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Short-path-length corrections to Djordjevic-Gyulassy-Levai-Vitev energy loss
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We compute the correction to the energy loss of a hard parton due to short separation distances between
the creation of the particle and the in-medium scattering center that stimulates bremsstrahlung radiation to first
order in opacity. In deriving the result we make full use of the large-formation-time assumption, which results
in a significant reduction of the number of diagrams contributing to the small-separation-distance correction. An
asymptotic analysis of our small-separation-distance correction term finds that the correction dominates at large
∼100 GeV parent parton energies, scales like L with the size of the system for small L but like L0 at larger L, and
breaks color triviality. An extensive numerical investigation of the correction term confirms the aforementioned
analytic findings, reveals that the correction term does not go to zero for large L, finds that the correction is
sensitive to the mass of the parent parton, and shows a crucial dependence of the energy loss on a proper treatment
of the physics of separation distances on the order of the Debye screening length. However, on examination,
we have found the large-formation-time approximation to be invalid for much of the phase space of the emitted
radiation, implying a need to investigate the sensitivity of jet quenching results from relaxing this approximation.
Our result constitutes an important step toward understanding partonic energy loss in small colliding systems.
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I. INTRODUCTION

Recent startling results from the Relativistic Heavy Ion
Collider (RHIC) and the Large Hadron Collider (LHC) show
that key signatures of quark-gluon plasma (QGP) formation
are found in high-multiplicity p + p and p/d + A collision
systems. In particular, collective behavior [1,2], strangeness
enhancement [3,4], and quarkonium suppression [5,6] appear
to be sensitive only to the measured multiplicity of the col-
lision and not to the size of the nuclear fireball as naively
implied by the type of colliding particles.

Jet quenching is another key observable of QGP formation
[7,8], providing a unique femtoscope for probing the
precise dynamics of the relevant degrees of freedom in
this novel phase of nuclear matter. Energy-loss models such
as the DGLV (Djordjevic, Gyulassy, Lévai, and Vitev),
BDMPS-Z-ASW (Baier, Dokshitzer, Mueller, Peign, Schiff,
and, independently, Zakharov, extended by Armesto, Salgado,
and Wiedemann), AMY (Arnold, Moore, and Yaffe), and HT
(Higher-Twist) models (see [9–12]) based on perturbative
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quantum chromodynamics (pQCD) have had enormous qual-
itative success in describing the momentum dependence and
angular distribution of the suppression of high-momentum
(∼5–150 GeV) single-particle pions [13,14] and charged
hadrons [15–18] from primordial hard light flavors, gluons,
and electrons [19–21], as well as D [22] and nonprompt J/ψ
mesons [23] from open heavy flavor decays at midrapidity in
A + A systems from

√
s = 0.2 ATeV to 5.02 ATeV.

Early experimental analysis showed a tantalizing correla-
tion between centrality and suppression of jets in p/d + A
collisions at RHIC and LHC [24,25], but later measure-
ments have revealed that the experimental determination of
jet quenching in small systems is fraught with difficulty [26].
These early results, along with newer measurements [27]
and sure-to-come future observations, call for quantitative
theoretical predictions for jet tomography in small colliding
systems.

There are two major complications to comparing theo-
retical predictions to experimental measurements in small
colliding systems. First, phenomenologically, there is an in-
herent bias between rare high-multiplicity events and the rare
collisions initially populated with one or more high transverse
momentum (high-pT ) particles [26,28]. Second, theoretically,
derivations of energy loss based on pQCD use simplifying
assumptions [29] that make them inapplicable to a small brick
of QGP.

The first complication makes it difficult to properly nor-
malize the usual observable adopted in tomographic studies,
the nuclear modification factor RAB. RAB is the ratio of a
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spectrum in A + B collisions to the same particle spectrum
in p + p collisions suitably normalized such that RAB = 1 for
particles unaffected by the presence of a QGP. Because of
the aforementioned bias, properly normalizing RAB in high-
multiplicity p + p and p/d + A events is problematic. One
solution may be to divide the spectrum of interest by a
known unaffected electroweak spectrum with the same event
selection criteria, forming a γAB, WAB, or ZAB. Another is to
use a different centrality estimator [26].

The work of this article was motivated by the second
complication. Although predictions of jet energy loss in small
colliding systems have been put forward [30,31], they con-
sistently over predict the observed suppression. Such small
system energy-loss predictions utilize energy-loss derivations
that are derived for central and semicentral nucleus-nucleus
collisions and it is therefore difficult to interpret the resultant
discrepancy between theory and data as the absence of a hot
thermal medium. In the usual Djordjevic, Gyulassy, Levai,
and Vitev (DGLV) opacity expansion [32,33], for instance,
the energy-loss derivation assumes a large separation distance
�z ≡ z1 − z0 ∼ λmfp � 1/μ between the initial production
position z0 of the hard parent parton and the position z1 where
it scatters off a QGP medium quasiparticle. This large separa-
tion allows one to (1) safely assume a factorization between
the hard production process and the interaction of a nearly
on-shell parton with a well-defined scattering center and
(2) neglect several terms in the energy-loss derivation. The
mean free path of the high-pT particle is λmfp = 1/ρσ ∼ 1–2
fm while the Debye screening length in an infinite, static ther-
mal QGP of temperature T ∼ 350 MeV is μ−1 = (gT )−1 ∼
0.4 fm, as derived from thermal field theory [34]. In the
collision of p + p or p/d + A, one expects a system of radius
�2 fm. Therefore, for these small colliding systems, most
high-pT particles have a separation distance between produc-
tion and scattering that is not particularly large compared to
the Debye screening length.

In this article we modify the usual DGLV approach (see
Sec. II for details) by removing the second implication of
the large-separation-distance assumption and retaining terms
that were previously suppressed under the large-separation-
distance assumption: We derive a generalization of the
N = 1 in opacity1 DGLV radiative energy-loss result [35,36]
by including all previously neglected terms assumed small
under the scale ordering �z � 1/μ; see Fig. 1. Note that
the inclusion of smaller separation distances does not affect
the scale of the Debye screening length in relation to the
mean free path, which is to say that the Gyulassy-Wang
model [37], used to model the target scatterer [see Eq. (2.1)],
remains valid. Since the formation time for a high-pT particle
goes as τ f ∼ 1/pT � 1/μ, our derivation is fully justified for

1In the reaction operator approach first put forward by GLV [32], it
was found that the induced gluon radiation of a hard parton, possibly
undergoing multiple scatterings, in a dense medium, is dominated
by the first order in opacity result. That is, the gluon radiation is
dominated by the N = 1 contribution, where N refers to the number
of scatterings that the hard parton or radiated gluon undergoes with
the medium.

