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Nuclear matter properties at finite temperatures from effective interactions
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We study if commonly used nucleon-nucleon effective interactions, obtained from fitting the properties
of cold nuclear matter and of finite nuclei, can properly describe the hot dense nuclear matter produced in
intermediate-energy heavy-ion collisions. We use two representative effective interactions, i.e., an improved
isospin- and momentum-dependent interaction with its isovector part calibrated by the results from the ab
initio nonperturbative self-consistent Green’s function (SCGF) approach with chiral forces, and a Skyme-type
interaction fitted to the equation of state of cold nuclear matter from chiral effective many-body perturbation
theory and the binding energy of finite nuclei. In the mean-field approximation, we evaluate the equation of
state and the single-nucleon potential for nuclear matter at finite temperatures and compare them to those
from the SCGF approach. We find that the improved isospin- and momentum-dependent interaction reproduces
reasonably well the SCGF results due to its weaker momentum dependence of the mean-field potential than
in the Skyrme-type interaction. Our study thus indicates that effective interactions with the correct momentum
dependence of the mean-filed potential can properly describe the properties of hot dense nuclear matter and are
thus suitable for use in transport models to study heavy-ion collisions at intermediate energies.
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I. INTRODUCTION

One of the main motivations for pursuing experiments on
heavy-ion collisions at intermediate energies is to study the
equation of state (EOS) of nuclear matter. Its knowledge is
essential for understanding the properties of systems ranging
from finite nuclei [1,2] to neutron stars [3,4] as well as the
gravitational-wave signal from neutron star mergers [5–7].
Because of the complexities of heavy-ion collision dynamics,
transport models have been indispensable tools to extract the
information on the nuclear EOS, particularly at high densities
that exist during the early stage of the collisions, from various
observables measured in experiments [8–11]. In transport
models, which are based on either the Boltzmann-Uehling-
Uhlenbeck equation [12] or the quantum molecular dynamics
[13], the time evolution of nucleon phase-space distribution
functions in a heavy-ion collision is determined by both the
mean-field potential acting on nucleons and their scatterings.
The nucleon mean-field potential is usually obtained from
nucleon-nucleon (NN) effective interactions that are con-
structed from fitting the properties of cold nuclear matter and
of finite nuclei. Thus, the mean-field potential does not include
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explicitly the temperature effect on the NN effective interac-
tions in the nuclear medium, which is needed to describe the
hot nuclear matter produced in heavy-ion collisions. On the
other hand, the mean-field potential extracted from comparing
results of transport models with the experimental data is at
finite temperatures, so it cannot be assumed a priori to be
related to the nuclear EOS at zero temperature based on the
quasi-particle model and be used to safely constrain the cold
nuclear matter properties.

The above assumption can be justified if the mean-field
potential obtained from NN effective interactions and used
in transport models can also fit the finite-temperature single-
nucleon potential obtained from microscopic calculations,
such as that based on the self-consistent Green’s function
(SCGF) approach [14] or the many-body perturbation theory
[15,16] employing chiral nuclear forces [17,18]. In the present
study, we choose NN effective interactions that correspond
to two energy-density functionals based on the Hartree-Fock
calculations. One is obtained from an improved isospin- and
momentum-dependent interaction (ImMDI) model [19,20],
which is constructed from fitting cold nuclear matter prop-
erties at saturation density and the empirical nucleon opti-
cal potential. The other is the Skyrme-Hartree-Fock (SHF)
model [2,21,22] using the Skχm∗ force, which is constructed
by fitting the properties of cold nuclear matter from chiral
effective many-body perturbation theory (χEMBPT) and the
binding energies of finite nuclei [23]. The properties of cold
neutron matter from the SCGF approach were further used
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to constrain the isovector part of the ImMDI model, and the
new parametrization of this effective interaction is dubbed as
ImMDI-GF. The ImMDI model and the Skχm∗ interaction,
which have been used in transport models to study heavy-ion
collisions at intermediate energies [24,25], are then evalu-
ated in the nonrelativistic mean-field approximation to obtain
the properties of symmetric nuclear matter (SNM) and pure
neutron matter (PNM) at finite temperatures. These results
are compared with those from the SCGF approach [14,26]
and the χEMBPT approach [15,16] within their theoretical
uncertainties, which are mainly due to the variation of the
high-momentum cutoff in nuclear interactions and the three-
body forces included in these microscopic studies.

