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Equation of state at finite densities for QCD matter in nuclear collisions
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We construct the QCD equation of state at finite chemical potentials including net baryon, electric charge, and
strangeness, based on the conserved charge susceptibilities determined from lattice QCD simulations and the
equation of state of the hadron resonance gas model. For the application to relativistic heavy-ion collisions we
consider the situation of strangeness neutrality and matter with a fixed electric charge-to-baryon ratio, resembling
that of heavy nuclei. The importance of finite electric charge and strangeness chemical potentials for particle
production in heavy-ion collisions is demonstrated using hydrodynamic simulations.
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I. INTRODUCTION

The nearly perfect fluidity of the quantum chromodynamic
(QCD) matter discovered in heavy-ion collisions at the BNL
Relativistic Heavy Ion Collider (RHIC) and CERN Large
Hadron Collider (LHC) has provided us with rare opportuni-
ties to experimentally explore the nuclear equation of state,
which encodes the fundamental thermodynamic properties
of nuclear matter. The system created in these collisions is
expected to be deconfined from hadronic matter to the quark-
gluon plasma (QGP) above approximately 2 × 1012 degrees
Kelvin.

The theoretical study of the nonperturbative QCD equa-
tion of state dates back to the MIT bag model [1,2] where
hadrons are assumed to be located in a bag embedded in the
QCD vacuum characterized by the bag constant. This pre-
scription introduces confinement phenomenologically. Also,
several model approaches, such as the potential model [3] and
the Nambu-Jona-Lasinio model [4,5], have been proposed to
understand the thermodynamic properties of QCD. A more
comprehensive picture became available with the advent of
first-principles calculations based on lattice QCD techniques.
The quark-hadron phase transition is found to be a crossover
by (2 + 1)-flavor lattice QCD calculations, in contrast to the
SU(3) pure gauge case where a first-order phase transition
is predicted [6–8]. Recent lattice QCD simulations with a
physical pion mass have been able to provide us with the
realistic equation of state at finite temperatures and vanishing
chemical potentials [9,10].

At finite densities the equation of state is not well known,
owing to the fermion sign problem of the first principles
method (for a review see Ref. [11]). Several techniques
have been developed in lattice QCD, including the Taylor
expansion method [12,13], the imaginary chemical potential
method [14–16], Lefschetz thimble decomposition [17,18],
and the complex Langevin method [19–21], but so far no

complete calculations are available at larger chemical poten-
tials. There can be nontrivial structures in the μB-T QCD
phase diagram other than the QGP phase [22]; it is conjectured
that there is a critical point based on the chiral model that
predicts that the quark-hadron crossover becomes a first-order
transition at some finite temperature and chemical potential
[23]. Beam energy scan (BES) programs are being performed
to explore finite-density QCD matter and determine its de-
tailed phase structure at RHIC and the CERN Super Pro-
ton Synchrotron (SPS), and are planned at several facilities
including the GSI Facility for Antiproton and Ion Research
(FAIR), JINR Nuclotron-based Ion Collider fAility (NICA),
and JAEA/KEK Japan Proton Accelerator Research Complex
(J-PARC).

From the viewpoint of hydrodynamic modeling of rela-
tivistic nuclear collisions, the equation of state is needed to
close the set of equations of motion, by characterizing the
thermodynamic properties of the system. The equation of
state at vanishing density obtained from lattice QCD calcu-
lations has been employed in comparisons of hydrodynamic
simulations with experimental data from heavy-ion collisions
[24–29], where bulk observables are generally well repro-
duced. For quantitative predictions and analysis of the BES
experimental data, an equation of state at finite chemical
potentials is needed as input to hydrodynamic models. Several
works have been devoted to the construction of such quanti-
tative models of the finite-density equation of state, including
Refs. [30–46].

In this work, we present a framework to construct a QCD
equation-of-state model (NEOS) with multiple charges: net
baryon (B), strangeness (S), and electric charge (Q) based
on state-of-the-art lattice QCD [47–52] and hadron resonance
gas results. A version of the equation of state, which only
has baryon chemical potential, has previously been introduced
and used in Refs. [53–59]. We numerically calculate the
equation of state with conditions on the conserved charges
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close to those in relativistic heavy-ion collisions. This analysis
is expected to be relevant in mid- to low-energy heavy-ion
collisions and at forward rapidity where the fragments of
shattered nuclei are relatively abundant [60,61]. The presence
and interplay of the chemical potentials are expected to play
an important role in for example the hadron chemistry or
particle abundances (see, e.g., Ref. [62]), and the separation
of hadron and antihadron flow observables [63–65].

The multidimensional phase diagram has been studied
[66–72] and some conjecture nontrivial phase structures. In
this study, we consider a crossover equation of state as a
baseline for the application to relativistic nuclear collisions.

The paper is organized as follows. In Sec. II, the construc-
tion of finite-density equations of state based on the Taylor
expansion method for lattice QCD and the hadron resonance
gas is presented. The numerical evaluation of the hybrid equa-
tion of state is performed in Sec. III, where the strangeness
neutrality condition and the fixed charge-to-baryon ratio of
nuclei are taken into account. In Sec. IV, particle ratios are
estimated in hydrodynamic simulations assuming different
conditions on the charge content of the system. Section V
presents conclusions and discussions. Natural units c = h̄ =
kB = 1 and the Minkowski metric gμν = diag(+,−,−,−)
are used.

II. EQUATION OF STATE

Based on the Taylor expansion method [12,13] we employ
lattice QCD results of the conserved charge susceptibilities
to construct the equation of state in the QGP phase. In the
hadronic phase we use the equation of state of a hadron reso-
nance gas, because the Taylor expansion method is not reliable
at low temperatures. The use of a noninteracting resonance
gas model is partly motivated by the good agreement between
thermodynamic quantities at vanishing chemical potential,
including susceptibilities, from lattice QCD and the hadron
resonance gas. Also, the Cooper-Frye prescription [73] of
kinetic freeze-out requires that the hydrodynamic equation of
state precisely matches that of the kinetic theory description
of the hadron resonance gas on the freeze-out hypersurface
for the successful conservation of energy-momentum and all
charges. If at low temperatures the lattice result was used
instead of the hadron resonance gas model, the truncation of
the Taylor expansion at finite order would lead to an underesti-
mation of the pressure in the hadronic phase, because higher-
order susceptibilities can be large for the hadron resonance
gas in the Boltzmann limit, e.g., χB

2n/χ
B
2 = 1.

