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A new method is proposed for extrapolation of elastic-scattering data to the negative-energy region for a short-
range interaction. The method is based on the analytic approximation of the modulus-squared of the partial-wave
scattering amplitude and can serve as an alternative to the traditional one based on continuation of the effective-
range function. The new method has been applied to determine the asymptotic normalization coefficients for the
17O and 13C nuclei in the n + 16O and n + 12C channels, respectively. The asymptotic normalization coefficients
obtained by the new method are compared with the ones obtained in the effective-range function approach.
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I. INTRODUCTION

Neutron-induced processes and neutron transfer reactions
play an important role in nuclear reactions, nuclear astro-
physics, and applied physics. In recent years these reactions
have attracted a great interest due to their role in primordial
nucleosynthesis of light elements [1] and in inhomogeneous
big bang models where (n, γ ) processes take part in reaction
chains leading to the synthesis of heavy elements [2,3]. While
the elements lighter than iron are either created during the big
bang or fusion reactions in stars, most of the elements heavier
than iron are produced via neutron-induced reactions [1].
Therefore, the knowledge of neutron-capture cross sections
for stable and unstable isotopes is essential. In many cases
low-energy neutron radiative-capture reactions and neutron-
transfer reactions populate loosely bound states of final nuclei.
To calculate the cross sections of such reactions one needs to
know full information about the final bound states, in particu-
lar, their quantum numbers, binding energies, and asymptotic
normalization coefficients (ANCs).

Using scattering data may give valuable information on
ANCs, which, in contrast to binding energies, cannot be
directly measured. The ANCs are fundamental nuclear char-
acteristics that are important, for example, for evaluating cross
sections of peripheral astrophysical nuclear reactions [4–7].
One of the direct ways of extracting ANCs from experimental
data is the analytic continuation in the energy plane of the
partial-wave elastic-scattering amplitudes, obtained by the
phase-shift analysis, to the pole corresponding to a bound
state. Such a procedure, in contrast to the method of con-
structing optical potentials fitted to scattering data, allows
one to circumvent an ambiguity problem associated with the
existence of phase-equivalent potentials [8,9].

The conventional procedure for such extrapolation is the
analytic approximation of the experimental values of the
effective-range function (ERF) Kl (E ) with the subsequent
continuation to the pole position (l and E are the orbital

angular momentum and the relative kinetic energy of colliding
particles, respectively). The ERF method has been success-
fully employed to determine the ANCs for bound (as well
as resonant) nuclear states in a number of works (see, e.g.,
Refs. [10–12] and references therein).

In our previous works [13–15] we investigated analytical
continuation of scattering data for charged particles to the
negative-energy region to obtain information about ANCs. In
the present paper, a new method is proposed for extrapolating
data on elastic scattering of neutrons. When analyzing neu-
tron scattering, in contrast to scattering of charged particles,
one deals only with a short-range interaction. The method
developed here makes use of the modulus-squared, denoted as
Ml (E ), of the partial-wave scattering amplitude fl (E ). Since
Ml (E ) is a real analytic function of E on the real positive
semi-axis of E including E = 0, it can be analytically approx-
imated by polynomials in E for E > 0 and then analytically
continued to the bound state pole to obtain information on the
ANC. The method is based on the well-known and reliably
established fact that the partial-wave amplitude of elastic
scattering has a pole of the first order in energy at the point
corresponding to the bound state, and the residue at this point
is expressed in terms of the square of the ANC.

Within an exactly solvable model, it is shown that the
proposed method has an advantage over the traditional one
based on the continuation of the ERF. Using the available data
on phase shifts, two versions of the new method, along with
the ERF method, have been applied to determine the ANCs for
the 17O and 13C nuclei in the n + 16O and n + 12C channels,
respectively.

Performing experiments on neutron elastic scattering is
not an easy task. However, for heavier nuclei, where the
Coulomb interaction significantly complicates extrapolation
of the proton elastic-scattering phase shifts, progress in new
experimental facilities and methods can make measurements
of neutron elastic scattering a valuable technique to obtain
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information about neutron ANCs using the extrapolation
method suggested in this paper. The method provides faster
convergence than the traditional one based on ERF. This is a
significant advantage especially when experimental data have
bigger uncertainties. In addition, using the mirror symmetry
one can determine the proton ANCs from the extracted neu-
tron ANCs.