The above comparison shows that the effective interaction
of proper momentum dependence in its mean-field potential
is able to reproduce reasonably well the properties of nuclear
matter at finite temperatures from microscopic calculations
using chiral forces. In the non-relativistic framework as dis-
cussed in the present study, the momentum dependence of the
mean-field potential, or the related nucleon effective k mass,
is from the Fock contribution of the nonlocal effective inter-
action. This is different from the relativistic approach, where
the momentum dependence of the Schördinger-equivalent
potential originates from the nucleon Dirac mass through its
coupling to a scalar meson. The nonlocality of the relativistic
interaction in time may also lead to the energy dependence
of the mean-field potential, and can be characterized by the
so-called nucleon effective E mass. For detailed discussions
on the nucleon effective mass as well as the momentum
dependence of the nuclear mean-field potential, we refer the
reader to Ref. [27].

The remaining part of the paper is organized as follows.
Section II gives the details on the theoretical framework for
the ImMDI model and the SHF model as well as the SCGF
approach. In Sec. III, we compare and discuss the results
for the occupation probabilities, the entropies and the heat
capacities, the EOSs, and the mean-field potentials for SNM
and PNM obtained from these different approaches. Finally, a
summary is given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Effective interactions in Hartree-Fock calculations

The effective interaction between two nucleons at coordi-
nates �r1 and �r2 in the ImMDI model includes a zero-range
density-dependent term and a Yukawa-type finite-range term
[28], i.e.,

vImMDI(�r1, �r2) = 1

6
t3(1 + x3Pσ )ρα

( �r1 + �r2

2

)
δ(�r1 − �r2)

+ (W + BPσ − HPτ − MPσ Pτ )
e−μ|�r1−�r2 |
|�r1 − �r2| ,

(1)

where ρ is the nucleon number density, Pσ and Pτ are the spin
and isospin exchange operators, respectively, and t3, x3, α, W ,
B, H , M, and μ are parameters.

The standard Skyrme interaction [21] without the spin-
orbit coupling has the form of

vSHF(�r1, �r2) = t0(1 + x0Pσ )δ(�r1 − �r2)

+ 1

2
t1(1 + x1Pσ )[ �k′2δ(�r1 − �r2) + δ(�r1 − �r2)�k2]

+ t2(1 + x2Pσ ) �k′ · δ(�r1 − �r2)�k

+ 1

6
t3(1 + x3Pσ )ρα

( �r1 + �r2

2

)
δ(�r1 − �r2), (2)

where �k = 1
2i (∇1 − ∇2) is the relative momentum operator

acting on the right-hand side, �k′ is the complex conjugate of �k
acting on the left-hand side, and t0, x0, t1, x1, t2, x2, t3, x3, and
α are parameters.

In the Hartree-Fock approach, the total potential energy of
nuclear matter is calculated according to

Ep = 1

2

∑
i, j

〈i j|v(1 − PrPσ Pτ )|i j〉, (3)

where Pr is the space exchange operator, |i( j) > is the
quantum state of i( j)th nucleon, and v is the NN effective
interaction.

The potential energy density from the ImMDI model is
then given by [20]

VImMDI = Auρnρp

ρ0
+ Al

2ρ0

(
ρ2

n + ρ2
p

) + B

σ + 1

ρσ+1

ρσ
0

× (1 − xδ2) + 1

ρ0

∑
q,q′

Cq,q′

×
∫∫

d3 pd3 p′ fq(�r, �p) fq′ (�r, �p′)
1 + ( �p − �p′)2/�2

, (4)

where ρn and ρp are the neutron and proton number den-
sities, respectively, ρ0 = 0.16 fm−3 is a constant density,
δ = (ρn − ρp)/ρ is the isospin asymmetry of nuclear matter
with ρ = ρn + ρp, and fq(�r, �p) is the nucleon phase-space
distribution function obtained from the Wigner transformation
of its density matrix with q = 1 for neutrons and −1 for
protons. For the detailed derivation of the above expression,
we refer the reader to Ref. [28], where the relation between
values of the parameter sets (t3, x3, α,W, B, H, M, α) and
(Au, Al , B,Cq,−q,Cq,q,�, σ, x) can be found. In Ref. [20],
an optimized parameter set (A0, B,Cl0,Cu0,�, σ, x, y) was
introduced by using the following relations:

Al (x, y) = A0 + y + x
2B

σ + 1
, (5)

Au(x, y) = A0 − y − x
2B

σ + 1
, (6)

Cq,q(y) = Cl0 − 2(y − 2z)
p2

f 0

�2 ln
[(

4p2
f 0 + �2

)
/�2

] , (7)

Cq,−q(y) = Cu0 + 2(y − 2z)
p2

f 0

�2 ln
[(

4p2
f 0 + �2

)
/�2

] , (8)
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where p f 0 = h̄(3π2ρ0/2)1/3 is the nucleon Fermi momentum
in SNM at ρ0. The number of independent parameters in the
new set is the same as before. The parameters x, y, and z then
characterize the slope parameter of the symmetry energy, the
momentum dependence of the symmetry potential, and the
symmetry energy at ρ0, respectively.