A. Lattice QCD equation of state

We consider the Taylor expansion method of lattice QCD
as mentioned earlier. For the three-flavor QCD system, the
expansion of the pressure around the vanishing density limit
reads

P

T 4
= P0

T 4
+

∑
l,m,n

χ
B,Q,S
l,m,n

l!m!n!

(
μB

T

)l(
μQ

T

)m(
μS

T

)n

, (1)

where P is the pressure, P0 is the pressure at vanishing
chemical potentials, T is the temperature, and μB,Q,S are the

chemical potentials of baryon number, electric charge, and
strangeness, respectively. χ

B,Q,S
l,m,n is the (l + m + n)th order

susceptibility defined at vanishing chemical potentials:

χ
B,Q,S
l,m,n = ∂ l∂m∂nP(T, μB, μQ, μS )/T 4

∂ (μB/T )l∂ (μQ/T )m∂ (μS/T )n

∣∣∣∣
μB,Q,S=0

. (2)

The number l + m + n should be even, owing to the matter-
antimatter symmetry. The expansion is valid only when the fu-
gacity μB,Q,S/T is sufficiently small. The lattice QCD results
are parametrically extrapolated to high temperatures under the
condition that they do not violate the Stefan-Boltzmann limits.
See Appendix A.

B. Hadron resonance gas equation of state

The hydrostatic pressure of the hadron resonance gas can
be written as

P = ±T
∑

i

∫
gid3 p

(2π )3
ln[1 ± e−(Ei−μi )/T ]

=
∑

i

∑
k

(∓1)k+1 1

k2

gi

2π2
m2

i T 2ekμi/T K2

(
kmi

T

)
, (3)

where i is the index for particle species, gi is the degeneracy,
mi the particle’s mass, and K2(x) is the modified Bessel func-
tion of the second kind. The index k describes the expansion of
quantum distributions around the classical ones. It is generally
sufficient to take into account the contributions of k � 3 for
pions, k � 2 for kaons and k = 1 for the heavier particles. The
upper signs are for fermions and the lower signs for bosons.
The hadronic chemical potential is μi = BiμB + QiμQ + SiμS

where Bi, Qi, and Si are the quantum numbers of net baryon,
electric charge, and strangeness, respectively.

C. Hybrid equation of state

The complete nuclear equation of state is constructed by
connecting the pressure of the lattice QCD equation of state
to that of the hadron resonance gas model [74]

P

T 4
= 1

2
[1 − f (T, μJ )]

Phad(T, μJ )

T 4

+ 1

2
[1 + f (T, μJ )]

Plat (Ts, μJ )

T 4
s

, (4)

where J = {B, Q, S}. Here f (T, μJ ) is an arbitrary function
for the connection of the two functions, which satisfies f → 1
when T � Tc and f → 0 when T � Tc, where Tc is the
connecting temperature. In this work we choose f to be a
hyperbolic tangent, defined in Eq. (14). A temperature shift
Ts(T, μJ ) is introduced phenomenologically to preserve the
monotonicity conditions of thermodynamic variables at larger
chemical potentials. Since Ts is generally a function of T and
μJ , one can define

P̃lat (T, μJ ) = Plat (Ts, μJ ) × T 4

T 4
s

, (5)

which is the shifted QGP equation of state. Here P̃lat should
reduce to Plat at small chemical potentials. While in this work
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we will not use a temperature shift, the shifting temperature
is used in similar constructions of the equation of state in
previous works [53–59].

We require that the thermodynamic variables
monotonously increase as functions of T and μJ , respectively,
as

∂2P

∂T 2
= ∂s

∂T
> 0, (6)

∂2P

∂μ2
J

= ∂nJ

∂μJ
> 0. (7)

Those conditions may be trivially satisfied for the hadron
resonance gas or lattice QCD equation of state when μJ/T is
not large, but the connection procedure can make it nontrivial.
The conditions can be expressed as

∂2P

∂T 2
= 1

2
[1 − f (T, μJ )]

∂shad(T, μJ )

∂T

+ 1

2
[1 + f (T, μJ )]

∂ s̃lat (T, μJ )

∂T

+
∑

J

∂ f (T, μJ )

∂T
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+ 1

2

∑
J

∂2 f (T, μJ )

∂T 2
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(8)
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2
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+ 1

2
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∂ ñJ
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+ 1

2
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J
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[
ñJ
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+ 1

2

∑
J

∂2 f (T, μJ )

∂μ2
J

[P̃lat (T, μJ ) − Phad(T, μJ )] > 0.

(9)

Assuming that the thermodynamic quantities on the lattice
QCD side are larger than those on the hadron resonance
gas side, the conditions are still not trivially satisfied as the
second-order derivatives of f can be negative. These condi-
tions will be handled numerically in the next section.

The thermodynamic variables, the entropy density s, the
conserved charge densities nJ , the energy density e, and the
sound velocity cs are given as

s = ∂P

∂T

∣∣∣∣
μJ

, (10)

nJ = ∂P

∂μJ

∣∣∣∣
T,μK

, (11)

e = T s − P +
∑

J

μJnJ , (12)

c2
s = ∂P

∂e

∣∣∣∣
nJ

+
∑

J

nJ

e + P

∂P

∂nJ

∣∣∣∣
e,nK

, (13)

TABLE I. Ratios of protons to nucleons Z/A
for the nuclei used in the collider experiments at
RHIC and LHC.