The paper is organized as follows. In Sec. II, the theoretical
backgrounds of the proposed method are outlined. Sections III
and IV deal with the n + 16O and n + 12C systems, respec-
tively.

Throughout the paper we use the system of units in which
h̄ = c = 1.

II. NEW METHOD OF ANALYTIC CONTINUATION OF A
PARTIAL-WAVE ELASTIC-SCATTERING AMPLITUDE

Consider the partial-wave amplitude of elastic two-particle
scattering fl (E ) for a short-range interaction (l is the orbital
angular momentum, E = k2/2μ is the relative kinetic energy
of colliding particles, k is their relative momentum, μ is the re-
duced mass). Denote E = E+ if E > 0 and E = E− if E < 0.

Suppose that in the system under consideration there is a
bound state with energy E = −ε = −κ

2/2μ < 0. For E > 0,
we have

fl (E+) = k2l

Dl (E+)
, f ∗

l (E+) = k2l

D∗
l (E+)

, (1)

Dl (E+) = k2l+1(cot δl − i). (2)

Introduce a quantity Ml (E ) according to

Ml (E+) ≡ | fl (E+)|2 = k4l

Nl (E+)
, (3)

Nl (E+) = k4l+2(cot2 δl + 1). (4)

Since

Nl (E ) = K2
l (E ) + k4l+2, (5)

Kl (E ) = k2l+1 cot δl , (6)

and the effective-range function Kl (E ) can be expanded in
a series in k2 near k = 0, the function Nl (E ) can also be
expanded in a series in k2 (or in E ) near E = 0. Therefore,
one can approximate Nl (E ) with the expression

Nl (E ) = (E + ε)Fl (E ), (7)

where Fl (E ) is a polynomial or a rational function of E .
The function Nl (E ) as given by Eq. (7) can be analytically
continued to the domain E < 0. The E + ε factor provides
the pole of the amplitude fl (E ) at the energy corresponding to
the bound state. When E → −ε we have

lim
E→−ε

[(E+ε)Ml (E )] = lim
E→−ε

[
(E + ε)

k4l

(E + ε)Fl (E )

]

= κ
4l

Fl (−ε)
. (8)

However, using the connection between the residue of
fl (E ) and the asymptotic normalization coefficient Cl (see,

for example, Refs. [13,16]) and considering that as E →
−ε, cot δl → i, we have

lim
E→−ε

[(E + ε) fl (E )] = − 1

2μ
C2

l , (9)

lim
E→−ε

f ∗
l (E ) = lim

E→−ε

k2l

k2l+1(cot δl + i)
= − 1

2κ

. (10)

Combining Eqs. (9) and (10), we get

lim
E→−ε

[(E + ε)Ml (E )] = lim
E → −ε

[(E + ε) fl (E ) f ∗
l (E )]

= C2
l

4μκ

. (11)

Comparing Eqs. (8) and (11) gives the final result

C2
l = 4μκ

4l+1

Fl (−ε)
. (12)

In this method, in contrast to the method based on the contin-
uation of the ERF Kl (E ), when defining the ANC Cl , there is
no need to use the procedure of differentiation, impairing the
accuracy of the results.

Consider a slightly different version of the approximation
of Ml (E ) for E > 0:

Ml (E ) = | fl (E )|2 = |eiδl sin δl/k|2 = sin2 δl/k2. (13)

Note that δl is an odd function of k and sin2 δl is an even
function of k. Therefore, taking into account the threshold
behavior of δl , one can write

Ml (E ) = k4l

E + ε
Gl (E ), (14)

where Gl (E ) is a polynomial or a rational function of E . From
here, taking into account Eq. (11), we obtain

lim
E→−ε

[(E + ε)Ml (E )] = κ
4lGl (−ε) = C2

l

4μκ

(15)

and

C2
l = 4μκ

4l+1Gl (−ε). (16)

Equation (16) differs from Eq. (12) only by replacing 1/Fl (E )
with Gl (E ).

