin to be captured by
iron-group nuclei. As electrons dominate the matter pressure,
the depletion of the electron population due to capture by
nuclei is a crucial factor determining the initial collapse phase.
Until the core reaches densities of ρ ≈ 1011 g cm−3, neutrinos
produced by these reactions leave the star practically unhin-
dered, cooling the core and reducing its entropy. Moreover, the
electron capture (EC) rates strongly determine the electron-to-
baryon ratio Ye in a way that directly influences the collapse
dynamics and the fate of the shock wave formed by the
supernova explosion. So, the nuclear electron capture is one
of the most essential ingredients involved in the complex dy-
namics of core-collapse supernova, and reliable estimates of
EC rates are crucial for better understanding of the explosion
mechanism.

The determination of stellar EC rates is a challenging nu-
clear structure problem. First of all, because of the low entropy
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in the core and the neutron-rich conditions, very neutron-
rich nuclei may be produced with abundance several orders
of magnitude larger than that of free protons. Usually, only
theoretical weak interaction rates for such nuclei are available.
Additionally, in high-temperature stellar environments, the
total EC rate is given by a sum of individual contributions λi

from thermally excited states:

λ(T ) =
∑

i

pi(T )λi, (1)

where pi(T ) is the Boltzmann population factor for a parent
state with energy Ei at temperature T . The contributions from
excited states remove the reaction threshold and at high tem-
peratures they dominate the EC rate. However, the calculation
of specific contributions λi is a problem whose complexity
grows considerably with temperature and for T ≈ 1 MeV the
state-by-state evolution of individual contributions becomes
computationally infeasible because of too many thermally
populated states.

The first set of EC rates in stellar matter has been com-
puted and published for sd- and p f -shell nuclei by Fuller
et al. [3–6], employing the independent particle model. The
calculations were based on the idea by Bethe et al. [7], who
first recognized the key role played by the Gamow-Teller (GT)
resonance in stellar weak processes. With the improvement of
nuclear structure models and computer algorithms, large-scale
shell-model (LSSM) calculations have become possible for
p f -shell nuclei. Their results on GT strength distributions for
iron-group nuclei agreed quite well with experimental data
[8]. In Refs. [9,10], detailed shell-model calculations of the
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weak interaction rates for p f -shell nuclei up to A = 65 were
performed and their incorporation into presupernova models
[11,12] demonstrated significant changes in the core entropy
and the electron-to-baryon ratio Ye.

Despite significant progress in computation capabilities,
the straightforward extension of the LSSM approach to highly
excited nuclear states and neutron-rich nuclei with A > 65
still remains impossible due to the huge dimension of the
model space involved. In Refs. [9,10], the first issue was over-
come by employing the Brink-Axel hypothesis, i.e., assuming
that GT+ strength distributions built on excited states are the
same as for the nuclear ground state, but shifted by excitation
energy.1 To overcome the second problem, in Ref. [15] the so-
called “hybrid” model was proposed. In this model, the rates
are calculated using the random-phase approximation (RPA)
built on an average thermal nuclear state described by the
Slater determinant with temperature-dependent occupation
numbers. The latter are determined within the shell-model
Monte Carlo (SMMC) approach, which accounts for both
finite-temperature effects and correlations among nucleons.
Using the hybrid model, Langanke et al. [16] calculated
electron capture rates for a sample of nuclei with A = 66–112
(the p f g/sdg shell), taking into account allowed (i.e., GT)
and first-forbidden transitions. In particular, it was found that
the electron capture on neutron-rich nuclei dominates over the
capture on free protons, leading to significant changes in the
core-collapse dynamics. Later, in Ref. [17], EC rates for more
than 2200 neutron-rich nuclei were produced using the same
hybrid approach but utilizing the Fermi-Dirac parametrization
for occupation factors.

The hybrid model clearly demonstrates the importance of
nuclear correlations that lead to configurational mixing and
unblock GT+ transitions in neutron-rich nuclei. However, be-
cause of the determinant form of the average thermal nuclear
state, pairing correlations cannot be treated properly within
the hybrid model. Furthermore, being based on the RPA, the
hybrid model takes into account only an endoergic electron
capture process and neglects de-excitation of thermally ex-
cited states of a parent nucleus. To avoid these shortcomings
and predict stellar weak-interaction rates for hot nuclei in
a microscopic thermodynamically consistent way, the ther-
mal quasiparticle random-phase approximation (TQRPA) was
proposed in Refs. [18–20]. Unlike the approaches based on the
shell model, the TQRPA is formulated in the grand-canonical
ensemble and allows both energy and particle exchange be-
tween a nucleus and the stellar environment. Similar to the
hybrid model, the TQRPA is based on a statistical formulation
of the nuclear many-problem approach and enables one to
obtain a temperature-dependent strength function for p → n
transitions involved in EC. However, in contrast to the hy-
brid model, the TQRPA makes it possible to treat both en-
doergic and exoergic electron capture processes. Moreover,
calculations performed in Refs. [18–20] reveal the important

1The validity of the Brink-Axel hypothesis for the GT strength
function is not obvious and its violation is confirmed by the shell-
model Monte Carlo studies at finite temperature [13] and most
recently by the shell-model calculations for sd-shell nuclei [14].

thermal effects on GT+ distributions in neutron-rich nuclei
which occur due to destructive interference between thermal
excitations and configurational mixing. Namely, using the
example of neutron-rich Ge isotopes, it was shown that the
weakening of pairing correlations with temperature leads to a
considerable (≈8 MeV) downward shift of the GT+ strength.
As a result, the low-energy EC cross sections demonstrate a
strong temperature dependence. No such effect was found in
hybrid model calculations.

In Refs. [18–20], the TQRPA calculations for electron
capture rates were performed with the phenomenological
Hamiltonian of the quasiparticle-phonon model (QPM) [21],
whose parameters are adjusted locally, i.e., to properties of
the nucleus under consideration. In Refs. [22–25], the same
model Hamiltonian was used to study thermal effects on
neutrino-nucleus reactions relevant to supernova simulations.
To improve the predictive power of TQRPA calculations, in
Refs. [26,27] the method was combined with the Skyrme
energy density functional theory. The resulting self-consistent
Skyrme-TQRPA model can be used to make theoretical pre-
dictions for weak interaction processes with nuclei far from
the stability valley more reliable. In the present work, we
apply the Skyrme-TQRPA model to study stellar electron
capture on nuclei in the iron-group mass region and for
neutron-rich nuclei. To this aim, we perform EC calculations
for 56Fe and 78Ni. In Refs. [18–20,27], the long wavelength
approximation for allowed and first-forbidden transitions was
used. This assumption is valid for low-energy electrons in
the precollapse phase but it becomes doubtful at a later stage
of the collapse when the increased density results in higher
energy electrons (Ee ≈ ρ1/3). To take into account the full
momentum dependence of transition operators, we employ
the Donnelly-Walecka multipole expansion method to treat
semileptonic processes in nuclei [28,29] and express the EC
cross section through temperature- and momentum-dependent
spectral functions.

We should mention several papers where different models
based on RPA with the inclusion of temperature effects have
been used to calculate stellar EC rates [30–32]. Our approach
differs from those of Refs. [30–32] primarily by thermody-
namically consistent consideration of thermal effects. It was
shown in Ref. [27] that exoergic transitions from thermally ex-
cited states appear within the TQRPA and for EC on 56Fe they
remove the reaction threshold and enhance the low-energy
cross section. In contrast, no such transitions appear within
the finite-temperature RPA models. As a result, calculations
in Refs. [30–32] predict that EC cross sections drop rapidly to
zero as the electron energy falls below some threshold value.
We will return to this point in Sec. III A.

The paper is organized as follows: In Sec. II, the ex-
pressions necessary to calculate cross sections and rates of
EC on hot nuclei are given. In addition, in Sec. II we re-
view the basics of the formalism and show how to compute
charge-changing finite-temperature spectral functions within
the TQRPA. The results of the numerical calculations for
56Fe and 78Ni and their comparison with other models are
presented and discussed in Sec. III. Conclusions are drawn
in Sec. IV.
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II. THEORETICAL FORMALISM

To compute EC rates in the hot supernova environment,
we assume that the atoms are completely ionized and the
surrounding electron gas is described by the distribution func-
tion f (Ee). Then, neglecting the Pauli blocking for outgoing
neutrinos, the stellar electron capture rate on a hot nucleus is
obtained by folding the finite-temperature cross section with
the distribution of electrons,

λ(T ) = 2
∫

d3pppe

(2π h̄)3
σ (Ee, T )c fe(Ee)

= c

π2(h̄c)3

∫ ∞

mec2
σ (Ee, T )Ee pec fe(Ee)dEe, (2)

where pe = (E2
e − m2

ec4)1/2/c is the momentum of the incom-
ing electron with energy Ee. Under conditions encountered in
the collapsing core, the electron distribution is described by
the Fermi-Dirac function with temperature T and chemical
potential μe, i.e., fe(Ee) ≡ fe(Ee, μe, T ). The electron chem-
ical potential μe is determined from the baryon density ρ by
inverting the relation

ρYe = 1

π2NA

1

(h̄c)3

∫ ∞

0

[
fe(Ee) − fp(Ee)

]
(pec)2d (pec), (3)

where Ye is the electron-to-baryon ratio and NA is the Avo-
gadro constant. The positron distribution function fp is de-
fined by the substitution the chemical potential μp = −μe.