1
µ m f p L

1
µ m f p

FIG. 1. The usual DGLV setup (full box) compared to the setup
used in this article (left of the dashed line), showing a static QGP
brick of length L, containing arbitrarily distributed scattering centers
(orange balls). Left of the dashed line, no statement is made regard-
ing �z, the distance between hard production and first scattering,
allowing for an application to small systems where L ∼ 1/μ.

�z � 1/μ ∼ 0.4 fm for pT � few GeV. To the extent that fac-
torization, near-on-shellness, and the Gyulassy-Wang model
for scattering centers are good approximations even when
�z � 1/μ, we have thus derived the all-separation-distances
generalization of N = 1 in opacity DGLV energy loss. Note
also that the present short-separation-distance correction is an
additional incorporation of finite-size effects, over and above
the effects that are due to producing the parent parton at
finite time (as opposed to the infinite past), as computed in
Refs. [35,36].

Phenomenological energy-loss models perform an average
over the position(s) at which scattering(s) occur in the given
distance that a parton travels in medium, L. Therefore, even
though no previous energy-loss derivation correctly treated
the region �z � 1/μ, all energy-loss models nonetheless used
the derived energy-loss formulas in this region. One might
have hoped that the use of these formulas in regions where
they are invalid (when �z � 1/μ) could be justified either
by an argument that the small-separation-distance corrections
are small or by an explicit a posteriori calculation. What we
find from the calculation presented in this work is that the
short-distance correction can be very large, especially as the
momentum of the parent parton becomes large. Worse still,
the physics of the early times τ � τ0 is not at all clear.

The simplified picture employed by DGLV, in which a
hard parton traverses a brick of QGP modeled by a collection
of thermalized quasiparticles, does not necessarily explicitly
incorporate all the phenomenological aspects of partonic en-
ergy loss in a heavy-ion collision. Particular concerns for
energy-loss phenomenology include the factorization of the
hard parton’s production in the presence of large fields from
its propagation through the fireball, the effect of a boundary
on the shape of the Debye screened scattering centers, and
the time required for the medium to thermalize and form
scattering centers for the hard parton to interact with. In order
to investigate the importance of this lack of knowledge, we
explore various distributions of scattering centers. We find
that the original DGLV is insensitive to the details of the
physics at small separation distances �z � 1/μ. This insen-

024913-2



SHORT-PATH-LENGTH CORRECTIONS TO DJORDJEVIC- … PHYSICAL REVIEW C 100, 024913 (2019)

sitivity is due to a delicate cancellation of interfering terms, a
cancellation beyond formation time effects. On the other hand,
the cancellation is not quite so precise for the correction term,
which leads to a significant dependence of the correction term
on the details of the short-distance physics.

The DGLV formalism (see Sec. II for more details) in-
cludes the assumption that the formation time of the radiated
gluon is much larger than the Debye screening length. We will
see that this “large-formation-time” assumption will play a
crucial role in the derivation of the small-separation-distance
correction term, resulting in a major reduction in the number
of diagrams that contribute to the small-separation-distance
correction. We will further show that not only does the for-
mation time set an important scale for the understanding of
the early time physics of the correction term but also that
the large-formation-time assumption is invalid for much of
the relevant gluon emission phase space. Previous work has
demonstrated the extreme sensitivity of all energy-loss calcu-
lations to the collinear approximation [29,38] and therefore
the need to move beyond its use in all energy-loss models.
However, we emphasize that the sensitivity we find from the
large-formation-time approximation is both new and different
from the sensitivity to the collinear approximation. As such,
all current jet quenching models that include radiative energy
loss based on pQCD must individually assess their sensitivity
to the large-formation-time and large system size approxima-
tions when making quantitative comparisons with data.

II. SETUP AND CALCULATION

In this article we use precisely the setup of the DGLV
calculation [33], presenting here only an outline of the setup
and derivation of the correction term, with more details in
Ref. [39]. For clarity, we treat the high-pT eikonal parton pro-
duced at an initial point (t0, z0, x0) inside a finite QGP brick,
where we have used p to mean transverse two-dimensional
(2D) vectors, �p = (pz, p) for 3D vectors and p = (p0, �p) =
[p0 + pz, p0 − pz, p] for four vectors in Minkowski and light
cone coordinates, respectively. As in the DGLV calculation,
we consider the nth target to be described by a Gyulassy-Wang
Debye screened potential [37] with Fourier and color structure
given by

Vn = 2πδ(q0)
4παs

�q2
n + μ2

e−i �qn·�xn Tan (R) ⊗ Tan (n), (2.1)

where the color exchanges are handled using the applicable
SU(Nc) generator, Ta(n) in the dn-dimensional representation
of the target, or Ta(R) in the dR-dimensional representation of
the high-pT parent parton.

In light cone coordinates the four-momenta of the emitted
gluon, the final high-pT parton, and that exchanged with the
medium Debye quasiparticle are, respectively,

k =
[

xP+,
m2

g + k2

xP+ , k
]
,

p =
[

(1 − x)P+,
M2 + k2

(1 − x)P+ , q − k
]
, (2.2)

q = [q+, q−, q],

FIG. 2. Following the diagrammatic numbering in Ref. [33],
M1,1,0 (left-hand panel) and M c

2,2,0 (right-hand panel) are the only
two diagrams that have nonzero small-separation-distance correc-
tions in the large-formation-time limit. M c

2,2,0 is the double Born
contact diagram, corresponding to the second term in the Dyson
series in which two gluons are exchanged with the single scattering
center.

where the initially produced high-pT particle of mass M
has large momentum E+ = P+ = 2E and negligible other
momentum components. Notice that we include the QCD
analog of the Ter-Mikayelian plasmon effect [40], a color
dielectric modification of the gluon dispersion relation, with
an effective emitted gluon mass mg [33,34]. See Fig. 2 for a
visualization of the relevant momenta.

Following Ref. [33] we define ω ≈ xE+/2 = xP+/2, from
which a shorthand for energy ratios will prove useful nota-
tionally: ω0 ≡ k2/2ω, ωi ≡ (k − qi )2/2ω, ω(i j) ≡ (k − qi −
q j )2/2ω, and ω̃m ≡ (m2

g + M2x2)/2ω.
We will also make the following assumptions: (1) the

eikonal, or high-energy, approximation, in which E+ is the
largest energy scale of the problem; (2) the soft2 (radiation)
approximation x 	 1; (3) collinearity, k+ � k−; (4) that the
impact parameter varies over a large transverse area; and, most
crucially for the present article, (5) the large-formation-time
assumption ωi 	 μi, where μ2

i ≡ μ2 + q2
i .