Unfortunately, it is not clear how to generalize this method
to include the Coulomb interaction since the renormalized
Coulomb-nuclear partial-wave amplitude f̃ ∗

l (E ), unlike f̃l (E ),
has an essential singularity on the physical sheet of E at E = 0
and is complex at E < 0 [13,14].

III. n + 16O SYSTEM

In this section, we consider the n + 16O system in the
Jπ = 1/2+ state, since only for this state data on the phase-
shift analysis are available in the literature. By continuing
these data to a point corresponding to the bound state energy
E = −ε1 we determine the ANC C0 for the excited state of
the nucleus 17O(1/2+; 0.8707 MeV) in the n + 16O (ground
state) channel. Various continuation methods are compared:
the continuation of the ERF K0(E ) and the continuation of
the functions F0(E ) and G0(E ) introduced in Sec. II. Note
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TABLE I. ANC obtained by approximating ERF K0(E ) for the
n + 16O, Jπ = 1/2+ state using a polynomial of degree N .

N C0, fm−1/2 χ 2

1 – 0.360438 × 10−3

2 2.06155 0.204316 × 10−5

3 5.33880 0.104794 × 10−7

4 2.73289 0.382649 × 10−10

5 3.08486 0.916381 × 10−13

6 2.74633 0.221163 × 10−15

7 2.88457 0.811685 × 10−18

8 2.81882 0.130191 × 10−19

9 2.84815 0.143192 × 10−20

10 2.83505 0.666668 × 10−20

11 – 0.153103 × 10−15

Exact 2.83896

that the determination of the ANC for the mirror nucleus 17F
in the p + 16O channel by extrapolating the elastic-scattering
data was carried out in Ref. [15].

The following mass values are used in the calculations:
m17O = 15830.501 MeV, m16O = 14895.079 MeV, and mn =
939.565 MeV.

A. Theoretical n + 16O phase shifts

In this subsection, theoretical phase shifts δ0 calculated
for the square-well potential from Ref. [17] are used to
compare different ways of continuing the scattering data to
the negative-energy region. The parameters of the potential
are: V0 = 35.14 MeV, R = 4.21 fm. This potential leads to
two bound s states, the lower of which is forbidden. The upper
(allowed) state corresponds to the values of the binding energy
ε1 = 3.59515 MeV and ANC C0 = 2.83896 fm−1/2. Note that
a more accurate experimental value of the binding energy is
ε1 = 3.27227 MeV.

This paper uses a more traditional deviation estimate based
on the method of least squares [18],

χ2 = 1

Np − Nf

Np∑
i=1

[
F (Ei ) − f (Ei )

εi

]2

, (17)

where Np is the number of points, and Nf is the number of
parameters of the approximating function, εi is the error of
the approximated function. Equation (17) takes into account
the number of degrees of freedom and has several advantages
over the definition used in the previous work [15]. This paper
uses the approximation of continued functions by polynomials
in energy E . For a polynomial of degree N, Np − Nf = Np −
N − 1.

For theoretical phase shifts, the errors of the approximated
functions are assumed to be equal to each other (for simplicity,
εi = 1 for all i). We start with the continuation of the ERF
K0(E ). While continuing K0(E ) in all calculations in this
work, a point corresponding to the energy of a bound state
E = −ε is added to points where phase shifts are known.

The results of the continuation are presented in Table I.
As one can see, for large degrees of the approximating
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FIG. 1. Function G0(E ) for n + 16O, Jπ = 1/2+. Solid red line
represents the results obtained from the theoretical phase shifts;
long-dashed blue line, the first-order polynomial; short-dashed black
line, the second-order polynomial; dotted pink line, the third-order
polynomial; dash-dotted yellow line, the fourth-order polynomial;
dash-double-dotted green line, the fifth-order polynomial. Starting
from the third-order polynomial, the results are indistinguishable
from the solid red line.

polynomial, a breakdown occurs due to the excess of ac-
curacy, and the approximation becomes very different from
the approximated function. It can be seen that the visible
breakdown occurs at N = 11. The best ANC value according
to the χ2 criterion corresponds to N = 9 and is equal to
C0 = 2.84815 fm−1/2, that is, the deviation from the exact
value is about 0.3%. Dashes in the tables indicate the absence
of a bound state with the correct theoretical energy.

