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We calculate the scattering T -matrix of I = 0 K̄N-π� coupled channels taking a ladder sum of the Weinberg-
Tomozawa interaction without on-shell factorization, regularizing three types of divergent meson-baryon loop
functions by dimensional regularization and renormalizing them by introducing counter terms. We show that
not only infinite but also finite renormalization is important for the renormalized physical scattering T -matrix
to have the form of the Weinberg-Tomozawa interaction. The results with and without on-shell factorization
are compared. The difference of the scattering T -matrix is small near the renormalization point, close to the
observed �(1405). The difference, however, increases with the distance from the renormalization point. The
scattering T -matrix without on-shell factorization has two poles in the complex center-of-mass energy plane
as with on-shell factorization, the real part of which is close to the observed �(1405). While the difference is
small with and without on-shell factorization in the position of the first pole, closer to the observed �(1405),
the difference is considerably large in the position of the second pole: the imaginary part of the center-of-mass
energy of the second pole without on-shell factorization is as large as or even larger than twice that with on-shell
factorization. Also, we discuss the origin of the contradiction about the second pole between two approaches,
the chiral unitary approach with on-shell factorization and the phenomenological approach without on-shell
factorization.
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I. INTRODUCTION

Chiral perturbation theory [1–4] is a method to describe the
dynamics of Goldstone bosons in the framework of an effec-
tive field theory. Writing down the most general effective La-
grangian containing all possible terms compatible with chiral
symmetry, one obtains the scattering T -matrix order by order
in powers of momenta and quark masses at low center-of-mass
energies, where infinities arising from loops are absorbed in a
renormalization of the coefficients of the effective Lagrangian.
Chiral perturbation theory has been successful in describing
low-energy meson-meson and meson-baryon scatterings but
cannot describe bound states or resonances due to its very
perturbative nature.

A nonperturbative method, the chiral unitary approach has
been developed [5–8], in which the leading terms of chiral
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perturbation are resumed by means of integral equations, such
as the Lippman-Schwinger equation or dispersion relations,
the N/D method. The chiral unitary approach sacrifices the
systematics of chiral perturbation theory but accommodates
bound states or resonances.

One of the applications of the chiral unitary approach,
which have received much attention in the past decades, is the
�(1405) [7–14]. In the chiral unitary approach the scattering
T -matrix analytically continued in the complex center-of-
mass energy plane turns out to have two poles close to the
observed �(1405), both contributing to the final experimen-
tal invariant mass distribution. It should be noted, however,
that they employed an approximation, on-shell factorization,
which approximates the off-shell interaction vertex by the on-
shell interaction vertex and takes out from the meson-baryon
loop integral.

Recently, this double-pole interpretation of the �(1405)
has been questioned [15–17]. In particular, in Ref. [16], it
was claimed that the energy dependence of the chiral based
K̄N potentials, responsible for the occurrence of two poles
in the I = 0 sector, is the consequence of applying on-shell
factorization. When the dynamical equation is solved without
on-shell factorization, the scattering T -matrix has only one
pole in the complex center-of-mass energy plane, close to
the observed �(1405). The argument, however, is based on a
nonrelativistic phenomenological potential model, a separable
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FIG. 1. Diagrammatic representation of meson-baryon scattering T -matrix in the ladder sum.

potential model, with cut-off functions. Therefore, it is not
clear whether the contradiction between two approaches is
due to the difference in the approximation, with or without on-
shell factorization, or due to the difference in the theoretical
framework, chiral interaction with relativistic kinematics or
phenomenological interaction with nonrelativistic kinematics.

The purpose of the present paper is as follows. First, we
would like to show that by renormalizing the divergent loop
terms we can calculate the meson-baryon scattering T -matrix
in the chiral unitary approach without employing on-shell
factorization. Then, we would like to see whether the second
pole is found in the complex center-of-mass energy plane
near the observed �(1405). Consequently, we would like to
clarify the origin of the contradiction about the second pole
for the �(1405) between two approaches, the chiral unitary
approach with on-shell factorization and the phenomenologi-
cal approach without on-shell factorization.