Nucleus Z/A

1
1H 1.000
2
1H 0.500
3
2He 0.667
27
13Al 0.481
63
29Cu 0.460
96
40Zr 0.417
96
44Ru 0.458
127
54 Xe 0.425
197
79 Au 0.401

208
82 Pb 0.394

238
92 U 0.387

respectively, using the standard thermodynamic relations.
Here {J, K} = B, Q, S and J �= K .

D. Multiple charges in nuclear collisions

A standard nucleus is made of protons and neutrons so the
averaged density of strangeness is zero, which may be ex-
pressed as nS (T, μB, μQ, μS ) = 0. However, neglecting elec-
tric charge for the moment, the conventional choice of μS = 0
leads to nS �= 0, because the strangeness density is dependent
on μB as the strange quark carries both net-baryon number
and strangeness. Thus, in the presence of a finite net-baryon
number, μS should generally be nonvanishing, so nS = 0 can
be fulfilled. The condition, of course, can in principle be
locally broken in the presence of geometrical fluctuations or
diffusion processes. The equation of state with the strangeness
neutrality condition can be expressed in terms of T and μB

because μS = μS (T, μB).
The electric charge density nQ(T, μB, μQ, μS ) is nonva-

nishing in nuclei as nQ = (Z/A)nB, where Z is the proton
number and A is the nucleon number. The list of Z/A ratios
of the nuclei used in collider experiments is shown in Table I.
The typical ratio for heavy nuclei such as Au or Pb is Z/A ≈
0.4. The precise nQ dependence is expected to become more
important when comparing collisions of isobar systems.

III. NUMERICAL CONSTRUCTION

In this section, we numerically construct the hybrid QCD
equation of state at finite densities (4). On the lattice QCD
side, we make use of one of the latest (2 + 1)-flavor calcula-
tions of the equation of state at vanishing chemical potentials
[10] and the diagonal and off-diagonal susceptibilities up to
the fourth order [50–52,75]. In addition, we introduce some
of the most relevant sixth-order susceptibilities, to allow for
a proper matching of all quantities, as discussed later. The
specific functional forms of parametrization are summarized
in Appendix B.

All hadron resonances from the particle data group [76]
with u, d , and s constituent quark components and masses
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smaller than 2 GeV are taken into account in the resonance
gas model. We use

f (T, μB) = tanh{[T − Tc(μB)]/�Tc}, (14)

where Tc(μB) = 0.16 GeV − 0.4 × (0.139 GeV−1μ2
B +

0.053 GeV−3μ4
B) motivated by and modified from the

chemical freeze-out curve [77]. The dependence of the
connecting temperature on strangeness and electric charge
chemical potentials is assumed to be weak and neglected
for the moment. The connecting width is �Tc = 0.1Tc(0).
Here, we choose not to perform a temperature shift and use
Ts = T . It should be noted that this is not a unique choice
of the parameters, but the thermodynamic monotonicity
conditions (6) and (7) leave a rather narrow window for the
possible parameter values. The smooth matching leads to an
equation of state with a crossover transition. Implementation
of a QCD critical point and the first-order phase transition is
also possible for different choices of f . It will be discussed
elsewhere as the location of the critical point and the critical
behavior near it are currently not well known. For a possible
approach to include a critical point see Refs. [39,41,46].

The sixth-order susceptibilities should be relevant near
and below the crossover transition. The term involving χB

6 is
naively expected to give the largest contribution to the pres-
sure and the net-baryon number because of the hierarchy in
the chemical potentials μB > μS > μQ in nuclear collisions.
The strangeness density and the electric charge density are
not directly sensitive to χB

6 , because they are derivatives with
respect to μS or μQ, respectively, implying that the terms
involving χB,S

5,1 and χ
B,Q
5,1 will be the important ones for them.

We introduce those three susceptibilities in a phenomenolog-
ical approach so that nB, μS , and μQ are smooth functions of
T and μB, and that the results of the hadron resonance gas
model are preserved below Tc, because of the relatively large
uncertainties in the current lattice calculations of higher-order
susceptibilities. We find that the effects of the sixth-order
susceptibilities are limited to the large chemical potential
regions near the crossover transition.

For the strangeness and electric charges, we consider
three cases: (i) μS = μQ = 0, (ii) nS = 0 and μQ = 0, and
(iii) nS = 0 and nQ = 0.4nB. They are referred to as NEOS B,
NEOS BS, and NEOS BQS, respectively. The first is the com-
monly used scenario in which one assumes that the net-baryon
chemical potential is the only nonvanishing one in the system.
The second imposes the strangeness neutrality condition but
neglects the electric charge chemical potential. The third is
the most realistic scenario for the collision of heavy nuclei
where Z/A ∼ 0.4 [52]. It is also straightforward to calculate
the equation of state as functions of μB, μQ, and μS for more
general systems.

A. Vanishing strangeness and electric charge chemical
potentials μS = μQ = 0

First, the case where μS = μQ = 0 is investigated. The
pressure of the resulting equation of state is plotted in
Fig. 1(a). One can see the monotonous increase of P as a
function of T or μB. The equation of state reduces to that
of lattice QCD at μB = 0 at the vanishing density limit.
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FIG. 1. (a) The dimensionless pressure P/T 4 and (b) the dimen-
sionless strangeness density nS/T 3 as functions of T and μB where
μS = μQ = 0. The solid, long-dashed, dash-dotted, and short-dashed
lines are the trajectories for constant s/nB = 420, 144, 51, and 30,
respectively.

The constant entropy density over net-baryon density lines,
s/nB = 420, 144, 51, and 30, are plotted to illustrate the
most relevant regions for the BES programs. They correspond
to Au + Au collisions at

√
sNN = 200, 62.4, 19.6, and 14.5

AGeV, respectively [16]. Note that the ratio is roughly con-
stant during the time evolution in nuclear collisions when the
entropy and the net-baryon number are conserved, which is
the case for the nearly perfect fluid. The trajectory of s/nB

is a straight line at higher temperatures where the system
is relatively close to conformal, because s/nB ∼ T/μB. It
turns around near the crossover towards lower temperatures
as pions begin to dominate over protons because of the mass
difference, and large baryon chemical potential is required to
have protons at lower temperatures for keeping the s/nB ratio
fixed. In the limit T → 0, the chemical potential approaches
the proton mass.