We now consider the continuation of the function G0(E )
introduced in Eq. (14). The results of the continuation are
presented in Fig. 1 and in Table II. The best result is achieved
again with N = 9. As we can see the ANC at N = 9 repro-
duces the exact ANC to six significant digits.

Finally, we consider the continuation of the function F0(E )
introduced in Eq. (7). The results of the extrapolation are

TABLE II. ANC obtained by approximating function G0(E ) for
the n + 16O, Jπ = 1/2+ state using a polynomial of degree N .

N C0, fm−1/2 χ 2

1 2.50251 0.278856 × 10−4

2 2.79892 0.204894 × 10−7

3 2.84871 0.255913 × 10−11

4 2.84452 0.285314 × 10−13

5 2.84042 0.270672 × 10−16

6 2.83926 0.197367 × 10−19

7 2.83902 0.743249 × 10−23

8 2.83897 0.217671 × 10−26

9 2.83896 0.548333 × 10−28

10 2.83897 0.668000 × 10−28

Exact 2.83896
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TABLE III. ANC obtained by approximating function F0(E ) for
the n + 16O, Jπ = 1/2+ state using a polynomial of degree N .

N C0, fm−1/2 χ 2

1 – 0.652168 × 10−2

2 1.73852 0.826223 × 10−4

3 – 0.542466 × 10−6

4 2.22777 0.205841 × 10−8

5 3.48689 0.695829 × 10−11

6 2.61596 0.333772 × 10−13

7 2.98402 0.989157 × 10−16

8 2.77309 0.250929 × 10−18

9 2.87203 0.753178 × 10−21

10 2.82183 0.293600 × 10−23

11 2.84813 0.380000 × 10−26

12 2.83852 0.183333 × 10−26

13 2.85509 0.150000 × 10−26

14 2.62132 0.220000 × 10−26

Exact 2.83896

presented in Table III. The best result corresponds to N = 12
and the relative error of the ANC at N = 12 with respect to
the exact ANC is 1.5 × 10−4.

Comparison of the data from Tables I–III reveals that the
fastest convergence with increasing degree N of the approxi-
mating polynomial and the highest accuracy of the results for
ANC C0 occur in the case of approximation of the function
G0(E ). In fact, in this case a good level of convergence is
achieved already at N = 3.

B. Experimental n + 16O phase shifts

In this subsection, we use 16 values of phase shifts δ0 from
[17,19,20], which correspond to the following neutron energy
values En in the laboratory system: En = [0.20, 0.30, 0.40,
0.51, 0.60, 0.698, 0.73, 1.00, 1.21, 1.50, 1.75, 1.833, 2.15,
2.250, 2.353, 3.000] MeV.

For illustration, we also use the theoretical square-well
potential with the parameters V0 = 34.90941226 MeV, R =
4.191822098 fm. This potential is close to the potential used
in Sec. III A. For the upper (allowed) s state of 17O, it leads to
the correct experimental binding energy ε1 = 3.27227 MeV
and ANC C0 = 2.6 fm−1/2. As in Sec. III A, we compare the
results of the extrapolation of the functions K0(E ), G0(E ),
and F0(E ).

Experimental and theoretical phase shifts for the n + 16O
system in the Jπ = 1/2+ state are depicted in Fig. 2. We see
that the above potential describes the experimental data quite
well.

The results of the extrapolation of ERF K0(E ) are pre-
sented in Fig. 3. As can be seen from this figure, for large
degrees of the approximating polynomial, a breakdown oc-
curs, and the approximation becomes very different from the
approximated function. The best variant according to the χ2

criterion is N = 2 and leads to C0 = 2.20716 fm−1/2. In case
of continuing G0(E ) (see Fig. 4), the best ANC value by the
χ2 criterion is C0 = 2.67254 fm−1/2, which, as in the case of
ERF continuation, corresponds to N = 2. When extrapolating
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FIG. 2. Experimental and theoretical phase shifts for n +
16O, Jπ = 1/2+. The experimental points are from Refs. [17,19,20].
The theoretical results are obtained using the square-well potential
described in the text.

the F0(E ) function (Fig. 5), again, the N = 2 variant is best by
the χ2 criterion leading to C0 = 1.80667 fm−1/2.

