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Sensitivity of the evaporation residue observables to the symmetry energy

S. Mallik,1 G. Chaudhuri,1,2 and F. Gulminelli3
1Physics Group, Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India

2Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
3LPC Caen IN2P3-CNRS/EnsiCaen et Universite, Caen, France

(Received 15 April 2019; revised manuscript received 19 June 2019; published 12 August 2019;
corrected 8 November 2019)

The static properties of the heaviest residue and unbound particles produced in central 64,58Ni on 64,58Ni
collisions at 50 MeV/nucleon are predicted within the Boltzmann-Uehling-Uhlenbeck transport model, in
order to explore the sensitivity of those observables to the density dependence of the symmetry energy. We
include fluctuations in the collision integral and use a metamodelling for the mean-field which allows an
independent variation of the different empirical parameters of the equation of state. We find that the isospin
ratio of pre-equilibrium particles is a good estimator of the stiffness of the symmetry energy, in agreement with
previous works. In addition to that, whatever be the functional form of the equation of state, we show that a
higher symmetry energy at subsaturation densities leads to an increased size and isotopic ratio for the heaviest
residue. This is understood in terms of energy sharing between the pre-equilibrium particles and the (quasi)fused
system. The combination of the two observables might be an interesting tool to constrain the different density
dependence below and above saturation, which is linked to the relatively poorly known parameter Ksym.
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I. INTRODUCTION

The equation of state (EoS) is one of the fundamental prop-
erties governing nuclear systems, and its theoretical as well
as experimental determination is an extremely lively issue
in modern nuclear physics and astrophysics [1]. The biggest
uncertainties concern the so-called symmetry energy, which
describes the density behavior of strongly asymmetric matter,
and which is extremely important for the understanding of a
large variety of astrophysical phenomena involving compact
stars [2,3].

From the historical point of view, the first attempts in
constraining the symmetry energy at densities different from
the saturation density of symmetric nuclear matter used ex-
perimental observables from intermediate energy heavy ion
collisions [4]. Since that time, different experimental probes
from nuclear structure have contributed to better constrain
the symmetry energy behavior [5,6], and clear correlations
between the different symmetry energy empirical parame-
ters were convincingly extracted from this data compilation
[7–13]. Still, heavy ion collisions are the only laboratory
condition where nuclear matter is effectively compressed, and
in this sense they can be considered as a privileged tool for
studying the behavior of symmetry energy, especially in the
supersaturation regime [14].

The extraction of symmetry energy from heavy-ion (HI)
collisions requires the comparison of an isospin-sensitive ob-
servable to the predictions of transport calculations. However,
most of these calculations use a very simplistic monotropic
functional form for the symmetry energy [2,5], esym(ρ) ∝ ργ ,
which is not justified in the framework of modern energy
functionals. For this reason, it is not easy to quantitatively

compare the constraints extracted from HI collisions with the
ones obtained from structure experiments which are analyzed
with Skyrme or relativistic mean field (RMF) functionals,
including a more complex density dependence as well as
neutron-proton mass splittings.

In this work, we have implemented the metafunctional
proposed in Ref. [15] in the improved BUU@VECC-McGill
transport code [16,17]. The parameter space of the metamodel
allows to precisely reproduce a large set of nonrelativistic
as well as relativistic energy functionals, as well as possible
novel density dependences not yet explored in existing func-
tionals. Moreover, the symmetry energy empirical parameters
can be independently varied, allowing a sensitivity analysis of
the HI observables. The BUU@VECC-McGill transport code
includes isospin dependent nucleon-nucleon cross sections
and is successfully compared to other transport models [18]
as well as experimental data [19].

Our purpose is to guide and inspire future HI experiments
and experimental analyses, by proposing measurable observ-
ables sensitive to the different parameters of the symmetry
energy. For this first application, we concentrate on central
64Ni on 64Ni, 58Ni on 58Ni, and 58Ni on 64Ni collisions at
50 MeV/nucleon beam energy. The choice of the system
is due to the fact that these systems will be studied by the
INDRA/FAZIA collaboration in an upcoming experiment in
GANIL this year [20].