II. FORMULATION

The Weinberg-Tomozawa interaction, the lowest-order
term of chiral perturbation in the meson-baryon channel, is
given by

L = i
C

4 f 2
B̄′M ′←→/∂ MB + counter terms, (1)

where B and B′ are baryon fields and M and M ′ are meson
(Goldstone boson) fields.

A. Single-channel

Let us first consider a single-channel scattering of a meson
M and a baryon B, M(k) + B(p) → M(k′) + B(p′), where k
(k′) and p (p′) are four momenta of the incoming (outgoing)
meson and baryon, respectively. The scattering T -matrix of
the renormalized ladder sum of the Weinberg-Tomozawa in-
teraction, T , is given by Fig. 1,

T = Ttree + (
T bare

one-loop + δTone-loop
) + · · ·

= Ttree + Tone-loop + · · · , (2)

where Ttree is the tree term, T bare
one-loop and δTone-loop are the bare

one-loop term and its counter term, respectively, Tone-loop is
the renormalized one-loop term, i.e., the sum of T bare

one-loop and
δTone-loop, and · · · represents higher loop terms.

The bare one-loop crossed term in Fig. 2 is not taken into
account, so that crossing symmetry is broken in the scattering
T -matrix of ladder sum, Eq. (2).

The tree term is given by

Ttree =
(

− C

4 f 2

)
ū(p′)(/k + /k′)u(p)

= − C

4 f 2
ū(p′)2(/P − M )u(p), (3)

where P is the total momentum of the system, P = p + k =
p′ + k′ and u(p) [ū(p′)] is the Dirac spinor for the incoming
(outgoing) baryon. The bare one-loop term is given by

T bare
one-loop =

(
− C

4 f 2

)2

ū(p′)i
∫

d4q

(2π )4
(/q + /k′)

× 2M

[(P − q)2 − M2](q2 − m2)
(/k + /q)u(p)

=
(

− C

4 f 2

)2

ū(p′)[G2+G1/k
′/P+ G1 /P/k+ G0/k

′/k]u(p)

=
(

− C

4 f 2

)2

ū(p′)[G2 + G1M(/k + /k′)

+ (G0 + 2G1)/k′/k]u(p)

=
(

− C

4 f 2

)2

ū(p′)[G2 + G12M(/P − M )

+ (G0 + 2G1)(/P − M )2]u(p), (4)

where

i
∫

d4q

(2π )4

2M

[(P − q)2 − M2](q2 − m2)
≡ G0

i
∫

d4q

(2π )4

2M/q

[(P − q)2 − M2](q2 − m2)
≡ G1 /P

i
∫

d4q

(2π )4

2Mq2

[(P − q)2 − M2](q2 − m2)
≡ G2. (5)

The Klein-Gordon propagator is employed not only for the
meson but also for the baryon for comparison, because the
calculations in the chiral unitary approach with on-shell
factorization, Refs. [7,9,11,12], are regarded as to employ
the Klein-Gordon propagator for the baryon, though it is
explained that the N/D method is used. It is, however, not

FIG. 2. The bare one-loop crossed diagram.
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difficult to employ the Dirac propagator instead of the Klein-
Gordon propagator for the baryon.

G0 and G1 are logarithmically divergent while G2 is
quadratically divergent, which are given in dimensional reg-
ularization as

G0 = 2M

16π2

[
−2

ε
+ γ − log 4π +

∫ 1

0
dx log 	

]

G1 = 2M

16π2

[
1

2

(
−2

ε
+ γ − log 4π

)
+

∫ 1

0
dxx log 	

]

G2 = 2M

16π2

[
(M2 + m2)

(
−2

ε
+ γ − log 4π

)

−1

6
(P2 − 3M2 − 3m2) +

∫ 1

0
dx(2	 + x2P2) log 	

]
,

(6)

where 	 = xM2 + (1 − x)m2 − x(1 − x)P2, ε = d − 4, d is
the dimension of space and time and γ is the Euler constant.