Note that the above approximations, in addition to allow-
ing us to systematically drop terms that are small, permit
us to (1) (eikonal) ignore the spin of the high-pT parton;
(2) (soft) assume the source current for the parent parton
varies slowly with momentum J (p − q + k) ≈ J (p + k) ≈
J (p); (3) (collinearity) complete a separation of energy scales,

E+ � k+ � k− ≡ ω0 ∼ ω(i... j) � (p + k)2

P+ ; (2.3)

and (4) (large area) take the ensemble average over the phase
factors, which become 〈e−i(q−q′ )·b〉 = (2π )2

A⊥
δ2(q − q′).

In the original DGLV calculations [33], the large-
formation-time approximation played only a minor role. How-
ever, when considering small separation distances between
the scattering centers, the large-formation-time assumption
naturally increases in importance.

With the above approximations, we reevaluated the 12
diagrams contributing to the N = 1 in opacity energy-loss

2The validity of the soft gluon approximation within the DGLV
formalism has recently been confirmed explicitly [41].
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amplitude [33] without the additional simplification of the
large-separation-distance �z � 1/μ assumption.

In the original evaluation of the 12 diagrams contributing
to the N = 1 in opacity energy-loss derivation, the large-
separation-distance approximation �z � 1/μ allowed for the
neglect of terms proportional to exp(−μ�z). In our reevalua-
tion of these 12 diagrams we retained all terms proportional to
exp(−μ�z). However, we found an enormous simplification
due to the large-formation-time approximation ωi 	 μi: All
but two of the 12 diagrams’ 18 new small-separation-distance
correction pole contributions are suppressed under the large-
formation-time assumption. We show the two diagrams3

M1,1,0 and M c
2,2,0 with nonzero contributions at the amplitude

level in the large-formation-time approximation in Fig. 2. See
Ref. [39] for the computation of all 12 relevant diagrams. One
can see from Fig. 2 that the class of diagrams that contribute
to the short-distance correction is that for which the radiated

gluon is emitted subsequent to the parent parton scattering off
the medium.

The reason for the contributing class of diagrams being
those for which the scattering occurs prior to the emission
of the gluon is the competition between relaxing the large-
distance approximation �z � 1/μ and keeping the large-
formation-time approximation, τform = xE/k2 � 1/μ. For a
diagram to contribute to the small-separation-distance cor-
rection, we require �z � 1/μ. However, if the gluon is
emitted at �z � τform, then the large-formation-time approx-
imation dictates that the gluon is not formed before the
parent parton encounters a scattering center. The scatter-
ing center cannot therefore resolve the gluon independently
from the parent parton, and these diagrams’ contributions are
suppressed.

The full result for these two amplitudes under our approx-
imation scheme is then

M1,1,0 ≈ −J (p)eipx0 2gTa1 ca1

∫
d2q1

(2π )2
v(0, q1)e−iq1·b1

k · ε

k2 + m2
g + x2M2

[
ei(ω0+ω̃m )(z1−z0 ) − 1

2
e−μ1(z1−z0 )

]
(2.4)

M c
2,2,0 ≈ J (p)ei(p+k)x0

∫
d2q1

(2π )2

∫
d2q2

(2π )2
e−i(q1+q2 )·b1 × igTa2 Ta1 ca2a1v(0, q1)v(0, q1)

k · ε

k2 + m2
g + x2M2

×
{

ei(ω0+ω̃m )(z1−z0 ) + e−μ1(z1−z0 )

[
1 − μ1e−μ2(z1−z0 )

2(μ1 + μ2)

]}
. (2.5)

The double differential single inclusive gluon emission distribution is given by [33]

d3N (1)
g d3NJ = d3�p

(2π )32p0

d3�k
(2π )32ω

(
1

dT
Tr〈|M1|2〉 + 2

dT
Re Tr〈M ∗

0 M2〉
)

, (2.6)

from which the energy loss, given by the energy-weighted integral over the gluon emission distribution �E = E
∫

dx xdNg/dx,
can be calculated from the amplitudes.

Our main analytic result is then the N = 1 first order in opacity all-separation-distance generalization of the DGLV induced
energy loss of a high-pT parton in a QGP:

�E (1)
ind = CRαsLE

πλg

∫
dx

∫
d2q1

π

μ2(
μ2 + q2

1

)2

∫
d2k
π

∫
d�z ρ(�z)

×
[
−2{1 − cos[(ω1 + ω̃m)�z]}

(k − q1)2 + m2
g + x2M2

[
(k − q1) · k

k2 + m2
g + x2M2

− (k − q1)2

(k − q1)2 + m2
g + x2M2

]

+ 1

2
e−μ1�z

⎛
⎝(

k
k2 + m2

g + x2M2

)2(
1 − 2CR

CA

)
{1 − cos[(ω0 + ω̃m)�z]}

+ k · (k − q1)(
k2 + m2

g + x2M2
)(

(k − q1)2 + m2
g + x2M2

) {cos[(ω0 + ω̃m)�z] − cos[(ω0 − ω1)�z]}
)]

. (2.7)

3The diagrammatic numbering employed here is chosen for ease
of reference when comparing to previous GLV calculations. The
subscripts pertain to factorizations in the reaction operator approach
[32] and have no significance here beyond a convenient naming
convention.

The second line in Eq. (2.7) (along with the prefactor in
the first line) is the original DGLV result (herein after “the
DGLV” term). The last two lines are the small-separation-
distance correction (herein after “the correction” or “the
small-separation-distance correction”). It is natural to define
�E (1)

ind ≡ �E (1)
DGLV + �E (1)

corr. In what follows we will refer to
the full DGLV + correction in Eq. (2.7) as the “all-separation-
distance” result. The correction term has the properties we
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FIG. 3. (Grayscale coloring guide: green, black, blue, and red from top to bottom on the right-hand side of the top left plot and on the
left-hand side of the top right plot; dashed green, dashed red, dashed blue, dashed black, solid red, solid blue, solid black, and solid green from
top to bottom on the right-hand side of the bottom plot.) Fractional energy loss of bottom (red), charm (blue), and light quarks (black), as well as
gluons (green) in a QGP with μ = 0.5 GeV and λmfp = 1 fm for (top left) fixed energy E = 10 GeV, (top right) fixed path length L = 4 fm, and
(bottom) fixed energy E = 100 GeV. Here DGLV curves (dashed) are computed from the original N = 1 in opacity large-separation-distance
DGLV formula while DGLV + corr curves (solid) are from our all-separation-distance generalization of the N = 1 DGLV result [Eq. (2.7)].

expect: (1) the correction goes to zero as the separation
distance becomes large, �z → ∞ (or, equivalently, as the
Debye screening length goes to 0, i.e., μ → ∞) and (2) the
correction term vanishes as the separation distance vanishes,
�z → 0, due to the destructive interference of the Landau-
Pomeranchuk-Migdal effect.