As discussed earlier, the condition μS = 0, which is often
assumed in nuclear collision analyses, leads to a nonvanishing
strangeness density nS . The value of −nS/T 3 is shown in
Fig. 1(b). Positive baryon chemical potential leads to neg-
ative strangeness density because the s quark has a nega-
tive strangeness chemical potential. The high-temperature be-
havior can be understood as nS/T 3 ∼ χB,S

1,1 μB/T ∼ −μB/3T
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FIG. 2. (a) The dimensionless pressure P/T 4 and (b) the
strangeness chemical potential μS as functions of T and μB where
nS = 0 and μQ = 0. The solid, long-dashed, dash-dotted, and short-
dashed lines are the trajectories for constant s/nB = 420, 144, 51,
and 30, respectively.

(A6). The strangeness density is relatively small at lower
temperatures because kaons, the lightest strange hadrons, have
net-baryon number zero.

B. Strangeness neutrality nS = 0 and vanishing electric
charge chemical potential μQ = 0

We next study the case where nS = 0 and μQ = 0. The
pressure is shown as a function of T and μB in Fig. 2(a).
The nQ/nB ratio is arbitrary, and approaches nQ/nB ∼ 0.5 in
the parton gas limit (A14). One can see that the equation of
state is modified at larger baryon chemical potentials com-
pared with that of the μS = 0 case. The constant s/nB lines are
also shifted to larger μB [Fig. 2(b)] because the strangeness
neutrality implies μS ∼ μB/3 at high temperatures. For clarity
we show the projections of the constant s/nB lines onto the
μB-T plane in Fig. 3. Here one can see that μB has to be about
3/2 times larger for a given nB when μS �= 0. The gray area
in the figure shows a conjectured region μB/T > 3 where the
Taylor expansion method of lattice QCD is not well defined.
A larger value of μB will result in a larger thermodynamic
force ∇μ(μB/T ) for the net-baryon diffusion current [57]. It
will have an important effect on constraining the net-baryon
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FIG. 3. The comparison of the trajectories for constant s/nB =
420 (solid line), 144 (long-dashed line), 51 (dash-dotted line), and 30
(short-dashed line) lines between NEOS B and NEOS BS denoted by
narrow and thick lines, respectively. The gray area shows the region
where μB/T > 3 above Tc.

diffusion constant in future phenomenological studies. While
initial strangeness fluctuations and a strangeness diffusion
current can break strangeness neutrality locally, this should
not diminish the effect of enhanced μB on the net baryon
diffusion, since it is a subleading effect and the strangeness
is still globally conserved at zero.

Importantly, μs is nonzero at freeze-out, which will affect
results on particle-antiparticle ratios of strange hadrons in hy-
drodynamic models, as is the case in thermal models [62]. The
potentially large effect of the strangeness neutrality condition
is also discussed in Ref. [78].

It should be noted that while we have now imposed more
realistic conditions compared to the previous case, the thermo-
dynamic properties of the QCD system itself remain the same,
we merely look at different slices of the multidimensional
equation of state.

C. Strangeness neutrality nS = 0 and fixed electric
charge-to-baryon ratio nQ = 0.4nB

Finally, we investigate the case where nS = 0 and nQ =
0.4nB. This is the setup most relevant to Au + Au and Pb + Pb
collisions. The dimensionless pressure P/T 4 is plotted in
Fig. 4(a). The difference from the previous case is small in this
setup but should be meaningful for correctly understanding
particle-antiparticle ratios of charged particles.

The electric charge chemical potential shown in Fig. 4(b)
is negative, owing to the interplay of multiple conserved
charges. Since the number of neutrons is larger than that of
protons in heavy nuclei, d quarks are slightly more abundant
than u quarks in the QGP phase and π− more abundant
than π+ in the hadronic phase. While the overall system is
positively charged, a negative electric chemical potential is
needed for describing this situation. μQ becomes positive for
the system of 3He since Z/A > 1/2. This would have to be
taken into account for the collisions involving such nuclei.

It should be noted that μQ is small and is rather sensi-
tive to the fine structure of the equation of state, including
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FIG. 4. (a) The dimensionless pressure P/T 4 and (b) the electric
charge chemical potential μQ as functions of T and μB where nS =
0 and nQ = 0.4nB. The solid, long-dashed, dash-dotted, and short-
dashed lines are the trajectories for constant s/nB = 420, 144, 51,
and 30, respectively.

higher-order susceptibilities, at large chemical potentials. This
implies that improvement in the lattice QCD calculations,
including higher-order susceptibilities, will be important in
quantitative analyses.

D. Discussion

We have constructed the nuclear equation of state under
several different conditions. We now study the differences
between the different scenarios in more detail.

The sound velocities of the equation of state under the three
different conditions along two constant s/nB lines are plotted
in Fig. 5. One can see that finite-density effects are visible
comparing the sound velocities of s/nB = 420 and 30. Around
the crossover temperature, the EoS becomes soft and c2

s has a
minimum. The location of the minimum shifts towards lower
temperatures as the net-baryon density increases. Also, the
sound velocity becomes larger in the QGP phase and smaller
in the hadronic phase at larger chemical potentials. This is
because the net-baryon contribution in c2

s (13) is positive for
the former phase and negative for the latter phase. At higher
temperatures, it starts to approach the Stefan-Boltzmann limit
c2

s = 1/3. For the three presented equations of state, c2
s
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FIG. 5. The squared sound velocity as a function of the tempera-
ture along the constant trajectories of μS = μQ = 0 (thick solid line),
nS = 0 and μQ = 0 (thin solid line), and nS = 0 and nQ = 0.4nB

(thick dotted line) under the conditions s/nB = 420 (top) and 30
(bottom).

reaches 94.8% of the value the Stefan-Boltzmann limit at
T = 0.6 GeV and 97.2% at T = 0.8 GeV for s/nB = 420.