When G0, G1, and G2 are Taylor expanded in P2 − M2 as

Gi = G(0)
i + G′

i
(0)(P2 − M2) + 1

2 G′′
i

(0)(P2 − M2)2 + · · · ,

(7)

where the divergences appear only in G(0)
0 , G(0)

1 , and G(0)
2 ,

the zeroth-order coefficients of G0, G1, and G2, respectively.
Then, T bare

one-loop is Taylor expanded in /P − M as

T bare
one-loop =

(
− C

4 f 2

)2

ū(p′)
[
G(0)

2 + (
G(0)

1 + G′(0)
2

)
2M(/P − M )

+ {(
G(0)

0 + 2G(0)
1 + G′(0)

2

)
+ (

2G′(0)
1 + G′′(0)

2

)
2M2

}
(/P − M )2

+ O((/P − M )3)
]
u(p), (8)

where divergences appear in the coefficients of 1, /P − M, and
(/P − M )2. Therefore, we need three counter terms propor-
tional to 1, /k + /k′, and /k/k′ to cancel divergences in T bare

one-loop:

δTone-loop = ū(p′)[δ0 + δ1(/k + /k′) + δ2/k/k′]u(p)

= ū(p′)[δ0 + δ12(/P − M ) + δ2(/P − M )2]u(p).
(9)

The origin of these terms in the context of the effective field
theory will be discussed elsewhere. We determine finite terms
in Tone-loop by requiring that Ttree + Tone-loop is the same as Ttree

up to O[(/P − M )2]:

Ttree + Tone-loop = − C

4 f 2
ū(p′)(/k + /k′)u(p) + O[(/P − M )2],

(10)

which gives(
− C

4 f 2

)2(
G(0)

0 + 2G(0)
1 + G′(0)

2

) + δ2 = finite constant

(
− C

4 f 2

)2(
G(0)

1 + G′(0)
2

)
2M + 2δ1 = 0

(
− C

4 f 2

)2

G(0)
2 + δ0 = 0, (11)

where “finite constant” is not determined by the above re-
quirement and will be discussed later. We define finite renor-
malized loop functions, GR

0 , GR
1 , and GR

2 by

GR
0 = G0 − G(0)

0 + finite constant

GR
1 = G1 − G(0)

1 − G′
0

(0)

GR
2 = G2 − G(0)

2 . (12)

GR
0 , GR

1 , and GR
2 are expressed as

GR
0 = 2M

16π2

[
a0(μ) + 2 − log μ2 +

∫ 1

0
dx log 	

]

GR
1 = 2M

16π2

[
1

2
(a1(μ) + 2 − log μ2) +

∫ 1

0
dxx log 	

]

GR
2 = 2M

16π2

[
(M2 + m2)(a2(μ) + 2 − log μ2)

−1

6
(P2 − 3M2 − 3m2) +

∫ 1

0
dx(2	 + x2P2) log 	

]
.

(13)

μ is the renormalization scale and a0, a1, and a2 are subtrac-
tion constants, which are determined to satisfy

GR
0

(0) = finite constant

GR
1

(0) + GR′(0)
2 = 0

GR
2

(0) = 0. (14)

Carrying out integrals in Eq. (13), we obtain explicit expres-
sions for GR

0 , GR
1 , and GR

2 as

GR
0 = 2M

16π2

{
a0(μ) + log

M2

μ2
+ m2 − M2 + s

2s
log

m2

M2
+ q̄√

s
log

φ++φ+−
φ−+φ−−

}

GR
1 = M

16π2

{
a1(μ) + log

M2

μ2
+ M2 − m2

s
+ (M2 − m2 − s)2 + 4sq̄2

4s2
log

m2

M2
+ q̄√

s

M2 − m2 − s

2s
log

φ++φ+−
φ−+φ−−

}

GR
2 = 2M

16π2

{
(M2 + m2)

(
a2(μ) + log

M2

μ2

)
+ s

2
− m2 − 2q̄2 + (M2 − m2)2

2s

+ (M2−m2−s)[(M2−m2−s)2−4s(q̄2 + 2m2)]

8s2
log

m2

M2
− q̄√

s

(M2−m2−s)2−4s(q̄2 + 2m2)

4s
log

φ++φ+−
φ−+φ−−

}
, (15)
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where s = P2, q̄ =
√

(s − (M − m)2)(s − (M + m)2)/(2
√

s), and φ±± = ±s ± (M2 − m2) + 2q̄
√

s. Then, Tone-loop is given in
terms of the finite renormalized loop functions as