In Eq. (2), the temperature-dependent cross section for
capture of an electron with energy Ee is determined as the
following thermal average:

σ (Ee, T ) =
∑

i f

pi(T )
∫

d�
dσi→ f (Ee)

d�

=
∫ Ee

−∞
dE

∫
d�

d2σ (Ee, E , T )

dEd�
, (4)

while the finite-temperature differential cross section is de-
fined as

d2σ (Ee, E , T )

dEd�
=

∑
i f

pi(T )
dσi→ f (Ee)

d�
δ(E − �E f i ). (5)

Here, E = Ee − Eν is the energy transferred to the nucleus
when emitting the neutrino with energy Eν . In the above def-
initions, we account for all energetically allowed transitions,
i.e., �E f i � Ee, where �E f i is the transition energy needed
to go from the parent nuclear state i to the daughter nuclear
state f . For proton-to-neutron transitions �E f i = ε f − εi +
�Mnp, where �Mnp = 1.293 MeV is the neutron-proton mass
difference and εi( f ) = 〈i( f )|H |i( f )〉 with H being the nuclear
Hamiltonian. The important point is that due to thermally
excited states the energy transfer E can be both positive and
negative.

In the derivation of the temperature-dependent EC cross
section, we follow the Donelly-Walecka formalism [28,29]
(see also Ref. [32]), which is based on the standard current-
current form of the weak interaction Hamiltonian. Applying
multipole expansion of the weak hadronic current, the method
allows one to express the electron-nucleus differential cross

section in Eq. (5) through the matrix elements of the charge
M̂J , longitudinal L̂J , transverse electric T̂ el

J , and transverse
magnetic T̂ mag

J operators. Then, the differential cross section
(5) can be written as the following multipole expansion:

d2σ (Ee, E , T )

dEd�
= (GFVud )2

2π (h̄c)4
E2

ν R(Ee, Eν )F (Z, Ee)

×
{ ∞∑

J=0

σ J
CL(E , T ) +

∞∑
J=1

σ J
T (E , T )

}
. (6)

Here, GF is the Fermi coupling constant and Vud is the
up-down element in the Cabibbo-Kobayashi-Maskawa quark
mixing matrix. The Fermi function F (Z, Ee) corrects the cross
section for the distortion of the electron wave function by the
Coulomb field of the nucleus [9], while the factor R(Ee, Eν )
accounts for the nuclear recoil [32].2

In Eq. (6), all temperature dependence is contained in the
Coulomb longitudinal and transverse multipole components:

σ J
CL,T (E , T ) =

∑
i f

pi(T )σ J
CL,T (i → f )δ(E − �E f i ). (7)

For spherical nuclei, the explicit expressions for σ J
CL,T (i →

f ) through the reduced matrix elements of all the above
multipole operators are given in Refs. [28,29]. These ma-
trix elements depend on the four-momentum transfer (E ,qqq)
to the nucleus and they also include the nucleon vector,
axial-vector, and pseudoscalar form factors [30]. Substituting
the expressions for σ J

CL,T (i → f ) into Eq. (7), we express
the temperature-dependent components σ J

CL,T (E , T ) through
the spectral functions for charge, longitudinal, transverse elec-
tric, and transverse magnetic multipole operators:

σ J
CL(E , T ) = (1 + a cos �)SMJ MJ

+ (1 + a cos � − 2b sin2 �)SLJ LJ

+
[

E

q
(1 + a cos �) + c

]
2Re{SMJ LJ } (8)

and

σ J
T (E , T ) = (1 − a cos � + b sin2 �)

[
ST mag

J T mag
J

+ ST el
J T el

J

]
−

[
Ee + Eν

q
(1 − a cos �) − c

]
2Re

{
ST mag

J T el
J

}
.

(9)

The following notation is used above:

a =
√

1 −
(mec2

Ee

)
, b = EeEνa2

q2
, c = (mec2)2

qEe
, (10)

and the absolute value of the three-momentum transfer de-
pends on the scattering angle � as

q = | 	q| =
√

E2 + 2EeEν (1 − a cos �) − (mec2)2. (11)

2For relevant electron energies, R(Ee, Eν ) ≈ 1.
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In Eqs. (8) and (9), the spectral function SAJ BJ (E , T ) for
multipole operators AJM and BJM is defined as

SAJ BJ (E , T )

=
∑

i f

pi(T )
〈Jf ‖BJ‖Ji〉〈Jf ‖AJ‖Ji〉∗

2Ji + 1
δ(E − �E f i ), (12)

where Ji( f ) is the angular momentum of the initial (final)
nuclear state. Because of transitions from thermally excited
states, the spectral functions are determined for both positive
and negative energies.

For low-energy electrons, when the long wavelength limit
q → 0 is valid, the structures of the 1+ multipole operators
entering into σ J

CL and σ J
T (Jπ = 1+) reduce to the Gamow-

Teller form GT+ = gAσσσ t+ [33], where gA is the axial-vector
coupling constant. Then, the 1+ component of the cross
section takes the form

σGT(Ee, T ) = (GFgV Vud )2

2π (h̄c)4
F (Z, Ee)

×
∫ Ee

∞
(E − Ee)2SGT(E , T )dE , (13)

where gV is the vector coupling constant, whereas the
temperature-dependent strength function for the GT+ transi-
tion operator is defined as

SGT(E , T ) =
( gA

gV

)2 ∑
i f

pi(T )
|〈Jf ‖σσσ t+‖Ji〉|2

2Ji + 1
δ(E − �E f i ),

(14)
where gA/gV = −1.27. By substituting (13) into (2), we get
the Gamow-Teller contribution λGT to the EC rate.

To compute the spectral functions, we consider the nuclei
embedded in a hot and dense presupernova medium as open
quantum systems in thermal equilibrium with heat and particle
reservoirs and, hence, they can be described as a thermal
grand-canonical ensemble with temperature T and chemical
potentials of protons λp and neutrons λn, respectively. The
grand-canonical probability distribution pi(T ) ≡ P(εi, AZ

N ) is
given by

P
(
εi, AZ

N

) = (2Ji + 1) exp

{
−εi − λnN − λpZ

T

}/
Z (T ),

(15)
where Z is the partition function. Within the grand-canonical
ensemble, the spectral function for charge-changing p → n
transition operators can be written as the Fourier transform of
the time-correlation function

SAJ BJ (E , T ) =
∫

dt

2π
ei(E−δnp)t

∑
M

〈〈A†
JM (t )BJM (0)〉〉, (16)

where δnp = �Mnp + �λnp with �λnp = λn − λp, and
AJM (t ) = eiH ′t AJMe−iH ′t with H ′ = H − λnN̂ − λpẐ . The
double brackets 〈〈· · · 〉〉 mean the grand-canonical average,
i.e.,

〈〈O〉〉 ≡
∑
N,Z

∑
i,Mi

(2Ji + 1)−1P
(
εi, AZ

N

)〈JiMi|O|JiMi〉. (17)

The grand-canonical time-correlation function in (16) satisfies
the Kubo-Martin-Schwinger (KMS) condition [34,35]

〈〈A†(t )B(0)〉〉 = 〈〈B(0)A†(t + iβ )〉〉, (β = 1/T ). (18)

Then, elementary calculations show that the spectral function
(16) is connected to the spectral function for Hermitian con-
jugate n → p operators A†

JM, B†
JM by the following detailed

balance relation:

SB†
J A†

J
(−E , T ) = e−(E−δnp)/T SAJ BJ (E , T ), (19)

where

SA†
J B†

J
(E , T ) =

∫
dt

2π
ei(E+δnp)t

∑
M

〈〈AJM (t )B†
JM (0)〉〉. (20)

Note a different sign before δnp in comparison with Eq. (16).
It must be emphasized that in the form (19), the detailed
balance for charge-changing spectral functions is valid only
within the grand-canonical ensemble. Within the canonical
ensemble, the detailed balance for charge-changing processes
was derived in Ref. [36] and it involves partition functions for
the parent and daughter nuclei.