Comparing NEOS B to NEOS BS, the strangeness neutrality
condition is found to slightly enhance the sound velocity
in the QGP phase. It should be noted that if one neglected
the derivatives involving nS in the calculation of c2

s (13) for
NEOS B, the sound velocity would be further underestimated
than our current result, because

c2
s �= ∂P

∂e

∣∣∣∣
nB

+ nB

e + P

∂P

∂nB

∣∣∣∣
e

, (15)

when μS = 0, i.e., nS �= 0, which again highlights the impor-
tance of adequate treatment of the multiple conserved charges.
The effects of the fixed charge to baryon ratio on the sound
velocity is almost negligible. Since the effect of the electric
chemical potential is not large, the difference in the sound
velocity is also not large when one neglects the derivatives
involving μQ and nQ in the definition (13).

We next focus on the interplay of the multiple conserved
charges and plot an arbitrary constant pressure plane in the
chemical potential μB-μS-μQ space at a constant temper-
ature in the hadronic phase in Fig. 6(a). This quantifies
the chemical potential dependences of this thermodynamic
quantity. For demonstration, we choose P/T 4 = 0.8 and T =
0.14 GeV. The intercepts of each axis, defined implicitly
as P(μint

B , 0, 0) = P(0, μint
Q , 0) = P(0, 0, μint

S ), are ordered as
μint

B > μint
S > μint

Q , partly reflecting the fact that the lightest
particles that carry those charges are protons, kaons, and pions
in the hadronic phase, respectively (3).

Figure 6(b) presents the same in the QGP phase. Here
P/T 4 = 2 and T = 0.2 GeV are considered. The ordering
of the intercepts can be seen to be μint

B > μint
Q > μint

S in the
QGP phase. This is consistent with the naïve expectation

024907-6



EQUATION OF STATE AT FINITE DENSITIES FOR QCD … PHYSICAL REVIEW C 100, 024907 (2019)

 0
 0.1

 0.2
 0.3

 0.4

 0

 0.1

 0.2

 0.3

 0

 0.1

 0.2

 0.3

µ Q
 (

G
eV

)

P/T4 = 0.8

µB (GeV)

µS (GeV)

µ Q
 (

G
eV

)

 0
 0.1

 0.2
 0.3

 0.4

 0

 0.1

 0.2

 0.3

 0

 0.1

 0.2

 0.3

µ Q
 (

G
eV

)

(a) T = 0.14 GeV

µB (GeV)

µS (GeV)

µ Q
 (

G
eV

)

 0
 0.1

 0.2
 0.3

 0.4

 0

 0.1

 0.2

 0.3

 0

 0.1

 0.2

 0.3

µ Q
 (

G
eV

)

P/T4 = 2

µB (GeV)

µS (GeV)

µ Q
 (

G
eV

)

 0
 0.1

 0.2
 0.3

 0.4

 0

 0.1

 0.2

 0.3

 0

 0.1

 0.2

 0.3

µ Q
 (

G
eV

)

(b) T = 0.2 GeV

µB (GeV)

µS (GeV)

µ Q
 (

G
eV

)

FIG. 6. The constant pressure plane as a function of μB, μQ, and
μS in (a) the hadronic phase at P/T 4 = 0.8 and T = 0.14 GeV and
(b) the QGP phase at P/T 4 = 2 and T = 0.2 GeV.

that μB/3 ∼ 2μQ/3 ∼ μS in the massless parton gas limit
(A1)–(A4). The intercept μint

S is slightly larger owing to the
fact that it is still close to the crossover transition and that the
strange quarks have a non-negligible mass. μB takes a maxi-
mum value at some positive finite μS because s quarks have
positive net baryon number and negative strangeness (A4),
i.e., the leading-order off-diagonal susceptibility between the
net baryon and strangeness is negative. This is not the case
for the cross coupling between the electric charge and the net
baryon or strangeness.

Constant s/nB lines for the case that nS = 0 and nQ =
0.4nB are plotted in Fig. 7 to illustrate the typical range of
the chemical potentials covered by heavy-ion collider experi-
ments. The trajectories coincide at high temperatures because
s/nB ∼ T/μB and the conditions on nS and nQ make μS and
μQ roughly proportional to μB. The trajectories slightly bend
towards the larger strangeness chemical potential at large μB

and small μS regions, which correspond to low temperatures
below T ∼ 0.1 GeV. This could be caused by the suppression
of kaons compared with pions owing to the mass difference.
The behavior can also be seen in Fig. 2(b). The bending does
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FIG. 7. The solid, long-dashed, dash-dotted, and short-dashed
lines are the trajectories for constant s/nB = 420, 144, 51, and 30,
respectively, as functions of μB, μQ, and μS .

not occur for the charge chemical potential because pions,
the lightest hadrons, have electric charge. It is noteworthy
that broader ranges may be explored in actual collider events
since the system is geometrically fluctuating and large local
variation of the entropy-to-conserved-charge ratios can occur.

We note that in the region where the lattice QCD contribu-
tion dominates, the validity of our parametrization is limited
to the range where μB/T is sufficiently small. From a prac-
tical point of view, for the application to nuclear collisions,
however, these regions are not expected to much affect the
bulk physics, because most of the fluid elements do not go
through the large μB/T regions near Tc. This can be seen in
the constant s/nB lines shown in Figs. 1 through 4.

It would also be interesting to compare our results with
the ones obtained by other lattice QCD approaches to finite
density regions, such as the one from the imaginary chemical
potential method [79].

IV. APPLICATION TO NUCLEAR COLLISIONS

To study the effects of imposing strangeness neutrality and
a realistic charge-to-baryon ratio on observables in heavy-ion
collisions, we perform hybrid model calculations of Pb + Pb
collisions at center-of-mass energy

√
s = 17.3 AGeV involv-

ing viscous hydrodynamic simulations with the three different
equations of state described above and a microscopic hadronic
afterburner. A more detailed description of the hybrid model
is given in Ref. [80]. We compute particle yields and compare
particle ratios to experimental data from the Super Proton
Synchrotron (SPS) [81–86] (compiled in Ref. [87]).