Tone-loop =
(

− C

4 f 2

)2

ū(p′)
[
GR

2 + GR
1 /k′/P + GR

1 /P/k + GR
0 /k′/k

]
u(p) =

(
− C

4 f 2

)2

ū(p′) (/k′ 1) ĜR

(
1
/k

)
u(p), (16)

where ĜR is a 2 by 2 matrix defined by

ĜR =
(

GR
1 /P GR

0

GR
2 GR

1 /P

)
. (17)

Then, summing up the ladder terms we can express T in terms of the renormalized loop functions as

T = ū(p′) (/k′ 1)

{
− C

4 f 2
+

(
− C

4 f 2

)2

ĜR +
(

− C

4 f 2

)3

(ĜR)2 + · · ·
}(

1
/k

)
u(p)

= ū(p′) (/k′ 1)
− C

4 f 2

1 − ( − C
4 f 2

)
ĜR

(
1
/k

)
u(p) = ū(p′)

− C
4 f 2 (/k + /k′) + (− C

4 f 2

)2(
GR

2 − GR
1 /k′/P − GR

1 /P/k + GR
0 /k′/k

)
{
1 − (− C

4 f 2

)
GR

1
/P
}2 − (− C

4 f 2

)2
GR

0 GR
2

u(p). (18)

Expanding in /P − M and using Eq. (14), one can show that

T = − C

4 f 2
ū(p′)(/k + /k′)u(p) + O[(/P − M )2]. (19)

Namely, once the one-loop term is properly renormalized, no
further renormalization, neither infinite nor finite renormal-
ization, is necessary for the scattering T -matrix in the ladder
sum.

B. Coupled channels

Let us move on to a meson-baryon scattering of coupled
n-channels. We introduce 2n by 2n matrices, � and GR, with
both channel indices i, j and the index of the 2 by 2 matrix,
which already appeared in the single-channel scattering as in
Eq. (17).1 For given channel indices, i and j, [�] ji and [Ĝ

R
] ji

are defined to be 2 by 2 matrices as

[�] ji = Cji

4 f 2
1 =

( Cji

4 f 2 0

0 Cji

4 f 2

)
, (20)

and

[Ĝ
R
] ji = δ jiĜ

R
i = δ ji

(
GR

i1 /P GR
i0

GR
i2 GR

i1 /P

)
. (21)

Namely, � and Ĝ
R

are diagonal with respect to indices of 2
by 2 matrices and channel indices, respectively.

We impose the same renormalization conditions as in the
single-channel scattering, Eq. (14), for the renormalized loop
functions in each channel:

GR
i0

(0) = finite constant

GR(0)
i1 + GR′(0)

i2 = 0

GR
i2

(0) = 0. (22)

12n by 2n matrix representation of the scattering equation has been
presented also in Ref. [16].

The scattering T -matrix from the channel i to the channel j is
given by

Tji = ū j (p′
j ) (/k′

j 1) [−�+(−�)Ĝ
R

(−�)+· · · ] ji

(
1
/ki

)
ui(pi )

= ū j (p′
j ) (/k′

j 1) [−�(1 − Ĝ
R

(−�))−1] ji

(
1
/ki

)
ui(pi ).

(23)

Eq. (23) together with Eq. (22) is the main result in the
formulation section of the present paper.

C. On-shell factorization

Here, we summarize minimum expressions for the scatter-
ing T -matrix of the ladder sum of the Weinberg-Tomozawa
interaction with on-shell factorization because we compare
the results with and without on-shell factorization.

In a single-channel meson-baryon scattering, the tree term
is given irrespective of on-shell factorization as the matrix
element of the on-shell interaction vertex as

Ttree = ū(p′)
(

− C

4 f 2

)
(/k + /k′)u(p)

≈ χ ′†
(

− C

4 f 2

)
2(

√
s − M )

E + M

2M
χ

≡ χ ′†Vonχ, (24)

where χ and χ ′† are Pauli spinors for the incoming and
outgoing baryons, respectively. Then, in the bare one-loop
term, T bare

one-loop, the off-shell interaction vertex is approximated
by the on-shell interaction vertex and is taken out from the
loop integral as

T bare
one-loop = ū(p′)i

∫
d4q

(2π )4

(
− C

4 f 2

)
(/q + /k′)

× 2M

[(P−q)2−M2](q2−m2)

(
− C

4 f 2

)
(/k + /q)u(p)
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TABLE I. The subtraction constants, a0, a1, and a2, in the loop
functions, G0, G1, and G2 without on-shell factorization, A and B,
and with on-shell factorization, C.