The potential energy density in uniform nuclear matter for
the SHF model is given by

VSHF = t0
[
(2 + x0)ρ2 − (2x0 + 1)

(
ρ2

p + ρ2
n

)]
/4

+ [t1(2 + x1) + t2(2 + x2)]τρ/8

+ [t2(2x2 + 1) − t1(2x1 + 1)](τnρn + τpρp)/8

+ t3ρ
σ
[
(2 + x3)ρ2 − (2x3 + 1)

(
ρ2

p + ρ2
n

)]
/24, (9)

where τ = ∑
q τq is the total kinetic density with

τq = ∫
p2 fq(�r, �p)d3 p/(2π )3 being that for nucleons with

isospin q.
Through the variational principle, the mean-field potential

for a nucleon with momentum �p and isospin q in the asymmet-
ric nuclear matter of isospin asymmetry δ and nucleon number
density ρ from the ImMDI model can be expressed as [20]

UImMDI = Au
ρ−q

ρ0
+ Al

ρq

ρ0

+ B

(
ρ

ρ0

)σ

(1 − xδ2) − 4qx
B

σ + 1

ρσ−1

ρσ
0

δρ−q

+ 2Cq,q

ρ0

∫
d3 p′ fq(�r, �p′)

1 + ( �p − �p′)2/�2

+ 2Cq,−q

ρ0

∫
d3 p′ f−q(�r, �p′)

1 + ( �p − �p′)2/�2
. (10)

Similarly, the mean-field potential in the standard SHF
model can be expressed as

USHF = p2

2m∗
q

− p2

2m
+ t0

(
1 + x0

2

)
ρ − t0

(
1

2
+ x0

)
ρq

+ 1

4

[
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)]
τ

− 1

4

[
t1

(
1

2
+ x1

)
− t2

(
1

2
+ x2

)]
τq

+ 1

12
t3ρ

α
[
(2 + α)

(
1 + x3

2

)
ρ − (1 + 2x3)ρq

− α

(
1

2
+ x3

)
ρ2

n + ρ2
p

ρ

]
, (11)

where the effective mass m∗
q is given by

1

2m∗
q

= 1

2m
+ 1

4

[
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)]
ρ

− 1

4

[
t1

(
1

2
+ x1

)
− t2

(
1

2
+ x2

)]
ρq. (12)

In the above, m is the bare nucleon mass, which is taken to be
the same for neutron and proton.

It is well known that the Fock exchange contribution from
the finite-range term in Eq. (1) in the ImMDI model leads to a

momentum dependence in the mean-field potential [Eq. (10)],
with its form given by the Fourier transform of the Yukawa-
type finite-range interaction. Historically, such a momentum
dependence was developed from a momentum-dependent
Yukawa-type interaction [12,29], in order to reproduce the
measured nucleon transverse flow in heavy-ion collisions
with a reasonable nuclear matter incompressibility. For the
Skyrme interaction, it only contains the lowest-order nonlocal
term and can be considered as a low-momentum expansion
of the finite-range interaction. Consequently, the mean-field
potential from the SHF model with a quadratic momentum
dependence [Eq. (11)] is valid only at low momenta, and it
becomes less valid with increasing nucleon momentum and
also in nuclear medium of higher density or larger Fermi
momentum.

In a uniform and thermalized nuclear medium, the nucleon
phase-space distribution function fq(�r, �p) has the Fermi-
Dirac form, i.e., fq(�r, �p) = 2/{exp[(p2/2m + Uq − μq)/T ] +
1}, where T , μq, and Uq are, respectively, the temperature,
the chemical potential, and the mean-field potential. Since the
mean-field potential Uq from the ImMDI model depends on
the phase-space distribution function fq(�r, �p), calculations of
nuclear matter properties at finite temperatures [30] need to
be carried out self-consistently using the iteration method.
The calculation in the SHF model for nuclear matter at finite
temperatures is simpler, since the effective mass of a nucleon
depends only on density and not on its momentum.