We see that different ways of continuing the experimental
data lead to slightly different results for the ANC C0. This
may be due to the low accuracy of the phase shift analysis
used. The mean value of C0, corresponding to the above three
values, is C0 = 2.23 ± 0.30 fm−1/2.
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FIG. 3. ERF for n + 16O, Jπ = 1/2+. Solid red line represents
the results obtained from theoretical phase shifts; long-dashed blue
line, the first-order polynomial; short-dashed black line, the second-
order polynomial; dotted pink line, the third-order polynomial; dash-
dotted yellow line, the fourth-order polynomial; dash-double-dotted
green line, the fifth-order polynomial. Starting from the third-order
polynomial, the results are indistinguishable. Points represent the
results obtained from the experimental phase shifts.
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FIG. 4. The same as described in the caption of Fig. 3 but for
function G0(E ).

IV. n + 12C SYSTEM

This section discusses the n + 12C system in the 1/2+ state
for which phase-shift data are available. By continuing the
scattering data to a point corresponding to the experimental
energy of the bound state E = −ε2 = 1.856557 MeV, the
ANC C0 is determined for the excited state of the nucleus
13C(1/2+; 3.089 MeV) in the channel n + 12C (ground state).
As in Sec. III, the results obtained by extrapolating func-
tions K0(E ), F0(E ), and G0(E ) are compared. The follow-
ing mass values are used: m13C = 12109.481 MeV, m12C =
11174.862 MeV, and mn = 939.565 MeV.

A. Theoretical phase shifts n + 12C

In this subsection, the theoretical phase shifts δ0, calcu-
lated for the square-well potential with the parameters V0 =
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FIG. 5. The same as described in the caption of Fig. 3 but for
function F0(E ).

TABLE IV. ANC obtained by approximating ERF K0(E ) for the
n + 12C, Jπ = 1/2+ state using a polynomial of degree N .

N C0, fm−1/2 χ 2

1 2.28097 0.867724 × 10−5

2 1.52384 0.448646 × 10−8

3 1.60788 0.434737 × 10−10

4 1.11353 0.411513 × 10−8

5 0.157698 0.431582 × 10−6

Exact 1.60

35.6753320221032 MeV and R = 4.02818653449678 fm, are
used to compare the effectiveness of various continuation
methods. This potential leads to two bound s states of 13C,
the lower of which is forbidden. The upper (allowed) state
corresponds to the experimental value of the binding energy
ε2 = 1.856557 MeV and ANC C0 = 1.60 fm−1/2.

For theoretical phase-shift values, the errors of the approx-
imated functions are assumed to be equal to each other (for
simplicity, εi = 1 for all i).

The results of the continuation of the functions
K0(E ), G0(E ), and F0(E ) are presented in Tables IV–VI.
For all continuation versions, the best ANC values C0 by
the χ2 criterion are close to the exact result. Comparing
Tables IV–VI we conclude that, as in the case of the n + 16O
system, the fastest convergence with increasing degree N of
the approximating polynomial and the highest accuracy of the
results for ANC C0 takes place in the case of extrapolating
the function G0(E ). The results of the continuation of the
function G0(E ) are shown in Fig. 6.

B. Experimental n + 12C phase shifts

We use 16 neutron-energy points (laboratory system) from
Ref. [21]: En = [0.050, 0.100, 0.157, 0.207, 0.257, 0.307,
0.357, 0.407, 0.457, 0.507, 0.530, 0.630, 0.730, 0.830, 0.930,
1.040] MeV.

Phase-shift errors are assumed to be ±1◦. Note that in-
creasing errors to ±2◦ only leads to negligible changes in the
results.

TABLE V. ANC obtained by approximating function G0(E ) for
the n + 12C, Jπ = 1/2+ state using a polynomial of degree N .

N C0, fm−1/2 χ 2

1 1.56036 0.125628 × 10−6

2 1.60147 0.131839 × 10−12

3 1.60109 0.816387 × 10−14

4 1.60018 0.243129 × 10−17

5 1.60002 0.330466 × 10−21

6 1.60000 0.263367 × 10−25

7 1.60000 0.513375 × 10−27

8 1.60000 0.132814 × 10−26

9 1.60002 0.213933 × 10−26

10 1.59955 0.286980 × 10−26

Exact 1.60
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TABLE VI. ANC obtained by approximating function F0(E ) for
the n + 12C, Jπ = 1/2+ state using a polynomial of degree N .