K̄N π�

a0 a1 a2 a0 a1 a2

A −1.60 −1.95 −1.83 −1.50 −2.29 −2.27
B −2.31 −1.95 −1.83 −2.05 −2.29 −2.27
C −1.96 − − −1.96 − −

→ χ ′†Von

{
i
∫

d4q

(2π )4

2M

[(P−q)2−M2](q2−m2)

}
Vonχ

= χ ′†VonGVonχ, (25)

where G is nothing but G0 in Eq. (5). In Refs. [7,9,11,12]
it is explained that the finite unitary scattering T -matrix is
obtained by dispersion relations, the N/D method, and renor-
malization is not explicitly mentioned. It is, however, equiva-
lent to renormalize the scattering T -matrix by introducing the
counter term,

δTone-loop =χ ′†δ(
√

s − M )2

(
E + M

2M

)2

χ, (26)

which corresponds to the term with δ2 in Eq. (9). The terms
with δ0 and δ1 in Eq. (9) do not appear in on-shell factoriza-
tion. The renormalized one-loop term, Tone-loop, i.e., the sum
of T bare

one-loop and δTone-loop, is given by

Tone-loop = χ ′†VonGRVonχ, (27)

where GR is GR
0 in Eq. (12). Then, the ladder sum is

T = χ ′†(Von + VonGRVon + VonGRVonGRVon + · · · )χ

= χ ′† Von

1 − VonGR
χ, (28)

which, by the use of Eq. (23), becomes

T = χ ′† − C
4 f 2 2(

√
s − M ) E+M

2M

1 − (− C
4 f 2

)
2(

√
s − M ) E+M

2M GR
χ

= −χ ′† C

4 f 2
2(

√
s − M )

E + M

2M
χ + O[(

√
s − M )2]. (29)

Namely, without renormalization the scattering T -matrix in
the ladder sum is the same as Ttree up to O[(

√
s − M )2] in

on-shell factorization.
In a meson-baryon scattering of coupled n-channels, the

scattering T -matrix from the channel i to the channel j is
given by

Tji =χ
†
j [V on + V onGRV on + · · · ] jiχi

=χ
†
j [V on(1 − GRV on)−1] jiχi, (30)

where V on and GR are n by n matrices with channel indices,

[V on] ji = − Cji

4 f 2
(2

√
s − Mi − Mj )

√
Ej + Mj

2Mj

√
Ei + Mi

2Mi
,

(31)

and

[Ĝ
R
] ji = δ jiG

R
i . (32)

III. RESULTS AND DISCUSSION

Now, we compare the results of the calculation with and
without on-shell factorization. In the calculation of the chiral
unitary approach with on-shell factorization, nonrelativistic
approximation, Eq. (24), has been adopted for the matrix
elements with respect to Dirac spinors. Hereafter, we adopt
the same approximation in our calculation for comparison.
In the chiral unitary approach with on-shell factorization
it was shown in Ref. [11] that the results of the K̄N-π�

coupled channels and the K̄N-π�-η�-K
 coupled channels
are nearly the same. Therefore, we calculate the scattering
T -matrix of the π� − K̄N coupled channels for simplicity

FIG. 3. The real (left) and imaginary (right) parts of the scattering amplitude in the K̄N single channel, FK̄N . The (blue) dashed lines and
the (red) dot-dashed lines are the results without on-shell factorization, A and B, respectively, and the (black) solid lines are the results with
on-shell factorization, C.
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FIG. 4. The real (left) and imaginary (right) parts of the scattering amplitude in the π� single channel, Fπ� . The (blue) dashed lines and
the (red) dot-dashed lines are the results without on-shell factorization, A and B, respectively, and the (black) solid lines are the results with
on-shell factorization, C.

and compare the results with those of Ref. [11], where the
parameters f and μ are taken to be the same as in Ref. [11],
i.e., f = 106.95 MeV and μ = 630 MeV. As we have al-
ready mentioned, we require that the scattering T -matrix has
the form of the Weinberg-Tomozawa interaction at

√
s = M.