The total energy per nucleon E/A, which consists of both
the potential and kinetic energy contributions, is given by

E/A = Ep + Ek = V

ρ
+

∑
q

τq

2mρ
. (13)

B. Green’s function approach using chiral forces

The SCGF method is a nonperturbative many-body ap-
proach based on the calculation of the dressed nucleon prop-
agator, i.e., its Green’s function G [31]. The single-particle
propagator provides access to microscopic properties of the
many-body system, such as the nucleon spectral function or
momentum distribution, and also to bulk thermodynamical
quantities, such as internal energy, entropy, pressure, etc.
Within this approach, the dressed propagator G is obtained
via the iterative solution of the Dyson’s equation

G(p, ω) = G0(p, ω) + G0(p, ω)��(p, ω)G(p, ω) , (14)

where a nonperturbative self-energy ��(p, ω) is employed,
with p and ω being the single-particle momentum and en-
ergy. The self-energy is obtained within the so-called ladder
approximation, where an infinite resummation of particle-
particle and hole-hole intermediate states is considered. Hence
the method is nonperturbative and self-consistent, providing a
fully correlated description of the many-body system beyond
the mean-field level [32]. In recent years the SCGF approach
has been extended to consistently include two- and three-body
forces [33]. Within this improved approach, the energy per
nucleon can be obtained via an extended energy sum rule that
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reads [33]

E

A
= ν

ρ

∫
dp

(2π )3

∫
dω

2π

1

2

(
p2

2m
+ ω

)
A(p, ω) f (ω)− 1

2
〈Ŵ 〉 .

(15)

In the above, ν = 2 for PNM and 4 for SNM is the nucleon
spin-isospin degeneracy, ρ is again the total nucleon number
density, A(p, ω) is the spectral function, f (ω) is the Fermi-
Dirac distribution; and 〈Ŵ 〉 is the expectation value of the
three-body operator. The spectral function A(p, ω), which
enters the calculation of the energy sum rule, is directly
connected with the single-particle propagator G, being pro-
portional to its imaginary part [31]. From the spectral function
one has direct access to the nucleon momentum distribution

n(p) =
∫

dω

2π
A(p, ω) f (ω). (16)

One can then evaluate the kinetic energy contribution Ek to
the energy per nucleon according to

Ek = ν

ρ

∫
dp

(2π )3

p2

2m
n(p), (17)

as well as the potential energy contribution Ep via subtraction
of Eq. (17) from Eq. (15). For the nucleon energy spectrum, it
is obtained by solving consistently the equation

ε(p) = p2

2m
+ Re��[p, ε(p)]. (18)

The second term on the right-hand side only selects the on-
shell part of the real self-energy, and it is what corresponds to
a mean-field potential. For further details on the calculation of
the finite-temperature properties of infinite matter within the
SCGF method, we refer the reader to Ref. [32].

The extension of the SCGF method to include three-body
forces paved the way to the possibility of using consistently
nuclear interactions derived from the chiral effective field
theory. These interactions, being derived from a low-energy
effective theory of QCD, have a cutoff in momentum usually
around ∼500 MeV/c. The high-energy physics, which is
integrated out, is then encoded in low-energy constants, which
need to be fitted to finite nuclei properties [17,18]. Studies
of the properties of infinite matter at both zero and finite
temperatures have been presented within the SCGF method
for several different chiral interactions [14,26]. In this work
we make use of three different chiral interactions. These
have been chosen because they predict reasonably well the
empirical saturation properties of symmetric nuclear matter
[34]. We are then able to provide an error band on our
theoretical results based on the nuclear interaction. Two of
these interactions, i.e., 2.0/2.0(EM) and 2.0/2.5(EM), have
been obtained by fitting the two-body part to nucleon-nucleon
phase shifts and deuteron properties, while the three-body
part has been constructed to reproduce the binding energy of
tritons and the radius of alpha particles. The two-body part
has been further softened with the similarity renormalization
group technique to improve the convergency of many-body
calculations, as detailed in Ref. [35]. The third interaction is
called NNLOsat with the whole two- and three-body parts

fitted consistently, and it can reproduce reasonably well the
properties of light nuclei as well as those of medium-mass
nuclei, such as the radii of carbon and oxygen isotopes
[36].