We concentrate on the composition of the heaviest frag-
ment as well as the free nucleons, both at freeze-out and
at asymptotic times. Results will be given for the realistic
Sly5 functional [21], and a sensitivity analysis to the different
empirical parameters will be performed.
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II. THEORETICAL FRAMEWORK

A. The Boltzmann-Uehling-Uhlenbeck (BUU) model

The dynamical evolution of the heavy ion collision is
followed using the BUU@VECC-McGill transport model
calculation, which was extensively explained in Refs. [16,17].
The calculation is started when two nuclei in their respective
ground states approach each other with specified velocities.

At each time step, the local particle densities ρq and kinetic
energy densities τq (q = n, p) are defined from the one-body
distribution functions as

ρq(�r, t ) =
∫

d3 p fq(�r, �p, t )

τq(�r, t ) =
∫

d3 p
p2

2mq
fq(�r, �p, t ) , (1)

where the distribution functions fq are sampled with test
particles that follow Hamilton equations of motion [16,17],
and we neglect the difference between the proton and neutron
bare masses, mq = m. At the initial time, the ground state
densities of the projectile (target) of mass number AP(AT ),
where Ak = Zk + Nk (k = P, T ) and Zk and Nk are proton
and neutron numbers, are constructed by a variational method
[16] using Myers density profiles [22]. This method was
used by different authors [16,23,24]. The ground state density
distribution is then sampled using a Monte Carlo technique
by choosing Ntest = 100 test particles for each nucleon, with
appropriate positions and momenta.

In the center of mass frame, the test particles of the
projectile and the target nuclei are boosted towards each other.
Simulations are done in a 200 × 200 × 200 fm3 box. At
t = 0 fm/c the projectile and target nuclei are centered at
(100 fm, 100 fm, 90 fm) and (100 fm, 100 fm, 110 fm).
The test particles of isospin q = p, n move in a mean-field
Uq(ρp(�r), ρn(�r)) and will occasionally suffer two-body col-
lisions, with probability determined by the nucleon-nucleon
scattering cross section, provided the final state of the col-
lision is not blocked by the Pauli principle. The mean field
potential Uq is calculated from a metafunctional described
in the next subsection. The mean-field propagation is done
using the lattice Hamiltonian method which conserves energy
and momentum very accurately [25]. Two-body collisions are
calculated as in Appendix B of Ref. [26], except that pion
channels are closed, as there will not be any pion production
in this energy regime.

To explain clustering in heavy ion reaction, one needs
an event-by-event computation in transport calculation, and
mean-field fluctuations should be accounted for [27]. To do
that, we have followed the recently developed computation-
ally efficient prescription described in Refs. [28–30], which
leads to a correct propagation if the collision partners contain
a sufficiently large number of nucleons. According to this
prescription, the nucleon-nucleon collisions are computed at
each time step with the physical isospin dependent cross
section only among the AP + AT test particles belonging to
the same event. For each event, if a collision between two
test particles i and j is allowed, the method proposed in
Refs. [27,28] is followed: the (Ntest − 1) test particles closest

to i in configuration space are picked up, and the same
momentum change � �p as ascribed to i is given to all of
them. Similarly the (Ntest − 1) test particles closest to j are
selected and these are ascribed the same momentum change
−� �p suffered by j. As a function of time this is continued
till the event is over and the same procedure is repeated
for each event. We consider free cross sections parametrized
from experimental data. Finally to identify fragments, two test
particles are considered as the part of the same cluster if the
distance between them is less than or equal to 2 fm [29].

B. The EoS metamodelling

A metamodelling approach for the nucleonic equation of
state was proposed in Ref. [15]. A flexible functional was
proposed, based on a polynomial expansion in density around
saturation and including deviations from the parabolic isospin
dependence through the kinetic term and the effective mass
splitting. The parameter space of this functional is sufficiently
large to allow reproducing with good accuracy a large set
of popular relativistic and nonrelativistic functionals. The
polynomial expansion implies that the different empirical pa-
rameters are a priori independent, and it is therefore possible
to study the effect of an independent variation of each of them,
which we do in the present work. This functional was already
applied to neutron star observables [31], finite nuclei [32], and
magnetars [33].