While this determines the subtraction constants a1 and a2,
we need another condition for a0, which determines “finite
constant” in Eqs. (11), (12), (14), and (22) in the previous
section. We adopt the following two cases of the condition
and check how the results depend on them. One, case A, is that
the second-order derivative of the single-channel scattering T -
matrix is the same as that of the on-shell factorization at

√
s =

M, and the other, case B, is that the single-channel scattering
T -matrix is the same as that of the on-shell factorization at√

s = M + m,

A :
∂2T

∂
√

s2

∣∣∣∣∣√
s=M

= ∂2T on-shell

∂
√

s2

∣∣∣∣∣√
s=M

, (33)

B : T |√s=M+m = T on-shell|√s=M+m. (34)

The subtraction constants a0, a1, and a2 for cases A and B
together with a2 in on-shell factorization, case C, are summa-
rized in Table I.

We show the single-channel K̄N and π� scattering ampli-
tudes, respectively, in Figs. 3 and 4 and two diagonal scatter-
ing amplitudes of the K̄N-π� coupled channels, respectively,
in Figs. 5 and 6, where the scattering amplitudes are defined
by

FK̄N = − MN

4π
√

s
TK̄N K̄N , (35)

Fπ� = − M�

4π
√

s
Tπ� π�. (36)

We also present the pole positions of the T -matrix for K̄N and
π� single-channel scatterings and K̄N-π� coupled-channels
in Table II and Fig. 7.

Before explaining detailed results we would like to men-
tion the following; near the �(1405), a bound pole is found in
the K̄N single channel, a resonance pole is found in the πN

FIG. 5. The real (left) and imaginary (right) parts of the scattering amplitude from K̄N to K̄N in the K̄N-π� coupled channels, FK̄N . The
(blue) dashed lines and the (red) dot-dashed lines are the results without on-shell factorization, A and B, respectively, and the (black) solid lines
are the results with on-shell factorization, C.
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FIG. 6. The real (left) and imaginary (right) parts of the scattering amplitude from π� to π� in the K̄N-π� coupled channels, Fπ� . The
(blue) dashed lines and the (red) dot-dashed lines are the results without on-shell factorization, A and B, respectively, and the (black) solid lines
are the results with on-shell factorization, C.

single channel and two poles are found in the K̄N-π� coupled
channels, in cases A and B as in case C.

In the K̄N single channel, Fig. 3, the difference of the
scattering amplitudes with and without on-shell factorization,
A, B, and C, is small, where the difference in the pole
positions is also small. Besides, the difference of B and C
is smaller than that of A and C. These differences can be
understood how far

√
s is from the point where the renormal-

ization condition is specified. In the K̄N-π� coupled chan-
nels, Fig. 5, this tendency remains in the diagonal scattering
amplitude, FK̄N , and the position of the pole close to that in
the K̄N single channel.

In the π� single channel, Fig. 4, the difference of the
scattering amplitudes with and without on-shell factorization,
A, B, and C, is small when

√
s � 1400 MeV. As

√
s increases

beyond 1400 MeV, the difference of the scattering amplitudes
also increases. The difference of the real part of the center-
of-mass energy of the pole in the π� single channel is also
small but that of the imaginary part is considerably large:
the imaginary part in cases A and B is close to twice that in
case C. When the coupling between π� and K̄N channels is
turned on, Fig. 6, the behavior of the diagonal scattering am-
plitude, FK̄N , in the region 1400 MeV � √

s � 1500 MeV is
dominated by the pole close to that of the π� single channel,
and therefore the difference of A, B, and C becomes smaller.
The coupling, however, seems to enlarge the difference in the

TABLE II. Pole positions of the T -matrix in the K̄N and π�

single-channel scatterings and the K̄N-π� coupled channels without
on-shell factorization, A and B, and with on-shell factorization, C.

Single channel Coupled channels

K̄N π� K̄N-π�

A 1432 MeV 1388-179i MeV 1434-7i MeV 1418-160i MeV
B 1425 MeV 1382-169i MeV 1419-19iMeV 1424-146i MeV
C 1427 MeV 1388-96i MeV 1432-17iMeV 1398-73i MeV

position of the second pole: the real parts of the center-of-mass
energies of the second pole in cases A and B differ from that
in case C about 20 MeV and the imaginary parts in cases A
and B are twice as large as or even larger than twice that in C.
Again, the difference of B and C is smaller than that of A and
C, as expected.