So the problem of computing the electron capture cross
sections and rates on hot nuclei is reduced to determining
the time-correlation functions for charge-changing multipole
operators M̂J , L̂J , T̂ el

J , and T̂ mag
J . To compute 〈〈A(t )B(0)〉〉, we

apply the formalism, which is called the thermofield dynamics
(TFD). The concept of TFD is expounded in Refs. [37–39],
and here we only outline the key points relevant to the present
discussion.

Formally, the TFD approach stems from the possibility of
writing the statistical average 〈〈O〉〉 as an expectation value
over a temperature-dependent state |0(T )〉 called the thermal
vacuum,

〈〈O〉〉 ≡ 〈0(T )|O|0(T )〉. (21)

In this sense, the thermal vacuum describes the system in the
thermal equilibrium. In order to define |0(T )〉, one needs to
double the original Hilbert space by introducing a fictitious
dynamical system, identical to the initial one. The doubling
of the Hilbert space, which is the doubling of the states,
then involves doubling the Hamiltonian of the system. Let
H = H (a†, a) be the nuclear Hamiltonian. If we denote the
fictitious quantities by the tilde, then the Hamiltonian of the
fictitious dynamical system has the form H̃ = H (̃a†, ã). Phys-
ically, the origin of tilde creation and annihilation operators
can be seen as the result of the interaction between the system
with the surrounding thermal reservoir, the latter maintaining
a certain number of excited quanta in the system.3 Then,
doubling of the system degrees of freedom allows us to con-
sider excitation and de-excitation processes at finite tempera-
ture. To ensure (21), the thermal vacuum should satisfy two
properties: (i) |0(T )〉 is the zero-energy eigenstate of the so-
called thermal Hamiltonian H = H − H̃ , i.e., H|0(T )〉 = 0;

3The correspondence between the thermofield dynamics and the
superoperator formalism is discussed in Ref. [40].
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and (ii) the following thermal state condition is valid for an
arbitrary operator A:

A|0(T )〉 = σAeH/2T Ã†|0(T )〉, (22)

where σA is a phase factor and the correspondence between
A and Ã is given by the tilde-conjugation rules [37–39]. It is
shown in Ref. [38] that Eq. (22) is equivalent to the KMS
condition (18).

To demonstrate how to compute the spectral functions
within the TFD, we first replace the time-correlation function
in Eq. (16) by the thermal vacuum expectation value

SAJ BJ (E , T ) =
∫

dt

2π
ei(E−δnp)t

×
∑

M

〈0(T )|A†
JM (t )BJM (0)|0(T )〉. (23)

Since H̃ contains an even number of tilde creation and an-
nihilation operators, it commutes with all physical operators.
Therefore, we can formally write

A(t ) = eiHt A e−iHt . (24)

Let us now assume that we can find eigenstates and eigenval-
ues of the thermal Hamiltonian

H|k〉 = εk (T )|k〉, H|̃k〉 = −εk (T )|̃k〉 (25)

and 〈0(T )|k〉 = 〈0(T )|̃k〉 = 0. Note that temperature-
dependent eigenstates of H form pairs: For each |k〉 with the
eigenvalue εk (T ) > 0, there is a tilde-conjugated state |̃k〉
which is also an eigenstate of H with the eigenvalue −εk (T ).
Because of the completeness of the thermal Hamiltonian
eigenstates, we can rewrite Eq. (23) in the following form:

SAJ BJ (E , T )

=
∑
M,k

{〈k|BJM |0(T )〉〈k|AJM |0(T )〉∗

×δ(E − δnp − εk ) + 〈̃k|BJM |0(T )〉〈̃k|AJM |0(T )〉∗
× δ(E − δnp + εk )}. (26)

Thus, within the TFD the spectral function is expressed
through the transition matrix elements of the operators AJM

and BJM taken between the thermal vacuum and eigenstates
of the thermal Hamiltonian H. The singularities of the spectral
function correspond to temperature-dependent eigenvalues of
the thermal Hamiltonian shifted by the value of δnp. At T = 0,
the transition matrix elements to tilde states are zero and,
therefore, SAJ BJ (E , T = 0) is nonvanishing only for E > δnp.
So we can think about δnp as an “effective” ground-state
threshold for p → n reactions. For n → p reactions, the “ef-
fective” ground-state threshold is −δnp. At finite temperature,
SAJ BJ (E , T ) is nonzero for both E > δnp and E < δnp energies
and the latter describe de-excitation processes of a hot system,
i.e., transition from high-energy thermally excited states to
states at lower energies. Using the thermal state condition
(22) and taking into account the property 〈k|Ã|0(T )〉∗ =
〈̃k|A|0(T )〉, we easily derive the detailed balance relation
(19) from Eq. (26).

From the above considerations, it becomes clear how to
use the TFD to compute the EC rates and cross sections for
hot nuclei: This is the diagonalization of the thermal nuclear
Hamiltonian and the subsequent computation of spectral func-
tions. Obviously, in most practical cases we cannot diagonal-
ize H exactly and find the exact thermal vacuum state. The
merit of TFD, however, allows one to resort to approximations
valid at zero temperature. Hence, the thermal vacuum can be
constructed in the Hartree-Fock-Bogoliubov approximation or
in the random phase approximation. Moreover, the concept of
quasiparticles and phonons can be extended to T �= 0 within
the TFD and the thermal vacuum can be defined as the vacuum
state for respective annihilation operators [41].

In the present work, we compute the spectral functions
by applying the so-called thermal quasiparticle RPA method.
For charge-changing transitions in hot nuclei, the TQRPA
was introduced in Refs. [18–20,27]. Let us, for the sake of
completeness, briefly recall the method. Within the TQRPA,
eigenstates of the thermal Hamiltonian are treated as phonon-
like excitations on the thermal vacuum,

|QJMi〉 = Q†
JMi|0(T )〉,

(27)
|Q̃JMi〉 = Q̃†

JMi
|0(T )〉,

where we denote Q̃†
JMi

= (−1)J−MQ̃†
J−Mi, while nontilde and

tilde-phonon operators are connected by the tilde-conjugation
rules [37–39]. The thermal vacuum itself is a vacuum for
the QJMi and Q̃JMi operators. We apply the TQRPA to the
general nuclear Hamiltonian containing a spherical mean field
for protons and neutrons, pairing, and residual particle-hole
interactions

H = Hmf + Hpair + Hph. (28)

Since we are working in the the grand-canonical ensemble,
the chemical potentials for protons and neutrons λp and λn

are included into Hmf . Following the TFD prescription, we
construct the thermal Hamiltonian and then approximately
diagonalize it using the same techniques and approximations
as for a “cold” nucleus. Namely, we first introduce thermal
quasiparticles that diagonalize the mean field and pairing parts
of H:

Hmf + Hpair 
∑

τ

∑
jm

τ
ε j (T )(β†

jmβ jm − β̃
†
jmβ̃ jm) (29)

and their vacuum is the thermal vacuum in the BCS ap-
proximation. In the expression above, the notation

∑τ im-
plies a summation over neutron (τ = n) or proton (τ = p)
single-particle states only. The energy and the structure of
thermal quasiparticles are found from the finite-temperature
BCS equations. At the next step, we take into account the
residual particle-hole interaction and diagonalize H in terms
of thermal multipole phonons,

H 
∑
JMi

ωJi(T )(Q†
JMiQJMi − Q̃†

JMiQ̃JMi ). (30)

For charge-changing processes like electron capture or β

decay, the thermal phonon operators are constructed as a
linear superposition of the creation and annihilation operators
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for proton-neutron thermal quasiparticle pairs,

Q†
JMi =

∑
jp jn

{
ψJi

jp jn

[
β

†
jp
β

†
jn

]J

M + ψ̃Ji
jp jp

[
β̃

†
jp

β̃
†
jn

]J

M

+ iηJi
jp jn

[
β

†
jp
β̃

†
jn

]J

M
+ ĩηJi

jp jn

[
β̃

†
jp

β
†
jn

]J

M

+φJi
jp jn

[
βjpβjn

]J

M + φ̃Ji
jp jn

[
β̃ jp β̃ jn

]J

M

+ iξ Ji
jp jn

[
βjp β̃ jn

]J

M + ĩξ Ji
jp jn

[
β̃ jpβjn

]J

M

}
, (31)

with [ ]J
M denoting the coupling of two angular momenta jp

and jn to the total angular momentum J and its projection
M. As an additional constraint, we demand that the vacuum
of thermal phonons obeys the thermal-state condition (22).
Then, the energy and the structure of thermal charge-changing
phonons are obtained by the solution of the TQRPA equations.
In the zero-temperature limit, the TQRPA method reduces to
the standard QRPA.