An immediate surprise is the breaking of color triviality,
whereby the energy loss depends only on the representation
of the parent parton via the Casimir CR in the representation
R of the parton—there is no dependence on a preferred
representation for a color trivial result. Although color trivi-
ality is seen to all orders in opacity in the large-separation-
distance approximation [32], the color triviality breaking in
the small-separation-distance correction comes from the term
proportional to 2CR/CA. We will investigate the effect of this
term numerically in Sec. III A.

III. NUMERICAL AND ASYMPTOTIC ANALYSES

Figure 3 is produced by computing the �z integral in
Eq. (2.7) analytically before computing all other integrals
numerically (we will refer to this process as the “numeri-
cal investigation”). The numerical results use the same val-
ues as in Ref. [33]: μ = 0.5 GeV, λmfp = 1 fm, CF = 4/3,
CA = 3, αs = 0.3, mc = 1.3 GeV, mb = 4.75 GeV, and mq =
μ/2 (light quark mass) [34]. The QCD analog of the Ter-

Mikayelian plasmon effect is taken into account by setting
mg = μ/

√
2 [40]. As in Ref. [34], kinematic upper limits are

used for the momentum integrals such that 0 � k � 2x(1 −
x)E and 0 � q � √

3Eμ. This choice of kmax guarantees that
the final momentum of the parent parton is collinear to the
initial momentum of the parent parton and that the momentum
of the emitted gluon is collinear to the momentum of the
parent parton. The fraction of momentum carried away by the
radiated gluon x is integrated over from 0 to 1. The distribution
of scattering centers ρ(�z), although originally assumed to
be exponential in Ref. [33],4 is assumed (in Fig. 3) to have
the form of a unit step function, since an exponential dis-
tribution biases toward short-separation-distance scattering,
lending potentially excessive weight to contributions from
short-separation-distance terms.

In the top left-hand panel of Fig. 3 we plot the fractional
energy loss of various parent partons of energy E = 10 GeV
for path lengths up to 5 fm. One sees that the correction has
a non-negligible effect even for large path lengths. Although
initially unanticipated, the fact that the correction is substan-

4Choosing an exponential distribution for ρ(�z) was done in order
to account for the rapidly expanding medium as well as to allow
for clever manipulations leading to a deeper understanding of the
asymptotic behavior of the formula, since the exponential form
relates well to the cosines in the energy-loss formula.
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FIG. 4. The ratio R of the color triviality breaking and the color trivial parts of the correction term in Eq. (2.7), for quarks (CF ) and gluons
(CA), as a function of the length L of the brick for parent partons with E = 10 GeV (left-hand panel), and as a function of the energy E of a
parent parton moving through a brick of length L = 4 fm (right-hand panel).

tial even for L � 3 fm (perhaps most easily seen for gluons,
but the relative size of the correction is meaningful even
for the quarks) is due to the integration over all separation
distances between the production point and the scattering
position; even for large path lengths, some of the interaction
distances between the parent parton and the target occur at
separation distances that are small compared to the Debye
screening scale. However, as expected, the relative size of the
correction term and the leading DGLV result diminishes at
fixed energy as the path length grows.

In the top right-hand panel of Fig. 3 we show the fractional
energy loss of parent partons of varying energy, propagating
through an L = 4-fm-long static QGP brick. Notice first that
the small-separation-distance correction term is generally an
energy gain due to the sign of the color triviality breaking
term and, second, that the size of the correction relative to the
large-separation-distance DGLV result grows with energy.

In the bottom panel of Fig. 3 we show the fractional
energy loss of parent partons of energy E = 100 GeV. In
this E = 100 GeV plot one sees that the short-separation-
distance correction term dominates over the DGLV term
out to distances of L ∼ 3–5 fm � 1/μ. We investigate this
surprisingly persistent domination further in Sec. III B. One
further observes that the color factor in the correction term
plays a crucial role, since the gluon energy loss is dramatically
different from quark energy loss, especially at high energies
(investigated further in Sec. III A).

A. Color triviality

The color triviality breaking term in the small-separation-
distance correction means the correction for gluons can be an
order of magnitude larger than for quarks. To see this differ-
ence, consider the first line of the correction term in Eq. (2.7),
which contains a term that carries the factor (1 − 2CR

CA
). For

gluons, CR = CA = 3 while for quarks CR = CF = 4/3, giving
a factor of −1 for gluons and a factor of 1/9 for quarks. This
factor of 10 difference means that, although the gluons have
an effective mass (as a result of the way in which the QCD
analog of the Ter-Mikayelian plasmon effect was taken into
account) that is only marginally larger than the plasmon mass

of the light quarks, the gluons will not necessarily obey the
same mass ordering as the quarks.

To illustrate this effect, we have plotted in Fig. 4 the ratio R
of the color trivial and color nontrivial terms of the correction
term; i.e., we have divided the color triviality breaking part
of the correction term, proportional to (1 − 2CR

CA
), by the color

trivial part of the correction term. We show this ratio both as
a function of the length L of the brick (left-hand panel) and as
a function of the parent parton energy E (right-hand panel).
Figure 4 clearly shows the order of magnitude difference
between the color trivial and color nontrivial parts of the
correction term for parent partons in the fundamental and
adjoint representations, the difference in sign of the correction
for quarks and gluons, and the persistence of the difference in
magnitude of the correction as a function of both L and E .

B. Energy dependence and asymptotic analysis

A striking feature of the plot in the bottom panel of Fig. 3
is the dominance of the small-separation-distance correction
term at high energies. We see in Fig. 3, by comparing the
top left-hand panel to the bottom panel, a dominance of the
correction term at E = 100 GeV, leading to an energy gain,
even out to systems with sizes of L ∼ 3 fm for quarks and L ∼
5 fm for gluons. In order to better understand this dominance
of the correction term at large energies, one may perform an
asymptotic analysis. Recall that �E (1)

ind ≡ �E (1)
DGLV + �E (1)

corr,
where �E (1)

ind is given by Eq. (2.7). Starting with the correction
term �E (1)

corr and following [32], we take all thermal and quark
masses to zero and analytically evaluate the integral over the
scattering separation distance �z (using an exponential distri-
bution for analytic simplicity and to connect with the known
analytic results in Ref. [32]). Then we remove the kinematic
bound on the momentum kick from the medium qmax → ∞,
shift the momentum integral, analytically evaluate the angular
integrals in momentum space, and perform the integrals over
k and q. The result is

�E (1)
corr =

CRαs

2π

L

λg

(
− 2CR

CA

)
12

2 + μL
E

∫ 1

0
dx log

(
L kmax

2 + μL

)
.