For the initial state, we use the dynamical model pre-
sented in Ref. [56], which provides fluctuating distributions
of net-baryon and energy-momentum densities in three spa-
tial dimensions. The 3 + 1D hydrodynamic simulation MUSIC

[88–90] is run here with zero bulk viscosity and a constant
shear viscosity to entropy density ratio of η/s = 0.08. We
switch from hydrodynamics to the hadron cascade UrQMD
[91,92] at a switching energy density esw, whose value we
vary below.
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FIG. 8. Top: Particle yields from central Pb + Pb collisions at√
s = 17.3 AGeV determined using a hybrid calculation consist-

ing of hydrodynamics with the indicated equations of state and a
hadronic afterburner. Bottom: Particle ratios for the three different
equations of state from the same calculation compared to experimen-
tal data [81–86] (compiled in Ref. [87]).

In Fig. 8 we show the particle yields (top) and par-
ticle ratios (bottom) from these simulations using esw =
0.26 GeV/fm3, and the NEOS equations of state with different
constraints on strangeness and electric charge. One can see
that imposing strangeness neutrality has a visible effect—
mainly on the strange and antistrange particle yields. This
effect is amplified in the particle ratios. Yields of particles
with positive strangeness are increased while those of particles
with negative strangeness are decreased, which is due to the
finite positive strangeness chemical potential present in NEOS

BS (and NEOS BQS).
The agreement between the theoretical calculations and

experimental data is improved for most particles with
strangeness in NEOS BS. In the meson sector where μB is ab-
sent, the ratio of K+ over K− gets enhanced by the strangeness
neutrality condition and agreement with experimental data at
SPS energy improves.

Protons, and to a lesser degree antiprotons, are modified,
because in the presence of μS , the baryon chemical potential
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FIG. 9. Top: Particle yields from central Pb + Pb collisions at√
s = 17.3 AGeV determined using a hybrid calculation consisting

of hydrodynamics with the NEOS BQS equation of state and a
hadronic afterburner, using three different switching energy densi-
ties. Bottom: Particle ratios for the three different switching energy
densities from the same calculation compared to experimental data
[81–86] (compiled in Ref. [87]).

μB also changes. The small change for pions is likely due to
the modification of resonance abundances when going from
NEOS B to NEOS BS.

Introducing the constraint on the electric charge by using
NEOS BQS, we find only very mild modifications of the
particle yields. The negative μQ leads to a slight increase of
negative relative to positive charged particles, as can be best
seen in the plot of the particle ratios as the difference between
the points for NEOS BS and NEOS BQS. The introduction of
μQ can explain at least qualitatively that π− are slightly more
abundant than π+. The ratio �̄/� behaves in the opposite
way. Possibly changes of μB and μS when introducing μQ

could contribute to this behavior. We note that the main
effect of baryon-antibaryon annihilation within UrQMD is the
reduction of the antiproton yield by approximately 35% at√

sNN = 17.3 GeV. Yields of 	̄ and �̄ are reduced by 25%
and 20%, respectively.
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In Fig. 9 we study the effect of different switching en-
ergy densities on particle yields (top) and ratios (bottom) for
NEOS BQS. Using a lower switching energy density means
assuming that the system is fully chemically equilibrated
down to lower temperatures. Antibaryons are most sensitive
to the switching energy density. The reason could be that
lower esw means lower temperature at switching, which goes
along with a larger baryon chemical potential (see Fig. 3).
Lower temperature tends to decrease heavier particles’ yields,
while the larger baryon chemical potential will lead to more
baryons, weakening the effect of lower temperature, and to
less antibaryons, adding to the effect. We find that the experi-
mental data on particle ratios prefers a switching temperature
between esw = 0.16 and 0.36 GeV/fm3.

V. CONCLUSIONS

By matching the Taylor expanded lattice QCD equation
of state in the high-temperature region to that of a hadron
resonance gas model at low temperature, we have constructed
the QCD equation of state at finite net baryon, electric charge,
and strangeness chemical potentials. We employ phenomeno-
logically motivated sixth-order susceptibilities to allow for
a smooth matching that respects the thermodynamic mono-
tonicity conditions. The equation of state is designed to be
used in simulations of collisions of heavy nuclei such as Au
or Pb in a wide range of collision energies explored by the
beam energy scan programs.

The equation of state without strangeness chemical po-
tential leads to the violation of the strangeness neutrality
condition, which should hold in heavy-ion collisions. A pos-
itive finite strangeness chemical potential is observed when
the condition nS = 0 is kept. Also enforcing the approxi-
mate relation between electric charge and baryon number for
heavy nuclei, nQ/nB = 0.4, introduces a negative finite elec-
tric chemical potential. These constraints should be important
for understanding the difference between particle yields and
flow observables of particles and antiparticles within hydro-
dynamic models of heavy-ion collisions.

We have presented the effect of enforcing different con-
straints on strangeness and electric charge on the particle
yields and ratios in

√
s = 17.3 AGeV Pb + Pb collisions.

While strange and antistrange particles are most affected by
these constraints, modifications of non-strange particles were
also observed, mostly driven by the finite μS , less so the
finite, negative, μQ. This is understood by the fact that the
introduction of μS (and μQ) will also alter μB.

These results are also important because they imply that we
do not explore the μB-T plane in the BES experiments, but a
certain slice in the μB-μQ-μS-T hyperplane. This can affect
the search of the QCD critical point because the traditional
critical point at μQ = μS = 0 may not be reached.

Further importance may arise with regard to isobar col-
lisions. The equation of state can be different for different
isobar collision systems, which should be taken into account
for correctly understanding the background signals to the
chiral magnetic effect. A similar discussion is applicable to
small systems, where light nuclei such as proton, deuteron,
or 3He tend to have larger Z/A ratios, and the sign of the

electric charge chemical potential can be flipped. It is also
possible to perform event-by-event hydrodynamic analyses
distinguishing protons and neutrons.