To clarify the physical meaning of different terms in
(31), we note that the creation of a negative-energy tilde
thermal quasiparticle corresponds to the annihilation of a
thermally excited Bogoliubov quasiparticle or, which is the
same, to the creation of a quasihole state (see Ref. [20]
for more details). Therefore, at finite temperature, charge-
changing single-particle transitions involve excitations of
three types: (1) two-quasiparticle excitations described by
the operator β

†
jp
β

†
jn

and having energy ε
(+)
jp jn

= ε jp + ε jn , (2)
one-quasiparticle–one-quasihole excitations described by the
operators β

†
jp
β̃

†
jn

, β̃
†
jp
β

†
jn

and having energies ε
(−)
jp jn

= ε jp − ε jn

and −ε
(−)
jp jn

, respectively, and (3) two-quasihole excitations de-

scribed by the operator β̃
†
jp
β̃

†
jn

and having energy −ε
(+)
jp jn

. The
last two types are possible only at T �= 0. Therefore, due to
single-particle transitions involving annihilation of thermally
excited Bogoliubov quasiparticles, the phonon spectrum at
finite temperature contains negative- and low-energy states
which do not exist at zero temperature and these “new”
phonon states can be interpreted as thermally unblocked
transitions between nuclear excited states. In (30), thermal
phonons with negative energy are denoted by tilde and they
contribute to the spectral function at E < δnp.

Once the energy and the structure of thermal phonons
are determined, the TQRPA spectral function for the p → n
multipole operators can be written as

SAJ BJ (E , T )

=
∑

i

〈QJi‖BJ‖0(T )〉〈QJi‖AJ‖0(T )〉∗δ(E − EJi ),

+
∑

i

〈Q̃Ji‖BJ‖0(T )〉〈Q̃Ji‖AJ‖0(T )〉∗δ(E − ẼJi ), (32)

where the following notation for “reduced” transition matrix
elements is used:

〈QJi‖BJ‖0(T )〉 ≡ (2J + 1)1/2〈QJMi|BJM |0(T )〉. (33)

The transition energies to nontilde and tilde phonon states are
given by

EJi = ωJi(T ) + δnp, ẼJi = −ωJi(T ) + δnp, (34)

while detailed expressions for the transition matrix elements
of the charge-changing multipole operators are given in
Ref. [18]. The resulting spectral function is temperature de-
pendent since both the matrix elements and transition energies
depend on temperature. An additional point to emphasize is
that the spectral functions computed within the TQRPA obey
the detailed balance relation (19). In this sense, the present
version of the TQRPA is a thermodynamically consistent
framework.

Given the spectral functions for the multipole operators
M̂J , L̂J , T̂ el

J , and T̂ mag
J and substituting the results into Eqs. (8)

and (9), we get the Coulomb (longitudinal) and transverse
multipole components σ J

CL, σ J
T which determine the EC cross

sections and rates. Restricting our consideration to low-energy
1+ transitions, i.e., neglecting momentum transfer, we can
derive explicit expressions for λGT and σGT. Namely, for
the GT+ strength function, only transitions from the thermal
vacuum to thermal phonon states with Jπ = 1+ are relevant.
Then, omitting the index J , the strength function SGT (14) can
be written as

SGT(E , T ) =
∑

i

{B(+)
i δ(E − Ei ) + B̃(+)

i δ(E − Ẽi )}, (35)

where the GT+ matrix element B(+)
i is given by

B(+)
i =

(
gA

gV

)2

|〈Qi‖σσσ t+‖0(T )〉|2, (36)

while B̃(+)
i is obtained from B(+)

i by replacing the nontilde
state by a tilde one. From (35), it follows that the GT+ strength
below (above) δnp corresponds to transitions to (non)tilde
one-phonon states. By substituting Eq. (35) into Eq. (4), we
get the EC cross section due to GT+ transitions:

σGT(Ee, T ) = (GFgV Vud )2

2π (h̄c)2
F (Z, Ee)

×
∑

i

{(Ee − Ei )
2Bi + (Ee − Ẽi )

2B̃i}, (37)

where summation is performed over Jπ = 1+ thermal one-
phonon states with transition energy Ei, Ẽi � Ee. Then, for
the EC rate we get

λGT = ln 2

K

∑
i

{Bi�
ec(Ei ) + B̃i�

ec(Ẽi )}, (38)

where

K = 2π3(ln 2)h̄7

G2
FV 2

udg2
V m5

ec4
= 6150 s, (39)

while the phase space integral �ec(E ) is given by

�ec(E ) = 1

(mec2)5

∫ ∞

Emin

F (Z, Ee)(Ee − E )2Ee pec fe(Ee)dEe.

(40)
Here, the capture threshold is Emin = mec2 if E < 0 and
Emin = E otherwise.

To finish this part, we would like to mention some im-
portant properties concerning the GT matrix elements. In the
same manner as above [see Eq. (36)] we define the reduced
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matrix elements for the GT− operator

B(−)
i =

(
gA

gV

)2

|〈Qi‖σσσ t−‖0(T )〉|2. (41)

Using the value B̃(−)
i which refers to GT− transitions to tilde-

phonon states, we can write the detailed balance relation (19)
connecting the GT+ and GT− matrix elements as

B̃(∓)
i = e−ωi (T )/T B(±)

i . (42)

Thus, for each p → n (n → p) transition to a nontilde thermal
phonon state with ωi > 0, there is an inverse n → p (p → n)
transition to a tilde-conjugated state with energy −ωi.

One more important point is that the TQRPA approach
preserves the Ikeda sum rule for the bare operators GT± =
σσσ t±∑

i

{B(−)
i + B̃(−)

i } −
∑

i

{B(+)
i + B̃(+)

i } = 3(N − Z ), (43)

although individually the total GT± strengths may vary with
temperature. This was shown in Ref. [18].

III. RESULTS

In this section, we apply the theoretical framework de-
scribed above to evaluate EC rates on the two sample nuclei,
56Fe and 78Ni. The iron isotope is among the nuclei with A ≈
60, which are mainly responsible for decreasing the electron-
to-baryon ratio during the oxygen- and silicon-burning phases
of the massive star evolution. Therefore, the calculated EC
rates for nuclei in this mass range are essential for modeling
the initial phase of the stellar core collapse [1,2,7]. Very
neutron-rich nuclei dominate the nuclear composition during
the last phase of the collapse before neutrino trapping. It was
shown in a recent work by Sullivan et al. [42] that nuclei
around the N = 50 closed neutron shell at and above 78Ni
have the largest impact on the change in the electron density
Ye and, thus, on the dynamical evolution of the collapse.

To compute the spectral functions within the TQRPA, we
suppose that the Hartree-Fock mean-field potential Hmf and
the residual particle-hole interaction Hph in Eq. (28) are ob-
tained self-consistently from the same Skyrme energy density
functional. Moreover, we neglect the thermal effects on the
Hartree-Fock single-particle states. According to Ref. [43],
the stability of the mean field Hmf with respect to temperature
is expected for T values considerably smaller than the energy
difference between the major shells (h̄ω0 = 41A−1/3). This
requirement is well satisfied in nuclei with A < 100 for maxi-
mum temperatures reached during the collapse (T ≈ 5 MeV).
The single-particle continuum is discretized by diagonalizing
the HF Hamiltonian on a basis of 12 harmonic oscillator
shells and cutting off the single-particle spectra at the energy
of 50 MeV.

The isovector part of the residual particle-hole interaction
Hph is defined in terms of second derivatives of the Skyrme
energy density functional with respect to the one-body density
[44]. In the present study, we neglect the spin-orbit part of the
residual interaction. Consequently, our calculations are not,
strictly speaking, fully self-consistent. However, as pointed

out in Ref. [45], the spin-orbit residual interaction practically
has no effect on the GT excitations. The same conclusion was
made more recently in Ref. [46]. Following Ref. [47], we then
simplify the full velocity-dependent Hph by approximating it
by its Landau-Migdal form in the momentum space,

Hph(kkk1,kkk2) = N−1
0

∑
l

[F ′
l + G′

l σσσ 1σσσ 2]τττ 1τττ 2 Pl

(
kkk1kkk2

k2
F

)
,

(44)
where kkki, σσσ i, and τττ i are the nucleon momentum, spin, and
isospin operators, and N0 = 2kF m∗/π2h̄2 with kF and m∗
denoting the Fermi momentum and nucleon effective mass,
respectively. For Skyrme interactions, all Landau parameters
with l > 1 are zero. In the present study, we keep only l = 0
terms in Eq. (44), and in the coordinate representation Hph

takes the form

Hph = N−1
0 [F ′

0 + G′
0σσσ 1σσσ 2]τττ 1τττ 2δ(r1 − r2). (45)

The expressions for the Landau parameters F ′
0 , G′

0 in terms
of the Skyrme force parameters can be found in Ref. [48]. It
was shown in Ref. [47] that by approximating the full resid-
ual interaction derived from a Skyrme force by its Landau-
Migdal expansion truncated at the l = 0 terms it is possible
to calculate accurately the isoscalar RPA modes and also to
reproduce reasonably well the isovector RPA modes. Besides,
as shown in Ref. [49], for charge-changing GT and spin-
dipole excitations, the results obtained in the Landau-Migdal
l = 0 approximation for Hph are close to the results obtained
with the full residual interaction.