(3.1)
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Taking, for simplicity, kmax = 2xE we find

�E (1)
corr = CRαs

2π

L

λg

(
−2CR

CA

)
1

2 + μL
E log

(
2EL

2 + μL

)
(3.2)

in the limit of large energy E .
The equivalent asymptotic expression for the large sepa-

ration distance leading massless DGLV result was derived in
Ref. [32]. The result, with kmax → ∞, is

�E (1)
DGLV = CRαs

4

L2μ2

λg
log

E

μ
. (3.3)

There are several important features of Eqs. (3.2) and (3.3)
to note. First, the terms not proportional to the color triviality
breaking 2CR/CA factor in Eq. (3.2) cancel at this level of
approximation since kmax � qmax, and the correction is purely
an energy gain. Second, the correction term is log diver-
gent in the upper bound of the perpendicular momentum of
the emitted gluon kmax, whereas the large-separation-distance
DGLV term is finite for infinite kmax. Third, the correction
term is linear in L at small L and independent of L at large L,
while the DGLV term is proportional to the usual L2. Fourth,
the asymptotic correction term breaks color triviality as its
magnitude is proportional to L/λR, where λR is the mean free
path of the parent parton (whether quark or gluon), instead
of proportional to L/λg, where λg is the mean free path for
gluons.

Most important, cancellation between the contributions to
the large-separation-distance DGLV result leads to an energy
loss that grows only logarithmically with energy E . The small-
separation-distance correction piece does not suffer from a
similar interference and grows linearly with E (with loga-
rithmic in E correction). It is precisely this linear in E be-
havior compared to the log E of the large-separation-distance
DGLV term that leads to the correction term dominating over
the leading term at higher energies. The subtle cancellation
between terms in the DGLV term, and the absence of such a
cancellation in the correction term is discussed in more detail
in Sec. IV C.

The fact that the short-separation-distance “correction”
term can dominate over the leading large-separation-distance
DGLV result even out to path lengths L ∼ 4μ when not relax-
ing the large-formation-time assumption (effects that should
tend to zero under the large-formation-time assumption) sug-
gests that the large-formation-time assumption is invalid in
the DGLV approach. The dependence of the energy loss on
the large-formation-time assumption is explored further in
Sec. IV C as well.

C. Mass ordering and the large-formation-time assumption

In Fig. 3, the all-separation-distance energy loss can
be seen to be mass ordered.5 The mass ordering of the
large-separation-distance relative energy loss was found in

5Note that this mass ordering does not hold for the gluons, even
though they take on an effective plasmon mass. This is due to the
color factor in the correction term; see Sec. III A.

E [GeV]

E
E

5 10 50 100
0.00

0.05

0.10

0.15

0.20

0.25

0.30

L =4 fm

FIG. 5. (Grayscale coloring guide: Top to bottom on the left-
hand side are black, blue, red, respectively.) Fractional energy loss of
bottom (red), charm (blue), and light (black) quarks in a GQP with
μ = 0.5 GeV and λmfp = 1 fm for fixed path length L = 4 fm. The
gluon result has not been plotted here because the color factor means
that the gluon result does not obey the mass ordering discussed in this
section. Here DGLV curves (dashed) are computed from the orig-
inal N = 1 opacity large-separation-distance DGLV formula while
DGLV + corr curves (solid) are from our all-separation-distance
generalization of the N = 1 DGLV result [Eq. (2.7)].

Ref. [33], where the explanation was that the effect of increas-
ing the mass of the parent parton was to reduce the relevance
of the gluon formation time factor. The formation time physics
of the large-separation-distance DGLV result is encoded in the
cosine terms of Eq. (2.7) and a similar dependence on gluon
formation times is apparent in the small-separation-distance
correction term.

However, notice that the mass dependence of Eq. (2.7)
is also apparent in the massive propagator. The propagator
masses lead straightforwardly to a reduction of energy loss.
At low energies the propagator mass ordering dominates
the energy loss, leading to higher mass partons losing less
energy. On the other hand, since the prefactors containing the
propagators scale like 1/E2 while the formation timescale like
1/E , formation-time physics dominates the mass dependence
of the energy loss at high energies; formation times are shorter
for more massive parent partons, leading to an enhancement
toward incoherent energy loss. We may thus understand the
inversion of the mass ordering in the top right-hand panel of
Fig. 3 (at E = 10 GeV) which results from the massive prop-
agator, to the ordering observed in the bottom panel of Fig. 3
(at E = 100 GeV) where the mass ordering is dominated by
formation-time physics. In order to see this more clearly, we
present Fig. 5, where it is clear that the mass ordering at low
energy is the opposite to that at high energy. Note also that the
inversion of the mass ordering holds for the original DGLV
result.

Nevertheless, despite the weak dependence of the mass or-
dering of the relative energy loss on the gluon formation time
at low energies, recall the crucial role that the large-formation-
time approximation ωi 	 μi plays in the derivation of the
small-separation-distance correction. Traditionally, the large-
formation-time assumption is considered a restatement of the
collinear radiation approximation, but it is already known that
the collinear assumption is problematic [29]: It was shown
in Ref. [38] that a significant fraction of the gluon radiation
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from N = 1 large-separation-distance DGLV is not emitted
collinearly, despite the use of the collinear approximation
k+ � k− in the derivation of the result. One may understand
this breakdown of the collinear approximation in the DGLV
formula by considering the required ordering k+ � k−. From
Eq. (2.2), k+ � 2xE and k− � k2/2xE we require

2xE � k2

2xE
⇒ 2 /� O(1), (3.4)

where the O(1) term ranges from ∼1/2 up to 2. The lower
limit of 1/2 comes from considering the typical momentum
fraction taken from the parent parton by the emitted gluon,
xtyp ∼ μ/E [38]; the upper limit of 2 results from using
kmax = 2xE . Thus the collinear approximation is violated for
much of the phase space of the emitted gluon.

Similarly, the large-formation-time approximation requires
that

μ � ωi ∼ 1

τ
= k2

2xE
/� μ × O(1), (3.5)

where, again, the O(1) term ranges from ∼1/2 up to 2.
It is important to note that the large-formation-time as-

sumption is a separate approximation from the collinear ap-
proximation; it is only when |k| ∼ μ that the two approxima-
tions are equivalent. Nevertheless, and despite this a posteriori
understanding, the present calculation was performed making
full use of the large-formation-time assumption.

IV. SENSITIVITY TO SMALL �z

There is a lack of theoretical control over the physics of
small �z in heavy-ion collisions, including, but not limited
to, the factorization of a hard parton in the presence of early
time strong fields and the thermalization of the medium.
It is therefore valuable to investigate the sensitivity of the
energy loss to the details of small-�z physics. In this section,
we investigate the small-�z robustness of the energy and
mass dependence of the correction term, seen in the previous
section.