N C0, fm−1/2 χ 2

1 1.83289 0.708967 × 10−4

2 1.54553 0.700486 × 10−7

3 1.61637 0.616769 × 10−10

4 1.59590 0.386920 × 10−13

5 1.60102 0.238136 × 10−16

6 1.59976 0.111939 × 10−19

7 1.60006 0.548256 × 10−23

8 1.59999 0.119700 × 10−24

9 1.59990 0.213267 × 10−24

10 1.60057 0.298720 × 10−24

Exact 1.60

Experimental and theoretical phase shifts for the n + 12C
system in the Jπ = 1/2+ state are depicted in Fig. 7. Theoret-
ical phase shifts are calculated using the potential described in
Sec. IV A. As in the case of the n + 16O system, there is good
agreement between theory and experiment.

The results of the continuing the ERF K0(E ) are pre-
sented in Fig. 8. The best ANC value by the χ2 criterion
corresponds to N = 1 and is equal to C0 = 2.14638 fm−1/2.
With the continuation of the function G0(E ) (Fig. 9), the best
ANC value is C0 = 1.87563 fm−1/2, corresponding to N = 2.
Extrapolating the function F0(E ) (Fig. 10) leads to the best
value of C0 = 2.19107 fm−1/2, corresponding to N = 1. The
mean value of C0, corresponding to the above three values, is
C0 = 2.07 ± 0.13 fm−1/2.
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FIG. 6. Function G0(E ) for n + 12C, Jπ = 1/2+. Solid red line
represents the results obtained from theoretical phase shifts; long-
dashed blue line, the first-order polynomial; short-dashed black
line, the second-order polynomial; dotted pink line, the third-order
polynomial; dash-dotted yellow line, the fourth-order polynomial;
dash-double-dotted green line, the fifth-order polynomial. Starting
from the second-order polynomial, the results are indistinguishable.

 0

20

40

60

80

100

120

140

160

180

0.0 0.5 1.0 1.5 2.0

δ 0
(E

) 
(d

eg
re

es
)

Ec.m. (MeV)

FIG. 7. Experimental and theoretical phase shifts for n + 12C,
Jπ = 1/2+. The experimental points are from Ref. [21]. The theo-
retical results are obtained using the square-well potential described
in the text.

V. CONNECTION BETWEEN MIRROR NEUTRON
AND PROTON ANCS

In this section we discuss the possibility of obtaining the
ANC for charged particles based on the ANC for uncharged
particles (and vice versa). The ANC is the amplitude of the
tail of the overlap function. While for neutrons the spherical
Hankel function determines the radial shape of the tail, for
protons the radial shape of the tail is determined by the
Whittaker function. Nevertheless, the ratio of the proton and
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FIG. 8. ERF for n + 12C, Jπ = 1/2+. Solid red line represents
the results obtained from theoretical phase shifts; long-dashed blue
line, the first-order polynomial; short-dashed black line, the second-
order polynomial; dotted pink line, the third-order polynomial; dash-
dotted yellow line, the fourth-order polynomial; dash-double-dotted
green line, the fifth-order polynomial. Points represent the results
obtained from the experimental phase shifts.
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FIG. 9. The same as described in the caption of Fig. 8 but for
function G0(E ).

neutron ANCs of mirror states is practically model indepen-
dent. The calculated proton and neutron ANCs themselves
depend strongly on the choice of the nucleon-nucleon (NN)
force but their ratios for mirror pairs should not depend on
the choice of the NN force. This observation is based thus far
entirely on the calculations using detailed models of nuclear
structure. It follows naturally as a consequence of the charge
symmetry of nuclear forces. Mirror nuclei have the same
quantum numbers of mirror states.