At T �= 0, due to thermally unblocked configurations, the
complexity of TQRPA calculations increases rapidly with
the size of the configuration space. The benefit of having a
Landau-Migdal form (45) is that it allows one to construct
a finite-rank separable particle-hole interaction and thus to
combine the advantages of consistency and simplicity [47].
This reduction enables us to transform the TQRPA equations
into a relatively simple secular equation of low dimension
and perform TQRPA calculations in very large configurational
space. The explicit form of the TQRPA secular equation for
charge-changing transitions in hot nuclei is given in Ref. [27].
In what follows, we will compare the results of TQRPA cal-
culations with the Skyrme functionals with those performed
by employing the QPM Hamiltonian [20]. To distinguish
between the two approaches, we will refer to them as QPM-
TQRPA and Skyrme-TQRPA.

In order to estimate the sensitivity of our results with
respect to the choice of Skyrme forces, three different Skyrme
parametrizations, SLy4, SGII, and SkM*, are used in the
present study. The SLy4 parametrization [50] is one of the
most successful Skyrme forces and has been extensively used
in recent years. The force SGII [48] has been successfully
applied to study spin-isospin excitations in spherical and
deformed nuclei, and the SkM* interaction [51] is an example
of the first-generation Skyrme parametrizations. In Table I, we
give the Landau parameters F ′

0 and G′
0 for symmetric nuclear

matter at density values ρ = 0.16, 0.08 fm−3 for the Skyrme
forces employed in the present study. It is well known that
existing Skyrme parametrizations predict the G′

0 value varying
over a wide range (see, for example, Fig. 2 in Ref. [52]).
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TABLE I. Landau parameters of infinite symmetric nuclear mat-
ter calculated at density ρ = 0.16 (0.08) fm−3 using interactions
SkM∗, SLy4, and SGII.

N−1
0 (MeV fm3) F ′

0 G′
0

SkM∗ 194 (245) 0.929 (1.133) 0.316 (0.647)
SLy4 219 (276) 0.818 (1.151) −0.138 (0.365)
SGII 194 (244) 0.726 (0.971) 0.502 (0.740)

The Skyrme parameter sets we use cover a great portion of
this range and, therefore, by employing these very different
functionals, we can estimate the theoretical uncertainty of the
Skyrme-TQRPA approach.

Let us also make a short remark concerning the choice of
the pairing interaction. As in Ref. [20], we employ in the
present study the BCS Hamiltonian with a constant pairing
strength. The neutron and proton pairing strength parameters
are fixed to reproduce the odd-even mass difference. At T =
0, the resulting proton and neutron energy gaps are �p(n) =
1.57 (1.36) MeV for 56Fe and there are no pairing correlations
(i.e., �p(n) = 0) in 78Ni. Within the BCS approach, the phase
transition in nuclei from the superfluid to normal state occurs
at critical temperatures Tcr ≈ 0.5�, where � is a pairing
gap at T = 0 [53,54]. Therefore, the inclusion of particle-
particle residual interactions does not affect the results for
temperatures T > Tcr.

Of course, the phase transition is a consequence of the
grand-canonical treatment which allows the particle number
conservation only in average and, strictly speaking, it occurs
only in the thermodynamic limit. In finite systems, fluctua-
tions around the mean field are important and they smooth
the singularities associated with the phase transitions. As
stated above, we use the grand-canonical description because
nuclei in the stellar interior can exchange particles with the
environment. However, in a context other than the present one
(e.g., in calculations of statistical properties of nuclei such
as the level density or the specific heat), it is necessary to
carry out a reduction to the canonical ensemble to restore
the correct proton and neutron numbers. Such calculations
were performed some times ago by considering a many-body
projected statistical density operator [55], by using the static-
path approximation [56], and more recently by using a finite-
temperature variation after projection BCS approach [57].

A. Iron isotope 56Fe

In Ref. [27], we have applied the Skyrme-TQRPA frame-
work for analyzing thermal effects on the EC cross section
for 56Fe. To simplify the consideration, it was assumed that
EC on 56Fe is dominated by allowed GT+ transitions. Con-
sidering the ground-state GT+ strength distributions, it was
shown that QRPA calculations with the SkM*, SLy4, and
SGII forces fairly well reproduce both the experimental [58]
and shell-model [8] centroid energies. The experimentally
observed quenching of the total GT strength was reproduced
in Ref. [27] by reducing the axial coupling constant gA by a
quenching factor q = 0.74. The same quenching factor is used
in the shell-model calculations of EC rates [8]. Of course, the

FIG. 1. Electron-capture cross section on the ground state of 56Fe
as a function of the incident electron energy Ee. The total cross
section includes contributions of Jπ = 0±, 1±, and 2− multipole
transitions calculated with the SkM* interaction. The dash-dotted
line corresponds to the 1+ contribution calculated with the GT+
operator, i.e., neglecting momentum transfer.

QRPA calculations cannot reproduce all nuclear correlations
needed to describe the full GT resonance width and its de-
tailed structure. In this respect, the shell-model calculations
are clearly advantageous. When considering GT+ strength
distributions at T �= 0, we have found that regardless of the
Skyrme parametrization we use, the Brink-Axel hypothesis
is violated within the TQRPA and the strength distribution
evolves with temperature. Namely, thermal effects shift the
GT+ resonance to lower energy and increase the contribu-
tion of low- and negative-energy transitions to the strength
function.

In the present study, we apply the Skyrme-TQRPA ap-
proach to compute EC rates on 56Fe at conditions realised
on the initial phase of core collapse and compare the results
with those obtained from QPM-TQRPA [20] and LSSM [9]
calculations. To begin with, we first verify that within the
Skyrme-QRPA model GT+ transitions dominate the EC reac-
tion on 56Fe. In Fig. 1, we show the 0±, 1±, and 2− multipole
contributions to the ground-state EC cross section calculated
with the SkM* interaction. Note that the axial coupling con-
stant gA is quenched for all the multipole excitations by the
factor q = 0.74. As seen from the figure, the 1+ contribution
completely dominates the cross section up to Ee ≈ 30 MeV.
Moreover, by comparing the 1+ and GT+ contributions, we
observe that for energies Ee < 30 MeV the corrections due
to final momentum transfer are negligible. Therefore, we
conclude that at relatively low temperatures and densities (i.e.,
when the electron gas chemical potential μe � 10 MeV), the
electron capture on 56Fe is determined by GT+ transitions.

To make further discussion of EC rates more
comprehensible, let us briefly recall the results of
Refs. [20,25,27] concerning thermal effects on the GT+
strength distribution in 56Fe. For the sake of clarity,
in Fig. 2 we display on a logarithmic scale the GT+
distributions calculated at four different temperatures relevant
to presupernova conditions. The strength distributions are
obtained with the SkM∗ force. However, the observed thermal
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FIG. 2. Temperature evolution of the GT+ strength distribution in 56Fe vs transition energy. The strength distributions are obtained with
the SkM∗ interaction for the bare operator GT+ = σσσ t+. The solid vertical line indicates the value δnp ≈ −0.78 MeV. The GT+ strength below
δnp corresponds to transitions to tilde one-phonon states.

effects are qualitatively similar to those in calculations
with the SGII and SLy4 forces as well as with the QPM
Hamiltonian. Considering the temperature evolution of
the upward (E > 0) GT+ strength, we clearly see the
violation of the Brink-Axel hypothesis within the TQRPA.
Namely, thermal effects shift the resonance peak towards
lower energies and enhance the strength of low-energy
(E ≈ 2.5 MeV) GT+ transitions. As discussed in
Refs. [20,25], both the effects are caused by the thermal
smearing of the proton and neutron Fermi surfaces, which
leads to the vanishing of pairing correlations and the softening
of the proton-neutron repulsive residual interaction. Similar
thermal effects on GT+ distributions are predicted by the
finite-temperature relativistic RPA [32] and shell-model
Monte Carlo calculations [13].