III. RESULTS AND DISCUSSIONS

In the following, we compare some properties of infinite
nuclear matter obtained from the two effective interactions
ImMDI-GF and Skχm∗ using the Hartree-Fock approach to
those from the chiral forces based on microscopic SCGF
calculations, whose uncertainties mainly come from those in
the three-body forces and the high-momentum cutoffs. As
stated in the Introduction, the ImMDI model is fitted to the
empirical properties of cold SNM, which are approximately
reproduced by the SCGF approach using the chiral forces.
As an improvement of the ImMDI model, we adjust the
parameters of its isovector part, i.e., x, y, and z, to reproduce
the results from the SCGF approach for the properties of
PNM at zero temperature, and this new parameter set is
dubbed as ImMDI-GF. For the SHF energy density func-
tional, the Skχm∗ interaction used in the present study is
constructed from fitting the EOS and nucleon effective masses
of cold nuclear matter from the χEMBPT and the binding
energies of finite nuclei [23]. Details on the values of the
parameters in ImMDI-GF and Skχm∗ interactions as well
as some of their predicted physical quantities are listed in
Table I.

TABLE I. Values of parameters and some physical quantities for
ImMDI-GF and Skχm∗, with ρsat the saturation density, E0(ρsat ) the
energy per nucleon at saturation density, K0 the incompressibility,
U ∞

0 the mean-field potential for SNM at saturation density and
infinitely large nucleon momentum, m∗

s and m∗
v the isoscalar and the

isovector effective mass, Esym(ρsat ) and L the value and the slope
parameter of the symmetry energy at saturation density, and GS and
GV the isoscalar and the isovector density gradient coefficient.

ImMDI-GF Skχm∗

A0 (MeV) −66.963 t0 (MeVfm3) −2260.7
B (MeV) 141.963 x0 0.327488
Cu0 (MeV) −99.70 t1 (MeVfm5) 433.189
Cl0 (MeV) −60.49 x1 −1.088968
σ 1.2652 t2 (MeVfm5) 274.553
� (pf 0) 2.424 x2 −1.822404
x 0.5 t3 (MeVfm3+3α) 12984.4
y (MeV) −60 x3 0.442900
z (MeV) −2.5 α 0.198029
ρsat (fm−3) 0.16 ρsat (fm−3) 0.1651
E0(ρsat ) (MeV) −16 E0(ρsat ) (MeV) −16.07
K0 (MeV) 230 K0 (MeV) 230.4
U ∞

0 (MeV) 75 U ∞
0 (MeV) N/A

m∗
s (m) 0.70 m∗

s (m) 0.750
Esym(ρsat ) (MeV) 30 Esym(ρsat ) (MeV) 30.94
L (MeV) 40 L (MeV) 45.6
m∗

v (m) 0.59 m∗
v (m) 0.694

GS (MeVfm5) N/A GS (MeVfm5) 141.5
GV (MeVfm5) N/A GV (MeVfm5) −70.5
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FIG. 1. Nucleon occupation probability at ρ0 = 0.16 fm−3 as a
function of nucleon momentum in symmetric nuclear matter (left)
and pure neutron matter (right) at various temperatures from the
ImMDI-GF, Skχm∗, and SCGF calculations.

A. Nucleon occupation probability

We first show in Fig. 1 the nucleon occupation probability
n(p) at ρ0 = 0.16 fm−3 in both SNM and PNM at temper-
atures of 10, 30, and 50 MeV. For results from ImMDI-
GF and Skχm∗ denoted, respectively, by solid and dashed
lines, the occupation probability is calculated according to the
Fermi-Dirac distribution, i.e., n(p) = 1/{exp[(p2/2m + Uq −
μq)/T ] + 1}. For results from the SCGF calculations, they
are obtained from Eq. (16), which depends on the off-shell
nucleon spectral function, and they are represented by shaded
bands due to the uncertainties in this approach of using the
three chiral forces 2.0/2.0(EM), 2.0/2.5(EM), and NNLOsat.
It is worthy to point out that while the occupation probabilities
at zero temperature are simply �(p f − p) in the on-shell
mean-field models as in the cases of ImMDI-GF and Skχm∗,
the sharp discontinuity at the Fermi momentum is smoothed in
the off-shell SCGF calculations by correlations in the nuclear
many-body system [37].