The ratio of the proton and neutron ANCs is given by [22]

Cp

Cn
=

∣∣∣∣∣
W

[
rpA IB

pA(rpA), Fl (i κpA, rpA)
]∣∣

rpA=Rch

κp W
[
rnA IA+1

nA (rnA), rnA jl (i κnA rnA)
]∣∣

rnA=Rch

∣∣∣∣∣. (18)

Here, Cn ≡ C0 is the neutron ANC of the bound state A +
1 = (n A) and Cp is the proton ANC of the mirror bound
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FIG. 10. The same as described in the caption of Fig. 8 but for
function F0(E ).

state B = (p A), IA+1
nA (IB

pA) is the radial overlap function
of the bound-state wave functions of nuclei A + 1 and A
(B and A); jl (i κnA Rch) is the spherical Bessel function in
the partial wave l calculated at the imaginary momentum
i κnA, κnA is the bound-state wave number of the mirror bound
state (n A); ei σC

l Fl (i κpA, rpA) is the p − A Coulomb regular
solution in the partial wave l calculated at the imaginary
momentum i κpA, κpA is the bound-state wave number of the
bound state (pA), σC

l is the partial Coulomb scattering phase
shift; Rch is the N − A nuclear interaction radius, which is
assumed to be the same in both mirror states; W [ f , g] is the
Wronskian of the function f and g.

The Coulomb potential varies little over the nuclear volume
and can be replaced by a constant equal to the difference
between the neutron and proton binding energies. Hence, in
the nuclear interior, which is all that matters on the right-hand
side of Eq. (18), we can use [22,23]

ei σC
lB FlB (i κpA, rpA) ≈ei σC

lB FlB (i κpA, Rch)

Rch jlB (i κnA Rch)
rpA jlB (i κnA rpA).

(19)

Taking into account that the mirror nucleon overlap func-
tions are similar in the nuclear interior we can neglect their
difference in Eq. (18). Then, in view of Eq. (19), we get the
ratio of the proton and neutron ANCs of the mirror bound
states:

Cp

Cn
≈

∣∣∣∣ ei σC
l Fl (i κpA, Rch)

κpA Rch jl (i κnA Rch)

∣∣∣∣. (20)

Thus, despite the fact that in the external region the behav-
ior of the proton and neutron overlap functions is different,
we can determine the ratio of the mirror proton and neutron
ANCs in a model-independent way calculating the ratio of
the internal scattering wave functions given by Eq. (20). From
this ratio one can determine the proton ANC if the neutron
experimental ANC is known.

Using Eq. (20) and the mean value of the neutron
ANC 2.23 ± 0.30 fm−1/2 for the 17O( 1

2
+

) state obtained in
Sec. III B we get the mirror ANC 68.0 ± 21.0 fm−1/2. Taking
into account the low accuracy of the experimental neutron
phase shifts the obtained proton ANC is in a reasonable agree-
ment with the proton ANC for 17F( 1

2
+

) of 81 ± 8.0 fm−1/2

reported in Ref. [24]. Note that if we use the neutron ANC
value of 2.67 fm−1/2 then the mirror proton ANC would be
81.9 fm−1/2, in the perfect agreement with that from Ref. [24].

We draw attention of the reader on the huge difference
between the neutron and proton ANC [22]. To understand this
difference we can rewrite Eq. (20) as

Cp

Cn
≈ R1 R2 R3, (21)

where the first factor,

R1 = 
(l + 1 + η)


(l + 1)
, (22)
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is the major Coulomb renormalization factor [22,25]. Here η

is the Coulomb parameter of the (pA) bound state. In the case
under consideration R1 = 17.4.

The second factor R2 takes into account the difference
between the neutron binding energy 3.27 MeV and the proton
binding energy 0.105 MeV. The binding energy of the neutron
analog state is larger than the corresponding proton binding
energy (the Hamiltonian of the Schrödinger equation for the
mirror proton state contains additional repulsive Coulomb
interaction potential, which decreases the proton binding en-
ergy). R2 is given by

R2 = jl (i κpA Rch)

jl (i κnA Rch)
. (23)

It can be obtained by replacing the Coulomb regular solution
ei σC

l Fl (i κpA, Rch) in Eq. (20) with κpA Rch jl (i κpA Rch) taken
at the proton bound-state wave number κpA. In the case under
consideration R2 = 0.63.