Future prospects for model improvements include intro-
duction of the full sixth-order susceptibilities from lattice
QCD calculations. Although they are vanishing in the high-
temperature limit, they could play a nontrivial role near the
crossover at larger chemical potentials. Our equation-of-state
model NEOS is publicly available [93].
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APPENDIX A: STEFAN-BOLTZMANN LIMIT

For the massless noninteracting system of u, d , and s, the
analytical expression of the pressure reads

P

T 4
= 8π2

45
+ 7π2

60
Nf + 1

2

∑
f =u,d,s

(
μ f

T

)2

+ 1

4π2

∑
f =u,d,s

(
μ f

T

)4

, (A1)

where Nf = 3 is the number of flavors. The speed of sound
(13) is independent of the temperature and chemical poten-
tials, c2

s = 1/3. It is noteworthy that the sixth- and higher-
order susceptibilities are vanishing in this case. The suscep-
tibilities of the conserved charges are given using Eqs. (1),
(A1), and

μu = 1
3μB + 2

3μQ, (A2)

μd = 1
3μB − 1

3μQ, (A3)

μs = 1
3μB − 1

3μQ − μS. (A4)

The second-order susceptibilities in the Stefan-Boltzmann
limit are

χB
2 = 1

3 , χ
Q
2 = 2

3 , χS
2 = 1, (A5)

χ
B,Q
1,1 = 0, χB,S

1,1 = − 1
3 , χ

Q,S
1,1 = 1

3 , (A6)

and the fourth-order ones are

χB
4 = 2

9π2
, χ

Q
4 = 4

3π2
, χS

4 = 6

π2
, (A7)

χB,S
3,1 = − 2

9π2
, χB,S

2,2 = 2

3π2
, χB,S

1,3 = − 2

π2
, (A8)
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TABLE II. The list of parameters used for the parametrization of the second-order susceptibilities.

Susceptibility h0 h1 (GeV2) T1 (GeV) �T1 (GeV) T2 (GeV) �T2 (GeV) h2 (GeV−n) n

χB
2 3.37 × 10−1 9.65 × 10−3 1.73 × 10−1 2.13 × 10−2 1.69 × 10−1 1.57 × 10−2 3.42 × 105 8

χ
Q
2 6.71 × 10−1 6.45 × 10−3 1.40 × 10−1 2.87 × 10−2 1.00 × 10−1 1.00 × 10−3 1.00 × 104 6

χ S
2 1.02 × 100 1.55 × 10−2 1.69 × 10−1 3.35 × 10−2 1.52 × 10−1 3.17 × 10−2 1.24 × 106 8

χ
B,Q
1,1 1.97 × 10−4 −2.09 × 100 1.34 × 10−1 7.28 × 10−2 1.59 × 10−1 2.80 × 10−2 9.00 × 104 8

χB,S
1,1 −3.38 × 10−1 1.28 × 10−2 1.64 × 10−1 3.16 × 10−2 9.99 × 10−2 2.74 × 10−2 −3.42 × 105 8

χ
Q,S
1,1 3.39 × 10−1 1.46 × 10−2 1.79 × 10−1 3.33 × 10−2 1.60 × 10−1 2.90 × 10−2 4.34 × 105 8

χ
B,Q
3,1 = 0, χ

B,Q
2,2 = 4

9π2
, χ

B,Q
1,3 = 4

9π2
, (A9)

χ
Q,S
3,1 = 2

9π2
, χ

Q,S
2,2 = 2

3π2
, χ

Q,S
1,3 = 2

π2
, (A10)

χ
B,Q,S
2,1,1 = 2

9π2
, χ

B,Q,S
1,2,1 = − 2

9π2
, χ

B,Q,S
1,1,2 = − 2

3π2
.

(A11)

They are used as anchors for the high-temperature behaviors
of the equation of state, where lattice QCD data are scarce, so
that the basic thermodynamic features are not violated in the
large T limit.

One can analytically solve the linearized equations for
charge densities nB, nQ, and nS obtained by keeping the
second-order diagonal and off-diagonal susceptibilities:

⎛
⎜⎝

nB

nQ

nS

⎞
⎟⎠ = T 2

⎛
⎜⎝

χB
2 χ

B,Q
1,1 χB,S

1,1

χ
B,Q
1,1 χ

Q
2 χ

Q,S
1,1

χB,S
1,1 χ

Q,S
1,1 χS

2

⎞
⎟⎠

⎛
⎜⎝

μB

μQ

μS

⎞
⎟⎠. (A12)

The solutions are

μB = (5nB − nQ + 2nS )/T 2, (A13)

μQ = (−nB + 2nQ + nS )/T 2, (A14)

μS = (2nB − nQ + 2nS )/T 2, (A15)

in the Stefan-Boltzmann limit. In the case where nS = 0 and
nQ = 0.4nB, those can be expressed as μB = 4.6nB/T 2, μQ =
−0.2nB/T 2, and μS = 1.6nB/T 2. It is worth mentioning that
the sign of μQ is rather sensitive to the proportionality con-
stant between the net-baryon and charge densities and turns
positive at nQ = 0.5nB.

APPENDIX B: PARAMETRIZATIONS
OF SUSCEPTIBILITIES

The parametrizations of the diagonal and off-diagonal sus-
ceptibilities at zero chemical potentials in the regime above
Tc are presented here. The second-order susceptibilities are
parametrized as

χ2 = h0

(
1 − h1

T 2

)
g+

1 g+
2 + h2T ng−

2 , (B1)

TABLE III. The list of parameters used for the parametrization of the fourth-order susceptibilities.