As evident from the figure, the downward (E < 0) compo-
nent of the GT+ strength is affected by finite temperature as
well. For 56Fe, this downward strength is located below δnp ≈
−0.78 MeV and corresponds to tilde-phonon states associated
with negative-energy solutions of the TQRPA equations [see
the discussion after Eq. (31)]. In accordance with the detailed
balance principle (42), the temperature rise exponentially
increases the transition strength to tilde-phonon states. We
would like to stress again that within the TQRPA framework
the appearance of p → n transitions with E < δnp stems from
the doubling of the system degrees of freedom within the
TFD.

To reveal the importance of tilde-phonon states, in
Ref. [27] the TQRPA EC cross sections for 56Fe were
compared with those obtained by the finite-temperature

RPA (FTRPA) calculations [31] using the same Skyrme
parametrizations. Like the hybrid model, the FTRPA neglects
negative-energy solution of RPA equations and therefore
misses GT+ strength which contributes to an exoergic elec-
tron capture process. It was shown in Ref. [27] that if we
neglect exoergic GT+ transitions within the TQRPA, both the
approaches produce rather close EC cross sections which drop
to zero as the electron energy falls below some minimum
threshold value. However, as soon as GT+ exoergic transitions
to tilde-phonon states are taken into account, the reaction
threshold disappears and EC becomes possible for arbitrary
small incident electron energy.

Now we present the Skyrme-TQRPA results for stellar
electron capture rates on 56Fe and compare them with the
previous theoretical calculations. The rates we present include
the GT+ contribution only and they are computed according
to Eq. (38). In Fig. 3, the variation of electron capture rates
with temperature and density is displayed for the Skyrme
forces SLy4, SGII, and SkM∗. Note that T9 gives stellar
temperature in units of T9 = 109 K (1 MeV ≈ 11.6 T9). As
seen from the figure, the rates obtained with the different
Skyrme parametrizations reveal similar trends. Namely, the
rates increase with temperature and density, and the thermal
enhancement is most significant at low densities, when the
electron chemical potential is small. In our model, two factors
contribute to the thermal enhancement of EC rates at low
densities: First, temperature rise increases the number of high-
energy electrons in the tail of the Fermi-Dirac distribution,
which then excite the GT+ resonance. Second, as discussed
earlier, finite temperature allows low- and negative-energy
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FIG. 3. Electron capture rates for 56Fe as functions of the tem-
perature T9 (T9 = 109 K ≈ 0.086 MeV) at selected densities ρYe

(g cm−3). μe is the electron gas chemical potential (including the
rest mass) in MeV calculated for a given density and temperature
T9 = 2. On each panel, the TQRPA results obtained with the SkM∗,
SLy4, and SGII interactions are compared with the LSSM rates. The
rates obtained in Ref. [20] by employing a phenomenological QPM
Hamiltonian are also shown.

GT+ transitions which dominate the rate if the electron
capture into the resonance state is energetically suppressed.
To examine qualitatively how thermal changes of the GT+
strength affect the EC rates on 56Fe, we compare in Fig. 4 the
rates with those obtained assuming that EC proceeds on the
nuclear ground state. Referring to the figure, at low densities
thermal effects on the GT+ strength function enhance the
rate by two orders of magnitude. In contrast, thermal effects
are less important at high densities when the electron gas
chemical potential becomes large enough so that transitions
to the GT+ resonance dominate EC. At such conditions, the
capture rates are mainly sensitive to the total GT+ strength
and its centroid. Remember, however, that the GT+ resonance
shifts to lower energies with temperature. This explains why
even at log10(ρYe) = 10 when μe ≈ 10 MeV the rate slightly
increases with temperature.

Though the general behavior of the rates as a function of
temperature and density is the same, Fig. 3 indicates that the
spread of the values obtained with the different Skyrme forces
can reach two orders of magnitude. The discrepancy is most
pronounced at low temperatures and densities when the rates
are highly sensitive to the GT+ distribution details. According
to our TQRPA calculations, among the considered Skyrme

FIG. 4. Electron capture rates for 56Fe computed with and with-
out taking into account thermal effects on the GT+ strength. The
results obtained with the SkM∗ interaction are shown along with the
LSSM rates.

functionals, the one based on the SkM∗ interaction predicts
the GT+ distribution slightly shifted to higher energies (see
Fig. 2 in Ref. [27]). For this reason, the rates obtained with the
SkM∗ force are generally smaller than those computed with
the SLy4 or SGII forces. This observation is in line with [31],
where the SkM* parametrization, along with others, was used
to compute EC rates on 56Fe.

Figure 3 also compares the Skyrme-TQRPA rates to those
obtained in the LSSM [9] and QPM-TQRPA approaches [20].
As seen from the bottom-right panel of the figure, there is
an excellent agreement between the QPM-TQRPA and the
shell-model results at high densities and low temperatures
when the rates are dominated by the ground-state GT+ res-
onance contribution. This agreement is not surprising, since
the QPM Hamiltonian parameters were adjusted to available
experimental data on the GT+ distribution in 56Fe [58]. At
the same conditions, the Skyrme-TQRPA calculations yield
somewhat higher rates. There are two reasons for this dis-
crepancy: (1) As follows from our calculations (see Fig. 1
in Ref. [27]), even with the quenching factor q = 0.74, the
total GT+ strength in 56Fe obtained with the Skyrme inter-
actions SkM∗, SGII, and SLy4 somewhat overestimates the
experimental and the shell-model values. The largest total
GT+ strength is obtained with the SLy4 parametrization and
it overestimates the shell-model and QPM results by a factor
of 2. (2) Besides, the GT+ resonance peaks calculated with
the Skyrme-QRPA are slightly shifted to lower energies with
respect to the shell-model ones. The discrepancy between
the Skyrme-TQRPA and LSSM rates at log10(ρYe) = 10 even
increases with temperature, as the GT+ resonance undergoes
the temperature-induced downshift.

At lower densities, when the electron gas chemical po-
tential μe is smaller or comparable with the GT+ resonance
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energy, the EC rates are very sensitive to details of the
GT+ distribution. As shown in the top panels of Fig. 3,
the TQRPA rates generally overestimate the shell-model val-
ues for densities when μe is smaller than the reaction Q
value (Q = M(56Mn) − M(56Fe) = 4.2 MeV). The detailed
analysis performed in Ref. [20] showed that this disagree-
ment stemmed from larger strength of thermally unblocked
low- and negative-energy transitions predicted by the TQRPA
model. This conclusion is also supported by Fig. 4, showing
that the inclusion of thermal effects on the GT+ strength
function makes the TQRPA rates higher than the LSSM ones
at low densities. For the moderate density log10(ρYe) = 9,
μe ≈ Q and the near-threshold part of the GT+ strength dom-
inates the rates at low temperatures. The TQRPA calculations
with the SkM∗ force as well as with the QPM Hamiltonian
do not reproduce this strength and, therefore, the respective
rates appear to be suppressed with respect to the LSSM ones.
In contrast, due to the displacement of the GT+ resonance
to lower energies, calculations with the SGII and SLy4 in-
teractions lead to more enhanced rates. As was shown in
Ref. [20], the disagreement between LSSM and TQRPA rates
at moderate densities and low temperatures can be removed
by considering the fragmentation of the GT+ strength.

B. Neutron-rich isotope 78Ni

Now we turn our discussion to the neutron-rich nucleus
78Ni. In Ref. [42], a complete study was performed on the
sensitivity of the core-collapse dynamics to variations of EC
rates in medium-heavy nuclei. In particular, it was shown
that core-collapse supernova simulations are most sensitive to
individual EC rates on neutron-rich nuclei in the upper p f and
p f g/sdg shells. Specifically, it was found that nuclei around
N = 50 closed neutron shell at and above 78Ni have the largest
impact on the mass of the inner core at bounce and on the peak
neutrino luminosity. In the present work, we compute EC rates
for 78Ni and compare them with an analytic approximation
widely used in core-collapse simulations.

Because of large neutron excess, the ground-state threshold
energy for the electron capture on 78Ni, Q = M(78Co) −
M(78Ni) ≈ 20.7 MeV [59] is significantly enhanced when
compared to 56Fe. Hartree-Fock calculations for 78Ni with
the Skyrme interactions SkM∗, SGII, and SLy4 predict closed
1 f7/2 proton and 1g9/2 neutron subshells. For neutron-rich
nuclei with N > 40 and Z < 40, the independent particle
shell-model predicts that at T = 0 all allowed GT+ transitions
of valence protons are Pauli blocked, owing to the complete
occupation of the p f neutron orbitals. It was first demon-
strated in Ref. [60] that the electron capture on nuclei with
protons in the p f shell and N > 40 could compete with the
capture on free protons if first-forbidden (i.e., 0−, 1−, and
2−) transitions are taken into account in addition to thermally
unblocked GT+ ones. In Ref. [15], an alternative unblocking
mechanism—configuration mixing induced by the residual
interaction—was considered by employing the hybrid model
and it was found that unblocking effect was not very sensitive
to increasing temperature.