The third factor affecting the proton ANC takes into ac-
count the final Coulomb effects which are left after removing
the first two factors and is given by

R3 = F̃l (i κpA, Rch)

κpA Rch jl (i κpA Rch)
. (24)

To obtain this factor one can replace ei σC
l Fl (i κpA, Rch) in

Eq. (20) with F̃l (i κpA, Rch) = ei σC
l Fl (i κpA, Rch)/R1 and in

the denominator the neutron bound-state wave number κnA

with the proton one κpA. For the case under consideration
R3 = 2.73.

Then we can write that the Coulomb ANC is Cp = 17.4 ×
0.63 × 2.73 × Cn = 30Cn. It is important to underscore that
all these estimations do not require the knowledge of the
mirror proton and neutron bound-state wave functions. All we
need is the Coulomb regular solution and the spherical Bessel
functions.

It is worth noting that due to the additional Coulomb
interaction the proton mirror state can be a resonance. In this
case the neutron ANC allows one to determine the resonance
width of the mirror proton state. For more detailed discussion,
see Ref. [26].

VI. CONCLUSIONS

In the present paper, we proposed a new method of extrap-
olating elastic scattering data to the negative energy region
for a short-range interaction. The method is based on the
well-known and reliably established fact that the partial-wave
amplitude of elastic scattering has a pole of the first order
in energy at the point corresponding to the bound state, and
the residue at this point is expressed in terms of the square
of the ANC. The developed method, being an alternative to
the traditional ERF one, provides an independent method of
extrapolation of the elastic scattering data to the bound-state
poles to determine the neutron ANCs. Taking into account
the low accuracy of the neutron elastic scattering phase shifts,
application of two independent extrapolation techniques will
provide more reliable information about the neutron ANCs.
Moreover, we demonstrate that using the mirror symmetry
one can determine from the neutron ANC the mirror proton

ANC. This connection is especially important for heavier
nuclei where the measurements of the low-energy Coulomb-
modified nuclear phase shifts to determine the proton ANC
is practically impossible. We demonstrated here how one
can determine the proton ANC for 17F( 1

2
+

) using the mirror

neutron ANCs 17O( 1
2

+
) determined by three different extrapo-

lation techniques. Moreover, if the mirror proton ANC is well
established, one can determine the mirror neutron ANC. It
will allow one to determine which extrapolation method has
an advantage for a case under consideration. For example,
for the case considered in this paper, the method based on
extrapolation of function F0 gave too low neutron ANC.
However, using the neutron ANC value based on extrapolation
of function G0, the results are in the perfect agreement with
the mirror proton ANC from Ref. [24].

Using the available phase-shift data, two versions of the
new method, as well as the ERF method, have been applied
to determine the ANCs for the excited s states of 17O and 13C
nuclei in the n + 16O and n + 12C channels, respectively. Due
to the low accuracy of the phase-shift analysis used different
ways of continuing the experimental data lead to slightly
different results for the ANCs. The mean values of the ANCs
obtained with all different methods used in this paper are
2.23 ± 0.30 fm−1/2 for 17O and 2.07 ± 0.13 fm−1/2 for 13C.
For comparison, the ANC values obtained from the analysis
of data on radiative neutron capture are 3.01 fm−1/2 for 17O
and 1.61 fm−1/2 for 13C [27]. These results are based on the
assumption of the peripheral character of the s-wave radiative
capture which is not justified. Therefore, the accuracy of these
ANC values is difficult to estimate. However, the method
proposed in this work is equally suitable for extrapolation of
elastic scattering data for any l .

We emphasize that though the potential of a rectangular
well form supporting two bound states is used in our work,
the potential is not used to obtain any information about
the real values of the ANC. For this purpose, we use the
analytical continuation of experimental phase shifts. The po-
tential model is used for methodological purposes since it
allows one to accurately calculate the values of the ANC
and phase shifts. Knowing these values, we establish which
of the approximate methods of continuation of the scattering
data to the negative-energy region allows us to better repro-
duce the exact theoretical values of the ANC. To achieve
this goal, the number of bound states in the potential under
consideration is irrelevant. We used the potential with two
bound states simply because such a model better describes
the properties of the actual systems under consideration and
is commonly used in the literature. Although in principle,
for our methodological purposes, one could use a potential
with one bound state. The result does not depend on this
choice.
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