A. Distribution of scattering centers

The energy-loss formula in Eq. (2.7) contains an integral
over the distribution of scattering centers ρ(�z), which one is
free to choose. The original DGLV calculation assumed an
exponential distribution, motivated by an attempt to mimic
a rapidly expanding medium. We have already alluded to
the fact that an exponential distribution biases toward small
separation distances, an effect which is exaggerated in small
systems. In order to counter this bias and to further explore
the sensitivity of the energy-loss calculations to early time dy-
namics, it is useful to consider other distributions of scattering
centers.

As a first step, and in order to avoid the complications of
biasing toward small separation distances, we start our inves-
tigation by considering, as has been done in Ref. [35], a step
function distribution of scattering centers. This function is a
properly normalized Heaviside-θ function which distributes
the scattering centers evenly for all 0 � �z � L, and we will
refer to it as the “full step function” (abbreviated to “F” where

necessary) for reasons that will become clear as we start to
consider modifications of the simple step function.

Second, one might attempt to investigate the sensitivity
of the relative energy loss to small separation distances by
imposing a lower cut-off for �z. The medium is modeled
by Gyulassy-Wang potentials [see Eq. (2.1)] that explicitly
require small 1/μ, setting a convenient scale for what “small
�z” might mean. We, therefore, propose a modification of
Eq. (2.7) so that ρ(�z) is a properly renormalized truncated
step function in which the scattering centers are evenly dis-
tributed between 1/μ � �z � L. The renormalization needs
to be such that the probability of scattering between 1/μ

and L is one. Physically, in this instance, we envision pro-
ducing a hard parton (its production having been properly
factorized) before the medium has thermalized. The parton
might, therefore, travel a short �z � 1/μ distance through an
unthermalized medium that has not yet formed quasiparticle
scattering centers, keeping in mind that, since we consider
first order in opacity, we require exactly one scattering to
take place. We will call this distribution the “truncated step
function” (abbreviated to “T” where necessary).

Third, recall that pQCD energy-loss formalisms assume
that the production of the hard parton may be factorized
from its propagation through the medium. The production
mechanisms for hard partons in the presence of strong fields,
and the scales on which they occur, have not yet been fully ex-
plored. However, the present calculation is performed within
the framework of DGLV energy loss, which is a static brick
problem, and therefore does not take into account the details
surrounding the production of hard partons. In order to inves-
tigate this lack of information surrounding the factorization
of the hard production processes, we propose a distribution
of scattering centers which prohibits any energy loss from
occurring close to the production. We impose such a cut-
off on the energy loss by applying a unit step function to
the energy-loss formula, while employing the full unit step
distribution of scattering centers. In practice, this truncation
of the energy loss is implemented by truncating the unit
step function distribution of the scattering centers without
renormalizing, so that the probability of scattering is constant
for 0 � �z � L, but the energy loss is zero for �z � 1/μ.

Physically, this distribution is intended to mimic a hard
parton that, having not yet formed properly, will not lose
energy for some distance (0 � �z � 1/μ) even if it should
encounter a scattering center. We will call this distribution
the “truncated unrenormalized step function” (abbreviated to
“TU” where necessary).

In summary, the four scattering center distribution func-
tions we consider in this article are given by

ρexp(�z) = 2

L
exp

(
−2�z

L

)
, (4.1)

ρF (�z) = 1

L
�(L − �z), (4.2)

ρT (�z) = 1

L − 1/μ
�(�z − 1/μ)�(L − �z), (4.3)

ρTU(�z) = 1

L
�(�z − 1/μ)�(L − �z), (4.4)
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FIG. 6. [Grayscale coloring: “Exp” is the highest curve at �z =
0, “F” is the lightest of the lower horizontal lines with ρ(�z) ∼ 0.25,
“T” is the highest horizontal line with ρ(�z) ∼ 0.29, and “TU” the
darkest of the lower horizontal lines with ρ(�z) ∼ 0.25.] The four
different options for ρ(�z), the distribution of scattering centers,
discussed in the present article and described in Eqs. (4.1)–(4.4), as
a function of �z. In this particular set of curves we have chosen a
system with L = 4 fm.

and are shown in Fig. 6 for a brick of L = 4 fm.
In Fig. 7 we show, having chosen the same parameters

as were used in Ref. [33], the DGLV relative energy loss of
a bottom quark without small-separation-distance correction,
utilizing the four scattering center distributions described in
Eqs. (4.1)–(4.4). Figure 7 is to be compared directly to Fig. 2
in Ref. [33]. In Fig. 7 it can be seen, and we will show in
Sec. IV C again, that the original DGLV term is not particu-
larly sensitive to the choice of distribution. The distribution
with the biggest difference in energy loss is the truncated
(renormalized) step. This distribution biases the scatterings to
larger �z, causing the bias toward larger energy loss. Note that
the relative energy loss when using the truncated step function
(dot-dashed curve in Fig. 7) does not smoothly go to zero

Truncated un−renormalized step
Truncated step
Exponential
Full step

0 1 2 3 4 5
0.00

0.02

0.04

0.06

0.08

L [fm]

E
E

E = 10 GeV

DGLV

FIG. 7. The relative DGLV energy loss of a bottom quark without
small-separation-distance correction, as computed using the four
different distribution functions for the scattering centers described
in Eqs. (4.1)–(4.4). This plot is to be compared directly to Fig. 2 in
Ref. [33]. Note that the relative energy loss when using the truncated
step function (dot-dashed curve) does not smoothly go to zero as
L → 1/μ due to the normalization factor in Eq. (4.3).

as L → 1/μ due to the normalization (as L → 1/μ, the nor-
malization diverges like (L − 1/μ)−1). The almost complete
lack of sensitivity to the differnces in the other distributions
can be understood from formation time effects and a subtle
cancellation of terms discussed further in Sec. IV C.

B. Energy and mass dependence at small �z

The sensitivity of Eq. (2.7) to the choice of ρ(�z) may
be further investigated by considering more closely the sen-
sitivity of the flavor and energy dependence of the correction
to the choice of ρ(�z). To this end, we present a number of
plots in Fig. 8, showing the relative energy loss �E/E for
four different parent parton flavors (grouped in rows) at E =
10 GeV (left column) and E = 100 GeV (right column). All
of these plots show the curves produced by using the full step
function (solid curves), the truncated step function (dashed
curves), and the truncated unrenormalized step function (dot-
dashed curves)6 for both the large-separation-distance DGLV
result (light curves) and the present all-separation-distance
result (dark curves).

By considering the dark curves in Fig. 8, showing the
all-separation-distance result Eq. (2.7), it is clear that the
correction term is sensitive to the choice of distribution of
scattering centers. We investigate the reasons for this sensitiv-
ity in Sec. IV C. The dominance of the correction term at high
energies (right-hand column) is described in Sec. III B. One
may understand the crossover of the truncated step function
(T) and truncated unrenormalized step function (TU) curves
(most easily seen in the E = 100-GeV plots, but also present
in the E = 10-GeV plots) as a result of the fact that the T
distribution biases toward larger separation distances so that,
at larger L, the characteristic L2 dependence of the DGLV
energy loss overpowers the L0 dependence of the correction
term at a smaller L [see Eqs. (3.2) and (3.3)].