For SNM, the occupation probabilities obtained from
ImMDI-GF and Skχm∗ differ from those from the SCGF
approach at all temperatures, with the latter more depleted
at low momenta due to the inclusion of correlation effects.
For PNM, the occupation probabilities from ImMDI-GF and
Skχm∗ are similar at low temperatures but start to deviate
with increasing temperature. In this case, the ImMDI-GF
results are closer to the SCGF ones while those from Skχm∗
remain higher at low momenta as temperature increases. This
is likely due to the different momentum dependence of the
mean-field potential in these approaches (see later Fig. 7). A
closer comparison to results from the SCGF approach shows
that the nucleon occupation probability from Skχm∗ is always
larger at lower momenta and smaller at higher momenta. This
is caused by the quadratic momentum dependence in its mean-
field potential, which is stronger than that from the SCGF
approach. This effect is already present in SNM but becomes
even stronger in PNM with a larger Fermi momentum, where

FIG. 2. Entropy per nucleon (upper) and heat capacity at con-
stant volume (lower) at ρ0 = 0.16 fm−3 as a function of the tem-
perature in symmetric nuclear matter (left) and pure neutron matter
(right) from the ImMDI-GF, Skχm∗, and SCGF calculations.

the nucleon occupation probability is more affected by the
momentum dependence of the nucleon mean-field potential.
For the occupation probability from ImMDI-GF, it is similar
to that from Skχm∗ for SNM but closer to the SCGF results
for PNM, since the correlation effects become less important
in PNM. These similarities can be understood from the behav-
iors of the single-particle potentials in Figs. 6 and 7 given in
Sec. III E.

B. Entropy and heat capacity

The nucleon occupation probability n(p) discussed in the
previous subsection allows us to calculate the entropy per
nucleon S according to

S = − ν

ρ

∫
d3 p

(2π )3
[n ln n + (1 − n) ln(1 − n)], (19)

and the heat capacity at constant volume through the relation

cv = T

(
∂S

∂T

)
δ,ρ

. (20)

We must point out that within the SCGF method the entropy is
obtained following the Luttinger-Ward formalism and it com-
prises both terms describing the quasiparticle behavior of the
system, such as Eq. (19), and those related to fragmentation
effects due to correlations in the many-body system [26,32].

Figure 2 compares the entropy per nucleon as well as
the heat capacity at constant volume at ρ0 = 0.16 fm−3 as
a function of the temperature in SNM and PNM from the
ImMDI-GF, Skχm∗, and SCGF calculations. One can in
principle relate the behavior of the entropy to that of the
occupation probability in Fig. 1. In the case of SNM, the
more diffusive nucleon distribution in the SCGF approach due
to many-body correlations leads to a slightly larger entropy
per nucleon than those from ImMDI-GF and Skχm∗. Since
the correlation effect is less strong in PNM, the occupation
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FIG. 3. Kinetic energy Ek and potential energy Ep per nucleon as
a function of reduced nucleon density for symmetric nuclear matter
(upper) and pure neutron matter (lower) at various temperatures from
the ImMDI-GF, Skχm∗, and SCGF calculations.

probability and the entropy per nucleon from the SCGF
approach are both similar to those from ImMDI-GF, while
the entropy per nucleon from Skχm∗ is lower as a result of
the sharper nucleon momentum distribution. As a measurable
quantity, the heat capacity at constant volume from the SCGF
approach is mostly similar to that from ImMDI-GF for SNM,
while it stands closer to the Skχm∗ results for PNM, which
gives a relatively smaller heat capacity especially at higher
temperatures.

C. Kinetic and potential energy contributions
to the nuclear matter EOS

The kinetic energy contribution, which is uniquely deter-
mined by the nucleon occupation probability as indicated in
Eq. (17), and the potential energy contribution to the EOS
obtained from different approaches, are compared in Fig. 3.
Since ImMDI-GF and Skχm∗ are constructed from fitting
similar nuclear EOSs at zero temperature, and they also have
same nucleon occupation probabilities at zero temperature,
the kinetic energy and the potential energy contribution to the
EOS of cold nuclear matter from the two effective interac-
tions are almost identical. The kinetic energy contributions
to the EOS from ImMDI-GF and Skχm∗ start to deviate
as temperature increases, especially for PNM, with Skχm∗
always giving smaller values. The fact that the kinetic energy
contributions in SNM and PNM from effective interactions
based on the Hartree-Fock calculations are always below
those from SCGF is consistent with the behavior of nucleon
occupation probabilities shown in Fig. 1, where the SCGF
always gives a larger population of high-momentum states and
thus a larger kinetic energy, as a result of correlation effects.
Deviations between the results on kinetic energy contributions
in both SNM and PNM from ImMDI-GF and Skχm∗ increase
with both increasing density and temperature as a result

FIG. 4. Total energy per nucleon as a function of reduced nu-
cleon density for symmetric nuclear matter at various temperatures
from ImMDI-GF and Skχm∗ compared with results from the SCGF
approach. The uncertainty bands for the χEMBPT in (a) and (b) are
due to the use of two different n3lo414 and n3lo450 forces [15].

of the different momentum dependence in their mean-field
potentials.