Susceptibility h3 h4 (GeV) h5 (GeV2) T3 (GeV) �T3 (GeV) h6 χ2

χB
4 1.45 × 10−2 2.49 × 10−3 0 1.62 × 10−1 2.27 × 10−2 1.00 × 100 χB

2

χ
Q
4 1.35 × 10−1 0 0 1.61 × 10−1 1.74 × 10−2 1.25 × 100 χ

Q
2

χ S
4 6.36 × 10−1 −1.12 × 10−1 2.09 × 10−2 1.65 × 10−1 1.93 × 10−2 8.85 × 10−1 χ S

2

χ
B,Q
3,1 0 0 0 1.63 × 10−1 1.16 × 10−2 9.96 × 10−1 χ

B,Q
1,1

χ
B,Q
2,2 4.42 × 10−2 1.31 × 10−3 −4.79 × 10−4 1.59 × 10−1 1.42 × 10−2 7.95 × 10−1 χB

2

χ
B,Q
1,3 4.25 × 10−2 4.54 × 10−3 −1.91 × 10−3 1.58 × 10−1 1.70 × 10−2 8.79 × 10−1 χB

2

χB,S
3,1 −2.87 × 10−2 7.93 × 10−3 −1.90 × 10−3 1.62 × 10−1 2.18 × 10−2 6.60 × 10−1 χB,S

1,1

χB,S
2,2 7.87 × 10−2 −1.35 × 10−2 2.60 × 10−3 1.68 × 10−1 2.46 × 10−2 -8.80 × 10−1 χB,S

1,1

χB,S
1,3 −2.04 × 10−1 1.85 × 10−3 −7.88 × 10−4 1.62 × 10−1 1.97 × 10−2 9.85 × 10−1 χB,S

1,1

χ
Q,S
3,1 2.31 × 10−2 −9.73 × 10−4 3.42 × 10−4 1.60 × 10−1 3.06 × 10−2 1.08 × 100 χB

2

χ
Q,S
2,2 6.88 × 10−2 −2.24 × 10−3 9.64 × 10−4 1.63 × 10−1 2.60 × 10−2 1.12 × 100 χB

2

χ
Q,S
1,3 2.02 × 10−1 1.04 × 10−3 −6.41 × 10−4 1.80 × 10−1 3.08 × 10−2 1.16 × 100 χB

2

χ
B,Q,S
2,1,1 2.24 × 10−2 9.45 × 10−5 −2.33 × 10−5 1.62 × 10−1 1.30 × 10−2 5.81 × 10−2 χB

2

χ
B,Q,S
1,2,1 −2.30 × 10−2 1.00 × 10−3 −4.84 × 10−4 1.54 × 10−1 1.51 × 10−2 −1.39 × 10−1 χB

2

χ
B,Q,S
1,1,2 −6.72 × 10−2 −6.89 × 10−4 3.00 × 10−4 1.63 × 10−1 1.66 × 10−2 −1.07 × 10−1 χB

2

024907-10



EQUATION OF STATE AT FINITE DENSITIES FOR QCD … PHYSICAL REVIEW C 100, 024907 (2019)

TABLE IV. The list of parameters used for the parametrization of the sixth-order susceptibilities.

Susceptibility h7 h8 h9 h10 T4 (GeV) �T4 (GeV) T5 (GeV)

χB
6 7.54 × 10−2 2.70 × 10−2 −1.64 × 10−2 – 1.27 × 10−1 1.73 × 10−2 1.57 × 10−1

χ
B,Q
5,1 2.59 × 10−2 1.39 × 10−2 1.81 × 10−2 8.73 × 10−4 1.21 × 10−1 1.12 × 10−2 1.52 × 10−1

χB,S
5,1 −5.52 × 10−2 4.38 × 10−3 −6.94 × 10−3 – 1.00 × 10−1 7.50 × 10−3 1.52 × 10−1

�T5 (GeV) T6 (GeV) �T6 (GeV) T7 (GeV) �T7 (GeV) T8 (GeV) �T8 (GeV)

χB
6 1.09 × 10−2 2.17 × 10−1 5.12 × 10−2 2.63 × 10−1 1.43 × 10−2 – –

χ
B,Q
5,1 1.11 × 10−2 1.64 × 10−1 7.24 × 10−3 1.96 × 10−1 2.58 × 10−2 2.49 × 10−1 1.55 × 10−2

χB,S
5,1 1.20 × 10−2 1.34 × 10−1 1.07 × 10−2 1.72 × 10−1 1.13 × 10−2 2.02 × 10−1 1.81 × 10−2

where

g±
i (Ti,�Ti ) = 1

2

[
1 ± tanh

(
T − Ti

�Ti

)]
. (B2)

The parameters are listed in Table II.
The functional forms for the fourth-order susceptibilities

are

χ4 =
(

h3 + h4

T
+ h5

T 2

)
g+

3 + h6χ2g−
3 , (B3)

where the base χ2 is chosen for purely parametric pur-
poses. The individual parameters can be found in Table III.
The Stefan-Boltzmann limits are used to regulate the high-
temperature behavior of the parametrizations. It is noteworthy
that the h3 values are typically not the exact Stefan-Boltzmann
values because they are parameters for the fitting, which is
valid conservatively up to around 600 MeV, and the conver-
gence of the fitting functions can be rather slow. Also, the

lattice data itself does not approach the limit at around 3Tc in
some cases. The fitting can be further improved when lattice
QCD data become available for a wider temperature range.

The sixth-order susceptibilities used are

χB
6 = h7g+

4 g−
5 g−

6 g−
7 + h8g+

4 g+
5 g−

6 g−
7 + h9g+

4 g+
5 g+

6 g−
7 , (B4)

χ
B,Q
5,1 = h7g+

4 g−
5 g−

6 g−
7 g−

8 + h8g+
4 g+

5 g−
6 g−

7 g−
8

+ h9g+
4 g+

5 g+
6 g−

7 g−
8 + h10g+

4 g+
5 g+

6 g+
7 g−

8 , (B5)

χB,S
5,1 = h7g+

4 g+
5 g−

6 g−
7 g−

8 + h8g+
4 g+

5 g+
6 g−

7 g−
8

+ h9g+
4 g+

5 g+
6 g+

7 g−
8 , (B6)

where the parameter coefficients are listed in Table IV. Unlike
the second- and fourth-order ones, they are not based on
lattice QCD but determined phenomenologically from the
thermodynamic conditions as mentioned in the main text. It
should thus be noted that they are effectively contaminated by
the contributions of higher-order susceptibilities and can be
different from those obtained in lattice calculations.
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