The column on the right in Fig. 8 also clearly shows
that, at E = 100 GeV, the mass dependence of the relative
energy loss of the quarks disappears. This may be understood
by recalling that the momentum of the radiated gluon k is
integrated over from 0 to 2x (1 − x E ), so that masses in both
the momentum prefactors and the formation times in Eq. (2.7)
are overpowered by the k2 at large E .

In order to further quantify the sensitivity of the energy loss
to early time physics, we plot in Fig. 9 ratios of relative energy
loss computed using three different scattering center distri-
butions (truncated unrenormalized step function in dashed
curves, truncated step function in dot-dashed curves and expo-
nential in dotted curves) to the relative energy loss computed
using the full step function, for the large-separation-distance
DGLV result on the left, and the present small-separation-
distance correction on the right, all for an E = 10 GeV bottom
quark. This ratio is unity for an energy-loss formula that
is insensitive to the physics of �z � 1/μ. One immediately
notes that, while the DGLV results all tend toward one, the
correction term’s sensitivity to the early time dynamics is

6We have not included the exponential distribution here as it lends
little to the present discussion.
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FIG. 8. The relative energy loss of four different parent parton flavors (organized in rows), for parent parton energies of E = 10 GeV
(left column) and E = 100 GeV (right column), for both the original large-separation-distance DGLV result (light curves) and the present
all-separation-distance result (dark curves), as computed using the full step function (solid curves), the truncated step function (dashed curves)
and the truncated unrenormalized step function (dot-dashed curves).

persistent even at large L. One can see that, compared to the
unit step, varying the scattering center distribution leads to up
to a factor of two reduction, or factor of four enhancement,
of the correction term. Although not presented here, we have
computed the ratio of E to F for L up to 100 fm and find
that this ratio asymptotically approaches ∼4, although the
validity of the first order in opacity expansion for such large
path lengths becomes questionable. The large deviation of T
away from F for the DGLV result at small L is due to the
normalization of T, as well as a very small energy gain and
subsequent division by zero for small path lengths.

We may investigate the mass and energy dependence of
the differences between scattering center distributions even

further by considering the plots presented in Fig. 10, where we
plot the ratio of the relative energy loss as computed using the
truncated unrenormalized scattering center distribution to that
computed using the full step function, for the DGLV result
(left column) and the correction term (right column). The plots
in the left column of Fig. 10 show that the insensitivity of the
DGLV result to small system dynamics is independent of both
mass and energy, particularly for L � 1 fm. On the other hand,
differences of a factor of 2 persist to all path lengths for the
correction term. The length dependent DGLV ratio in the top
left-hand corner of Fig. 10 exhibits some fluctuant behavior
at small L for some flavors, due, as in Fig. 9, to numerical
division by zero.
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FIG. 9. The ratio of the relative energy loss as computed using various different scattering center distributions (truncated unrenormalized
step function in dashed curves, truncated step function in dot-dashed curves and exponential in dotted curves) to that computed using the full
step function distribution, for an E = 10 GeV bottom quark as a function of the size L of the brick, for the DGLV term (left-hand panel) and
the small-separation-distance correction term (right-hand panel). This ratio is unity for an energy-loss formula that is insensitive to the physics
of small separation distances.

The correction term’s sensitivity to small �z physics is
also seen to be mass dependent in Fig. 10, with the bottom
quark most affected by the truncation of the scattering center
distribution. Although the overall mass dependence of the
relative energy loss at low energies is mostly due to the
mass dependence of the propagators in Eq. (2.7) (discussed
in Sec. III C), the ratio of relative energy losses divides out
any mass dependence that is not coupled to the separation dis-
tance. We may therefore understand the mass dependence of
the ratio shown in Fig. 10 from a formation time perspective:

Consider the formation time of a gluon radiated off a parent
parton with mass M, given by

τ f ≡ 2xE

k2 + x2M2
. (4.5)

The high mass of the bottom quark will then give the bottom
quark the shortest radiated gluon formation time. The shorter
the formation time, the more sensitive will the parton be to
early time physics. One expects such a mass dependence to
disappear at high energies, and indeed, the sensitivity of the
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FIG. 10. (Grayscale coloring guide: In all four plots, except below L ∼ 1 in the top left plot, the curves, from bottom to top, represent
“Bottom,” “Charm,” “Light,” “Gluon,” respectively, with the “Light” and “Gluon” curves overlapping in the left column.) The ratio of the
relative energy loss as computed using the truncated unrenormalized step function to that computed using the full step function. This ratio is
shown in the top row as a function of the length of the brick for parent partons with E = 10 GeV and in the bottom row as a function of the
energy of the parent parton moving through a brick of L = 4 fm, for DGLV (left column) and for the correction (right column). This ratio is
unity for an energy-loss distribution that is insensitive to the physics of �z � 1/μ.
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FIG. 11. The DGLV term (left-hand panel) and correction term (right-hand panel) contributions to the d (�z) differential of the relative
energy loss of an E = 100 GeV bottom quark moving through a brick of L = 4 fm, showing the contributions from individual terms in
Eq. (2.7). in the panel on the left, the dashed and dot-dashed curves show the two terms in brackets in the second line of Eq. (2.7), while the
solid curve shows their sum (the full DGLV result). In the right-hand panel the dashed curves show the sum of the two terms that cancel in the
high energy limit (see Sec. III B for details), the dot-dashed curves show the color carrying term and the solid line their sum. For the correction
term in the right-hand panel, the red (darker) curves show the full result while the orange (lighter) curves show what the contributions to the
correction term would be without the exp(−μ�z) factor (see Sec. IV C for details).

relative energy loss to the choice of distribution appears to
converge for the different quark masses at high energies, as
seen in the bottom left plot of Fig. 10. Naively one might
expect all the quarks to appear massless (and so to see the
ratio in Fig. 10 converge to the light quark result rather than
that of the bottom quark at high energies). For the DGLV
result (bottom left in Fig. 10), this intuition holds because
the DGLV result is insensitive to small-separation-distance
physics. On the other hand, because of the correction term’s
sensitivity to small-separation-distance dynamics, and since
higher energies result in shorter radiation formation times, the
curves in the bottom right panel of Fig. 10 tend toward the
bottom quark result, since it is the bottom quark that already
has the shortest formation time.