In Ref. [20], using 76,78,80Ge as examples, a detailed anal-
ysis was performed of thermal effects on GT+ transitions

FIG. 5. Electron capture cross sections on 78Ni at different
temperatures T . The cross sections are obtained using the SkM∗

interaction.

in neutron-rich nuclei within the TQRPA. It was shown that
both thermal excitations and the configuration mixing due
to pairing correlations promote protons to the sdg shell and
remove neutrons from the p f orbitals. As a result, the particle-
particle 1gp

9/2 → 1gn
7/2 and hole-hole 1 f p

7/2 → 1 f n
5/2 proton-

to-neutron transitions become unblocked and dominate the
GT+ contribution to EC on neutron-rich nuclei with N > 40
and Z < 40. However, in contrast to the hybrid model, the
TQRPA predicts that both the strength and the energy of
unblocked GT+ transitions are temperature dependent due to
the destructive interference of thermal excitations and pairing
correlations. As a result, the unblocking effect for neutron-
rich nuclei turns out to be quite sensitive to temperature rise.

To demonstrate the unblocking effect for 78Ni, in Fig. 5
we compare the ground-state (T = 0) EC cross sections with
those calculated at three T values relevant to core collapse.
The cross sections depicted in the figure are computed ac-
cording to Eq. (4) with the SkM∗ interaction. They include
the contributions from 0±, 1±, and 2− multipole transitions.
According to our RPA calculations with SkM∗, SLy4, and
SGII forces, the ground-state cross section for EC on 78Ni is
mediated by 1− and 2− forbidden transitions, while allowed
1+ transitions are almost completely blocked and their non-
vanishing contribution is a combined effect of nonorthogo-
nal proton and neutron wave functions and finite-momentum
transfer. Referring to Fig. 5, a strong temperature dependence
of the cross section at energies below the ground-state reaction
threshold (i.e., Ee < 20 MeV) is mainly due to increasing
contribution of 1+ transitions. On the scale used in the figure,
this effect manifests itself as a gradual reduction of the energy
gap with temperature (compare the panel for T = 0 with the
panels for T = 0.5 and 1.0 MeV) and at T = 2.0 the gap
disappears at all. Moreover, as the temperature increases, the
energy range Ee of incoming electrons increases, where 1+
transitions dominate the cross section. Although the contri-
bution of forbidden transitions also increases with temper-
ature (see the discussion below), comparing the multipole
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FIG. 6. Leading multipole contributions Jπ = 1+, 1−, and 2−

to the differential capture cross section of 25-MeV electrons on
78Ni. The calculations are performed for T = 0.5, 1.0, and 2.0 MeV
using the SkM∗ interaction. Total multipole contributions σJπ (in
10−42 cm2) are shown for each temperature. The solid vertical line
indicates the value δnp. For E < δnp, the differential cross section is
due to transitions to tilde one-phonon states.

decompositions of the ground-state cross section with those
obtained at T �= 0, we conclude that the cross-section en-
hancement at finite temperatures is essentially due to thermal
effects on 1+ transitions.

To explain the temperature evolution of the Jπ = 1+, 1−,

and 2− leading multipole components, in Fig. 6 we show
the EC differential cross sections computed for incoming
electrons with Ee = 25 MeV. For 25-MeV electrons, three
different situations are realised, depending on temperature
(see Fig. 5): (i) at T = 0.5 MeV the 1+ contribution is small
and 1−, 2− forbidden transitions dominate the cross section;
(ii) at T = 1.0 MeV the allowed and forbidden components
are of the same order; and (iii) at T = 2.0 MeV the cross
section is dominated by the thermally unblocked allowed 1+
transitions. Notice also that for 25-MeV electrons and T �
0.5 MeV, we can neglect the momentum dependence of the 1+
multipole operators and consider them in the long wavelength
limit. This observation is verified in Fig. 5 where we compare

TABLE II. The total Gamow-Teller strengths B(GT+) calculated
within the TQRPA with the different Skyrme forces. The unperturbed
mean-field strengths are given in parentheses. Note that B(GT+)
values are obtained with the bare operator GT+ = σσσ t+.

T (MeV) 0.5 1.0 1.5 2.0

SkM∗ 0.13 (0.22) 0.18 (0.33) 0.40 (0.83) 0.81 (1.8)
SLy4 0.11 (0.17) 0.13 (0.19) 0.32 (0.39) 0.91 (1.0)
SGII 0.14 (0.23) 0.15 (0.24) 0.20 (0.46) 0.38 (1.1)

the 1+ contributions computed by taking into account the full
q dependence of the transition operators with those obtained
with the GT+ operator.

For the double magic nucleus 78Ni, only thermal effects are
responsible for the unblocking of GT+ transitions; therefore,
at low temperatures the 1+ component of the cross section
is negligibly small, as shown in Fig. 6. With increasing
temperature, the GT+ transition 1 f p

7/2 → 1 f n
5/2 with energy

E ≈ 11.5 MeV becomes unblocked and it dominates the 1+
differential cross section at Ee = 25 MeV. The 1gp

9/2 → 1gn
7/2

transition with energy E ≈ 13.1 MeV is also thermally un-
blocked in 78Ni but its contribution is smaller. It should also
be emphasized that within the TQRPA both the thermally
unblocked transitions correspond to tilde-phonon states, i.e.,
to negative-energy solutions of the TQRPA equations. Hence,
such transitions would not be taken into account without the
doubling the Hilbert space. As evident from Fig. 6, besides
the considered strong or resonance transitions, thermal effects
unblock some other 1+ low- and negative-energy transitions.
At Ee = 25 MeV, their contribution to the cross section is
negligible, but it is these nonresonance transitions that remove
the reaction threshold and dominate the cross section for
Ee < 11 MeV electrons.

In Table II, we compare the total thermally unblocked
strengths B(GT+) in 78Ni calculated with the different Skyrme
parametrizations. The table shows the result obtained with
and without taking into account RPA correlations. As the
data of the table suggest, the strength of thermally unblocked
GT+ transitions varies depending on the Skyrme parametriza-
tion used. To explain this, we note that in the absence of
pairing, the unperturbed mean-field strength of thermally un-
blocked jp → jn single-particle transition is proportional to
n jp (1 − n jn ), where n j are the occupation numbers for single-
particle orbitals (see Ref. [20] for more details). Therefore,
variation of the unperturbed GT+ strength is mainly due to
difference in the occupation numbers of the proton 1 f p

7/2,

1gp
9/2 and neutron 1 f n

5/2, 1gn
7/2 orbitals in 78Ni, predicted by

the SkM∗, SGII, and SLy4 effective interactions. In their
turn, the occupation numbers depend on the single-particle
Hartree-Fock energies. Besides, the particle-hole correlations
reduce the GT+ strength. As the SGII force assumes the
largest particle-hole correlations due to spin-isospin interac-
tion (since it has the largest G′

0 values; see Table I), it produces
the strongest reduction of the GT+ strength.

Let us now briefly analyze thermal effects on the forbidden
1− and 2− components of the EC cross section. According to
our calculations, at zero and low temperatures the 1− and 2−
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FIG. 7. Electron capture cross sections for 78Ni at four tempera-
tures. The results are obtained by employing the TQRPA calculations
with the SkM∗, SLy4, and SGII interactions. For the SkM∗, SGII, and
SLy4 forces, the energy gaps in the cross section at T = 0 are 19.1,
18.2, and 21.5 MeV, respectively.

components of the cross section are determined by particle-
hole resonance transitions from the closed proton orbital
1 f p

7/2. Namely, 1 f p
7/2 → 2dn

3/2 and 1 f p
7/2 → 1gn

7/2 dominate
the 2− contribution, while 1 f p

7/2 → 2dn
5/2 dominates the 1−

contribution. Thermal effects deplete the 1 f p
7/2 orbital and pro-

mote protons to higher orbitals. Besides, the neutron subshell
1g9/2 becomes partially unblocked. As these take place, low-
energy p → n transitions become possible, which also con-
tribute to thermal enhancement of the EC cross section. They
are 2− transitions 1 f p

7/2 → 1gn
9/2 (E ≈ 14.2 MeV), 1 f p

5/2 →
1gn

9/2 (E ≈ 6.8 MeV), and 1− transitions 2pp
3/2 → 2dn

3/2 (E ≈
15.2 MeV), 1 f p

5/2 → 1gn
7/2 (E ≈ 16.7 MeV). Because of the

increased phase space, the contribution of thermally un-
blocked low-energy 1− and 2− transitions to the cross section
can be larger than that of the resonance transitions. This is
clearly seen in Fig. 6, showing that at Ee = 25 MeV and high
temperatures the 1− and 2− components of the differential
cross section are dominated by the unblocked transitions.
Referring to Fig. 5, even for 40-MeV electrons the role of
thermally unblocked 1− and 2− transitions is substantial and
their contribution along with that of 1+ unblocked transitions
enhances the cross section at T = 2.0 MeV by more than
a factor of 2 with respect to the ground-state value. It is
noteworthy that the increasing role of thermally unblocked
1± and 2− transitions means that as temperature goes higher
the EC process on 78Ni will produce a larger fraction of
high-energy neutrinos.