For the potential energy contribution, which depends on
both the density and the nucleon occupation probability, re-
sults from the ImMDI-GF and Skχm∗ are in good agreement
at all temperatures for SNM, while they start to deviate for
PNM as temperature increases. This is again consistent with
the results for the nucleon occupation probability shown in
Fig. 1. The potential energy contribution from the SCGF
approach in both SNM and PNM is, however, always lower
compared to that from ImMDI-GF and Skχm∗ due to its
larger nucleon occupation probability at high momenta as
shown in Fig. 1.

D. EOSs of symmetric and pure neutron matter

The density dependence of the total energy per nucleon
for SNM and PNM from ImMDI-GF and Skχm∗ are com-
pared with results from the SCGF approach in Figs. 4 and
5, respectively. It is seen that the uncertainty in the SCGF
results becomes larger at higher nucleon densities because of
the different high-momentum cutoffs and three-body forces,
particularly for the EOS of PNM. The EOSs from ImMDI-
GF and Skχm∗ are similar for cold and low-temperature
SNM and PNM. Except for small deviations at very low
densities, the EOSs from ImMDI-GF and Skχm∗ are within
the SCGF uncertainty band [see panels (a) and (b) in Figs. 4
and 5]. However, results start to deviate at higher temper-
atures, with the EOS of SNM from ImMDI-GF remaining
within the uncertainty band of SCGF but that from Skχm∗
becoming slightly lower. For the EOS of PNM, ImMDI-GF
gives slightly larger values at very high temperatures, while
that from Skχm∗ is within the uncertainty band of SCGF.
These results can be partially understood from the relative
contributions of the kinetic energy and the potential energy
to the EOS, as shown in Fig. 3. Also shown in panels (a)
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FIG. 5. Same as Fig. 4 but for pure neutron matter.

and (b) for both SNM and PNM are results from χEMBPT
calculations using n3lo414 and n3lo450 chiral forces, which
are taken from Figs. 1 and 2 of Ref. [15]. The uncertainty
band in the latter approach for SNM is smaller than that
given by SCGF due to a smaller range of variation in the
high-momentum cutoff and similar three-body forces used in
the two potentials. For PNM at low temperatures, results from
the χEMBPT using n3lo414 and n3lo450 forces give almost
identical EOS, due to reduced regulator dependence in the
three-body forces [38]. The EOSs of both SNM and PNM
from the χEMBPT are well reproduced by ImMDI-GF and
Skχm∗ at both T = 0 and 10 MeV.

E. Nucleon mean-field potentials in symmetric
and pure neutron matter

In transport simulations of intermediate-energy heavy-ion
collisions, the direct input is the mean-field potential instead
of the EOS. The temperature dependence of the mean-field
potential is thus important in determining the evolution of the
hot nuclear matter produced in these collisions. We compare
in this subsection the momentum dependence of the mean-
field potential at ρ0 obtained from ImMDI-GF and Skχm∗
with that from the SCGF approach in Figs. 6 and 7 for SNM
and PNM, respectively. For the SCGF approach, the mean-
field potential given in Eq. (18) is obtained from the on-shell
part of the real self-energy.1 The mean-field potentials from
the SCGF approach in all these different cases are seen to
always approach zero at nucleon momenta ∼1000 MeV/c.
This is due to the high momentum cutoff in the regulator
functions used in constructing these chiral forces [40]. For
the case of effective interactions, the mean-field potential
at the saturation density is generally fitted from the energy

1It must be noted that the mean-field potential from the SCGF
approach is not calculated at T = 0 MeV but at T = 4 MeV to avoid
pairing instability, since thermal effects are very small at such low
temperatures [37].

FIG. 6. Mean-field potential at ρ0 = 0.16 fm−3 as a function of
nucleon momentum in symmetric nuclear matter at various temper-
atures from ImMDI-GF and Skχm∗ compared with results from the
SCGF approach. Result at T = 0 MeV from the χEMBPT using the
n3lo450 force [39] is also shown for comparison.

dependence of nuclear optical potentials in elastic nucleon-
nucleus scatterings [41,42]. With its proper isoscalar effective
masses as well as the mean-field potential U ∞

0 at saturation
density and infinite large nucleon momentum, the ImMDI
model can well reproduce the momentum dependence of the
optical potential extracted by Hama et al. [43,44] from the
proton-nucleus scattering data as shown in Fig. 1 of Ref. [20].