C. Origins of small �z sensitivity

In Eq. (2.7) we see that both the DGLV terms and the
correction terms contain formation times; i.e., the terms are
proportional to cosines of argument ωi�z such that �EDGLV

and �Ecorr go to zero for �z � 1/ωi. It is therefore difficult to
understand the sensitivity of the correction term to early time
physics, in conjunction with the insensitivity of the DGLV
term, from a formation time perspective. Investigating the
DGLV term further numerically, one finds a subtle cancella-
tion that occurs in the DGLV term that does not occur in the
correction term. In the DGLV term, the two terms in the brack-
ets in the second line of Eq. (2.7) [DGLV(1) ∼ k(k − q) and
DGLV(2) ∼ (k − q)2, so that DGLV = DGLV(1) + DGLV(2)]
are very large but almost equal in magnitude and opposite in
sign. As such, the two contributions to the DGLV term cancel
almost identically, which may be seen in the left-hand panel
of Fig. 11, where we plot the contributions from DGLV(1) and
DGLV(2) separately, along with their sum, for an E = 100-
GeV bottom quark.

No such cancellation occurs in the correction term, a fact
we already alluded to in Sec. III B where we found that two
of the three terms in the correction cancel, while the color
triviality breaking term remains and is responsible for the bulk
of the contribution. To illustrate the dominance of the color
triviality breaking term in addition to the cancellation of the

remaining terms of the correction, we present the red curves
in the right-hand panel of Fig. 11, showing the contributions
from the two terms that cancel in the high energy limit, the
color triviality breaking term, and their sum, for an E = 100-
GeV bottom quark. One can see in the red curves of the
right-hand panel of Fig. 11 that the color triviality breaking
term controls the correction term’s energy loss. Therefore, the
DGLV term’s insensitivity to the small-separation-distance
physics is due to both the destructive LPM effect and this
subtle cancellation effect, while the absence of such a can-
cellation in the correction term contributes to the correction
term’s sensitivity to small �z.

Additionally, the correction contains a factor of
exp(−μ�z), which plays the part of suppressing contributions
to the correction term from �z � 1/μ, enforcing a strong
dependence on the physics of �z � 1/μ. In order to
understand the role of the exponential factor in the sensitivity
of the correction term to the small-separation-distance
physics, we present the orange curves in the right-hand panel
of Fig. 11, which show the same three terms of the correction
term as are shown in the red curves, but without the factor of
exp(−μ�z). It is clear that, on integrating over �z, the bulk
of the contributions to the integral comes from the region
�z � 1/μ due to the presence of the exp(−μ�z) factor.

V. CONCLUSIONS

The original DGLV derivation of the energy loss of a hard,
potentially massive parton via radiation (of potentially mas-
sive quanta), while traversing a static brick of weakly coupled
QGP, assumed a large path length for the parent parton. In
this article, we generalized the first order in opacity of DGLV
by including the short-path-length terms that were neglected
in the original derivation. We have thus analytically derived
a small-separation-distance correction to the first order in
opacity of DGLV. Our result constitutes an important step
toward the understanding of partonic energy loss in small
colliding systems.

The main result of our article is the all-separation-distance
first order in opacity energy-loss formula Eq. (2.7). In our
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derivation we retained the scale ordering of 1/μ 	 λmfp,
justifying the use of the Gyulassy-Wang model, as well as the
soft and collinear assumptions, and we have retained the usual
assumption of large formation time. We found that the major-
ity of terms that are exponentially suppressed under the large-
separation-distance assumption are additionally suppressed
under the large-formation-time assumption at the amplitude
level, meaning that only 2 diagrams of 12 contribute to the
small-separation-distance correction. We performed an exten-
sive numerical analysis of the correction term and found that,
surprisingly, the correction term dominates over the original
DGLV result at high energies. This energy dependence may
be understood from an asymptotic analysis that revealed an
E log E energy dependence of the correction term, in con-
trast to the log E dependence of the large-separation-distance
DGLV. We further found that the correction term depends on
the distance traveled through the medium as L for small L and
L0 for large L (that is, the correction is independent of L for
large L), again deviating from the L2 dependence of the DGLV
term. Therefore, the effects of the correction term persist to
arbitrarily large paths. Interestingly, the correction term also
breaks color triviality.

Naively one might expect aspects such as the factorization
of the production of the hard parton from the scattering, the
behavior of a Debye screened scattering center near the edge
of a thermalized medium, etc., to play a role in small system
modeling. In order to explore the effect of the physics of small
systems and early times on our correction term, we proposed
a number of distributions of scattering centers, attempting
to take into account the factorization of the production of
the hard parton from its propagation through a medium, as
well as the formation of that medium. We showed that the
short-separation-distance correction is sensitive to early time
physics explored by these distributions, while the original
large-separation-distance DGLV result is not. We found that
the DGLV term’s insensitivity to the physics of small �z is
due to both the known formation time physics and a subtle
cancellation of terms. This cancellation does not persist in
the correction term, which accounts for the sensitivity of the
correction term to small �z physics.

Our derivation revealed that the formation time of a gluon
radiated off a hard parent parton is of crucial importance.
Already at the amplitude level of the all-separation-distance
derivation, we found that the naive application of the large-
formation-time assumption leads to a dramatic reduction of
terms present in the correction. Phenomenologically, one
might ask if it is justifiable to include large formation times
while considering short path lengths. It is important to re-
member that the path length is the distance within which a
scattering of the parent parton or radiated gluon occurs; there
is no requirement that the radiated gluon forms within the
“brick” of medium we consider. We also demonstrated that
the large-formation-time assumption is violated for much of

the phase space of the emitted radiation. Since all energy-
loss formalisms, DGLV, BDMPS-Z-ASW, AMY, and HT (see
Ref. [8] and references therein) exploit the large-formation-
time approximation, we are faced with a need to assess
the applicability of the large-formation-time assumption in
any description of energy loss. While the influence of the
assumption of collinearity was relatively easy to quantify
across formalisms by simply varying the maximum allowable
perpendicular momentum of the emitted gluon, estimating the
importance of the large-formation-time approximation will
likely be a challenge. Similarly, deriving expressions that
do not rely on either the collinear or large-formation-time
approximations is formidable.

The physics of formation times is also relevant to the mass
ordering of the energy loss at high parent parton energies.
However, we found that the mass ordering is additionally
subject to competing effects from the massive propagator, so
that the mass dependence of the relative energy loss at low
energies is dominated by the propagator.

Our results show that if one is to consider a system in which
the separation distances are on the order of the Debye screen-
ing length, then one will have to understand the in-medium
production mechanisms as well as the nature of a Debye
screened scattering center near the edge of a thermalized
medium, in addition to the validity of the large-formation-time
assumption in small systems. Due to these large uncertainties,
the quantitative effect of the correction on observables is
unclear. Further, the lack of theoretical control over these
assumptions calls into doubt the quantitative extraction of
medium parameters through the use of jet quenching [11]. We
leave addressing these issues for future work.
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