To show that the thermal effects discussed above are rather
insensitive to the choice of the Skyrme interaction, in Fig. 7

FIG. 8. Electron capture rates for 78Ni calculated at selected
densities ρYe (g cm−3) as functions of temperature. Each type of sym-
bol corresponds to a specific Skyrme parametrization. Unconnected
symbols represent the contribution of 1+ transitions to the respective
rate. The solid line is the EC rate calculated according to parametriza-
tion (46). μe is the electron gas chemical potential (including the rest
mass) calculated for a given density and temperature T = 0.5 MeV.

we compare the EC cross sections for 78Ni computed with
the SkM∗, SGII, and SLy4 parametrizations. As seen from the
figure, all the Skyrme forces predict rather close values for the
reaction threshold at T = 0. Regardless of the Skyrme force
used, the contribution of thermally populated states removes
the threshold energy and significantly enhances the low-
energy cross section. Thermal effects become less pronounced
for high-energy electrons. However, even at Ee = 40 MeV
they increase the cross section by more than a factor of 2
when the temperature reaches 2.0 MeV. We also see from the
figure that with increasing electron energy and temperature
the spread in the cross sections is reduced.

Figure 8 compares the EC rates for 78Ni as obtained in the
TQRPA model with different Skyrme sets by integrating the
cross section [see Eq. (2)]. The rates include the contribution
of 0±, 1±, and 2− transitions. In each panel, we also show
the individual contribution of allowed 1+ transitions to the
rate. As expected, the rates increase with temperature and
density but they are almost temperature independent at high
densities. Referring to the top-left panel in the figure, at low
densities the EC rate is determined by 1+ transitions. This can
be understood as follows. For the density ρYe = 1010 g cm−3
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the chemical potential is μe ≈ 11 MeV and, as seen in Fig. 6,
this energy is not enough for both resonance and thermally
unblocked 1− and 2− transitions. At the same time, this
energy is sufficient for thermally unblocked Gamow-Teller
transitions which dominate the rate. At higher densities, the
chemical potential is large enough for the strong resonance 1−
and 2− transitions and they dominate the rate at low temper-
atures. However, the role of allowed 1+ transitions increases
with temperature and at T > 2.0 MeV their contribution is
comparable or even higher than that of forbidden transitions.
Comparing the results obtained with different Skyrme forces,
we can see that the spreading of the capture rates is less than
one order of magnitude. As for EC rates on 56Fe, the spreading
is most significant at low temperatures and densities and it
reduces with T and ρ.

In Ref. [6], Fuller et al. proposed an analytic approximation
for electron capture rates which is based on the Q-value
dependence of the capture rate. For neutron-rich nuclei, this
approximation was later parameterized by Langanke et al.
[16] to fit their detailed microscopic calculations. It can be
written as

λ = ln 2B

K

(
T

mec2

)5

[F4(η) − 2χF3(η) + χ2F2(η)], (46)

where Fk are the Fermi integrals of rank k and degeneracy η,
χ = −(Q + �E )/T , 4 and η = χ + μe/T . The fit parameters
B and �E represent, respectively, effective values for the
transition strength (Gamow-Teller plus forbidden) and energy
difference between the final and initial excited states. With
the values B = 4.6 and �E = 2.5 MeV, a good agreement is
achieved between the parametrization (46) and microscopic
calculations for a very large number of nuclei [16]. In Fig. 8,
we compare the rates evaluated with this approximation and
those from the present Skyrme-TQRPA calculations. As can
be seen in the bottom-right panel of the figure, there is a
good agreement between both calculations at high densities
and low temperatures, when the rate is mainly determined
by the total strength of 1− and 2− forbidden transitions
from the parent ground state. This means that the present
Skyrme-RPA calculations at T = 0 predict the strength of
forbidden transitions rather close to the value used in Eq. (46).
However, in the present model, the thermal effects unblock
some additional strength of p → n transitions. This makes
the TQRPA rates at ρYe = 5 × 1011 g cm−3 more sensitive to
temperature rise than predicted by the approximation (46).
The results of two approaches differ significantly at lower
densities when the electron chemical potential is comparable
or below the reaction Q value (i.e., μe � 20 MeV). Under
such conditions, the rates are sensitive to the fragmentation
of the p → n transition strength. Since Eq. (46) is based on
the assumption that all the strength is concentrated in a single
state above the Q value, the resulting rates are much smaller
than those predicted by the TQRPA.

4Note that in our definition Q = Mf − Mi, while in Ref. [16] the Q
value is defined with opposite sign.

IV. CONCLUSION

In this work, we have further developed and generalized
a theoretical framework for modeling the process of electron
capture on nuclei in presupernova conditions. By applying
the Walecka-Donnelly formalism, we expressed the cross
section for the electron capture on a hot nucleus through the
temperature- and momentum-dependent spectral functions for
charge, longitudinal, transverse electric, and transverse mag-
netic charge-changing operators. The method we employed to
compute spectral functions is a self-consistent proton-neutron
QRPA with the Skyrme interaction extended to finite tempera-
tures by the thermo-field-dynamics formalism. It is shown that
the method is thermodynamically consistent since it preserves
the detailed balance principle for p → n and n → p spectral
functions.

Choosing 56Fe and 78Ni as examples, we have performed
illustrative electron capture calculations for the iron-group
and neutron-rich nuclei. For 56Fe, our present calculations
with three different Skyrme parametrizations reveal the same
thermal effects on the GT+ strength function as those found
in the previous study based on the QPM Hamiltonian. In
particular, increasing temperature shifts the GT+ resonance
to lower energies and makes low- and negative-energy GT+
transitions possible. For 78Ni, we have found that thermal
effects unblock both GT+ and low-energy first-forbidden tran-
sitions, thereby increasing the EC cross section significantly.
It is interesting to note that for 78Ni different Skyrme forces
predict finite-temperature cross sections which do not differ
significantly. This result is in line with the conclusion made in
Ref. [18] when considering the EC cross sections for 56Fe.

Electron capture rates have been calculated for different
densities and temperatures of stellar matter and then compared
with the results of other approaches. For 56Fe, the Skyrme-
TQRPA rates reproduce the temperature dependence of the
rates predicted by shell-model calculations, but at low and
high densities our results are generally larger. The observed
discrepancy is mainly due to violation of the Brink-Axel
hypothesis within the TQRPA, which leads to a larger strength
of thermally unblocked transitions. On the other hand, the
underestimation of the EC rate at temperatures and densities
when μe ≈ Q indicates the importance of multinucleon cor-
relations beyond the RPA. For neutron-rich 78Ni, the role of
the thermal effects on the EC rates is even more substantial. It
is shown that the inclusion of thermally unblocked GT+ and
first-forbidden 1− and 2− transitions significantly enhances
the rates in comparison with the values predicted by the
parametrization (46).

In the present application, correlations described by the
TQRPA have been taken into account. Whereas much of
the essential physics is already captured by the model, the
detailed comparison with the shell-model results indicates
that the approach should be further improved. In particular,
the fragmentation of the GT+ strength plays a significant
role at low temperature and densities of the supernova en-
vironment. Therefore, a further improvement of the model
is to go beyond the TQRPA and take into account higher
order correlations. For the finite-rank separable residual ap-
proximation for the Skyrme interaction, this can be done by
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coupling the thermal phonon states with more complex (e.g.,
two-phonon) configurations. For charge-exchange excitations
at zero temperature, the phonon coupling was considered
within the QPM model [61] and with the self-consistent
Skyrme-based calculations [62]. Most recently, the fragmen-
tation of the finite-temperature Gamow-Teller strength due

to the particle-vibration coupling was studied within the
relativistic time-blocking approximation [63]. In particular,
a temperature-induced enhancement of the low-energy GT−
strength followed by a remarkable quenching of the high-
energy component of the resonance was observed in some
closed-shell nuclei.
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