Here, we discuss the origin of the contradiction about the
second pole between the present work without on-shell fac-
torization, the phenomenological approach without on-shell
factorization and the chiral unitary approach with on-shell
factorization. In the present work, we regularize the divergent
integrals by dimensional regularization and renormalize them
by introducing counter terms, where we impose renormaliza-
tion conditions that the scattering T -matrix has the form of
the Weinberg-Tomozawa interaction. In the phenomenolog-
ical approach without on-shell factorization, they regularize
the divergent integrals by modifying the Weinberg-Tomozawa
interaction to a separable potential with suitable cutoff func-
tions. Then, loop terms do not give infinite corrections to the
tree term and are not renormalized. However, loop terms do
give finite corrections. Thus, the physical scattering T -matrix
is expected not to have the form of the Weinberg-Tomozawa
interaction. In the chiral unitary approach with on-shell factor-
ization, the scattering T -matrix has the form of the Weinberg-
Tomozawa interaction without renormalization, as has already
been mentioned. This apparent unnecessity of renormaliza-
tion in the chiral unitary approach with on-shell factoriza-
tion seems to have caused confusions about the second pole
between two approaches, the chiral unitary approach with
on-shell factorization and the phenomenological approach
without on-shell factorization. In our opinion the origin of the
contradiction about the second pole is whether the scattering
T -matrix has the form of the Weinberg-Tomozawa interaction
or not but not whether on-shell factorization is employed or
not. This does not necessarily mean, however, that the scatter-
ing T -matrix of the phenomenological approach is physically
unreasonable. This only means that the off-shell behavior of
the T -matrix of the phenomenological approach is different
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FIG. 7. Pole positions of the T -matrix in the K̄N and π� single-
channel scatterings (unfilled) and the K̄N-π� coupled channels
(filled). The (blue) squares and the (red) triangles are the results
without on-shell factorization, A and B, respectively, and the (black)
circles are the results with on-shell factorization, C.

from that of the Weinberg-Tomozawa interaction. In fact, in
Ref. [16] they have adjusted the potential so as to reproduce
the available experimental data.

IV. SUMMARY AND CONCLUSION

In this paper we studied unitarized chiral dynamics with-
out on-shell factorization. We showed that we can take a
ladder sum of the Weinberg-Tomozawa interaction without
on-shell factorization. In the case of coupled n-channels, the
equation for the scattering T -matrix is a 2n by 2n matrix
equation, while it is an n by n matrix equation with on-
shell factorization. There appear three types of divergent loop
functions while there is only one with on-shell factoriza-
tion. The divergent integrals are regularized by dimensional
regularization and renormalized by counter terms. Not only
infinite but also finite renormalization is important for the
renormalized physical scattering T -matrix to have the form of

the Weinberg-Tomozawa interaction. The scattering T -matrix
without on-shell factorization has two poles in the complex
center-of-mass energy plane as with on-shell factorization, the
real part of which is close to the observed �(1405). Therefore,
the appearance of the second pole is not the consequence
of on-shell factorization. With and without on-shell factor-
ization, the difference of the scattering T -matrix is small
near the renormalization point, also close to the observed
�(1405). The difference, however, increases with the distance
from the renormalization point. In particular, the difference in
the position of the second pole, close to the one in the π�

single channel, is considerably large, while that of the first
pole, close to the one in the K̄N single channel, is small: the
imaginary part of the center-of-mass energy of the second pole
without on-shell factorization is as large as or even larger than
twice that with on-shell factorization.

Here, we summarize what should be done in near future.

(1) The Klein-Gondon propagator should be replaced by
the Dirac propagator for baryons.

(2) The K̄N-π�-η�-K
 coupled-channel calculation
should be done.

(3) The results of the calculation should be compared with
experiment.

(4) Application to other channels such as S = −1 and I =
1 or B(baryon number) = 2 should be considered.

(5) The next-to-leading-order terms of chiral perturbation
should be taken into account.2
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