For SNM at low temperatures, the mean-field potentials
from both ImMDI-GF and Skχm∗ are consistent with results
from the SCGF approach up to p = 500 MeV/c, while for
PNM these results start to deviate already below p = 500
MeV/c. With its isovector effective mass adjusted to be
about m∗

v = 0.59m, the ImMDI-GF interaction gives mean-
field potentials in PNM that are consistent with those from
the SCGF approach even at higher momenta. This is different
for the mean-field potentials from Skχm∗, which are seen to

FIG. 7. Same as Fig. 6 but for pure neutron matter.
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increase quadratically with nucleon momentum and become
more repulsive around p = 500 MeV/c in SNM. This is
especially so for PNM where the deviations appear already
at lower momenta. This is understandable, as discussed in
Sec. II A, since the momentum dependence of the mean-field
potential in the SHF model is only valid at lower nucleon
momenta. Both ImMDI-GF and Skχm∗ reproduce very well
the mean-field potential at low momenta from the χEMBPT
using the n3lo450 force at T = 0 MeV for SNM [39]. The
temperature effect on the mean-field potentials from ImMDI-
GF and Skχm∗ is, on the other hand, stronger than that from
the SCGF approach, especially at lower nucleon momenta. It
is remarkable that the momentum dependence of the mean-
field potentials from the SCGF approach for both SNM and
PNM are reproduced reasonably well by ImMDI-GF at all
considered temperatures.

IV. SUMMARY

To study if the commonly used nucleon-nucleon effective
interactions, which are usually constructed from fitting the
properties of cold nuclear matter and of finite nuclei, can
properly describe nuclear matter at finite temperatures, we
have used an improved isospin- and momentum-dependent
interaction ImMDI-GF and the recently constructed Skyrme
interaction Skχm* to evaluate the nucleon occupation prob-
abilities, the equations of state, and the mean-field poten-
tials in symmetric nuclear matter and pure neutron matter at
finite temperatures using the Hartree-Fock approach. These
results have been compared with those from the microscopic
self-consistent Green’s function method and the chiral ef-
fective many-body perturbation theory using chiral nuclear
forces. We have found significant differences between results
from ImMDI-GF and Skχm∗ for nuclear matter properties
at high temperatures and also between results from these
two models and those from the microscopic theories. The
deviations seen in the nucleon occupation probabilities in
these approaches have been understood from their different
momentum dependence in the single-nucleon potential, which
is strongly suppressed at high momenta in the microscopic
calculations based on chiral forces compared to those from
the effective interactions, especially for Skχm∗ that has a
quadratic momentum dependence. These differences in the
nucleon momentum distributions have led to deviations in the
kinetic energy contribution and also partially in the potential
energy contribution to the nuclear equation of state. The
energies per nucleon for symmetric nuclear matter and pure

neutron matter from ImMDI-GF and Skχm∗ are roughly con-
sistent with those from the self-consistent Green’s function
approach, although the equation of state for symmetric nuclear
matter from Skχm* remains softer at higher temperatures
compared to the other two approaches. Using ImMDI-GF
in the Hartree-Fock calculation reproduces remarkably well
the mean-field potential from the microscopic approaches
at various temperatures for both symmetric nuclear matter
and pure neutron matter. Our study thus shows that effective
interactions with the correct momentum dependence in the
mean-field potential, such as the one from ImMDI-GF, can
properly describe the properties of hot dense nuclear matter
and is thus suitable for use in transport models to extract the
equation of state of cold nuclear matter, which is needed for
describing the properties of neutron stars, from intermediate-
energy heavy-ion collisions.

The SCGF approach using chiral forces with high-
momentum cutoffs has, however, larger theoretical uncer-
tainties at high densities. Also, the mean-field potential at
suprasaturation densities from effective interactions using the
Hartree-Fock approach is based on the extrapolation from
normal density and thus depends on the functional form used
in the parametrization of its value at this density. Efforts have
been made in the past to constrain the momentum dependence
of the isoscalar mean-field potential by comparing transport
model results of collective flows in heavy-ion collisions at
several hundred AMeV with the experimental data [45–47].
To constrain not only the temperature dependence but also
the density dependence of the nuclear mean-field potential,
both well-defined effective interaction functionals and reliable
transport models are needed to study experimental observ-
ables that are sensitive to the momentum dependence of nu-
cleon mean-field potential [48,49], which is, however, beyond
the scope of present study.
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