The energy per particle of homogeneous nuclear matter at
zero temperature and proton (neutron) density ρp (ρn) is

e(ρ, δ) = t (ρ, δ) + v(ρ, δ) , (2)

where ρ = ρp + ρn and δ = (ρn − ρp)/ρ. The kinetic en-
ergy per particle at zero temperature, including an effective
momentum dependence through the definition of effective
masses, is given by

t∗(ρ, δ) = t0
2

(
ρ

ρ0

)2/3[(
1 + κ0

ρ

ρ0

)
f1(δ) + κsym

ρ

ρ0
f2(δ)

]
,

(3)

where t0 = 3h̄2/(10m)(3π2/2)2/3
ρ

2/3
0 and ρ0 is the (model

dependent) saturation density of symmetric nuclear matter.
The parameters κ0 and κsym are linked to the density depen-
dence of the effective proton and neutron masses, and f1 =
{(1 + δ)5/3 + (1 − δ)5/3}, f2 = δ{(1 + δ)5/3 − (1 − δ)5/3}.

The expression of potential energy per particle is

v(ρ, δ) =
N∑

k=0

1

k!

(
vis

k + viv
k δ2

)
xk

+ (ais + aivδ2)xN+1 exp

(
−b

ρ

ρ0

)
, (4)

where x = (ρ − ρ0)/3ρ0, ρ0 is the saturation density, and the
last term is a low density correction ensuring the correct limit
at zero density. We take for this paper N = 4 and b = 10ln2.
This value of b leads to a good reproduction of the Sly5
functional which will be our reference model in this study.
The model parameters v

is(iv)
k can be linked with a one-to-one
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correspondence to the usual EoS empirical parameters, via

vis
0 = Esat − t0(1 + κ0),

vis
1 = −t0(2 + 5κ0),

vis
2 = Ksat − 2t0(−1 + 5κ0),

vis
3 = Qsat − 2t0(4 − 5κ0),

vis
4 = Zsat − 8t0(−7 + 5κ0), (5)

viv
0 = Esym − 5

9 t0[(1 + (κ0 + 3κsym )],

viv
1 = Lsym − 5

9 t0[(2 + 5(κ0 + 3κsym )],

viv
2 = Ksym − 10

9 t0[(−1 + 5(κ0 + 3κsym )],

viv
3 = Qsym − 10

9 t0[(4 − 5(κ0 + 3κsym )],

viv
4 = Zsym − 40

9 t0[(−7 + 5(κ0 + 3κsym )] , (6)

where Esat, Ksat, Qsat, and Zsat are saturation energy, in-
compressibility modulus, isospin symmetric skewness, and
kurtosis, respectively, and Esym, Lsym, Ksym, Qsym, and Zsym

are symmetry energy, slope, and associated incompressibility,
skewness, and kurtosis, respectively.

This infinite nuclear matter functional is supplemented by
a finite range term which from the theoretical point of view
arises from the semiclassical h̄ expansion of the nonlocal
momentum operator [25,34], corresponding to an energy den-
sity esur f = Aρ∇2ρ. For this first application, we neglect the
isospin dependence of this gradient term [32] and fix the
coupling parameter A = c/(2ρ

5/3
0 ) with c = −6.5 MeV from

Ref. [25].
In terms of the one-body distribution functions used in

BUU, the total energy can be written as

Etot (t ) =
∫

d3rε(ρ(�r), δ(�r)) (7)

=
∑

q=n,p

∫
d3r

m

m∗(ρ(�r, t ), δ(�r, t ))
τq(�r, t )

+
∫

d3rρ(�r, t )v(ρ(�r, t ), δ(�r, t )). (8)

Here, the local kinetic energy densities are given by Eq. (1)
and naturally deviate as a function of time from the zero
temperature initial condition. The local effective masses are
given by

mq

m∗
q

= 1 + (κ0 ± κsymδ)
ρ

ρ0
, (9)

and the sign +(−) refers to neutrons (protons).
The mean-field potential governing the equations of mo-

tion of test particles can be straightforwardly obtained from
the energy density defined in Eq. (7) in the local density
approximation, from the general relations

Un(�r, t ) =
(

∂ε

∂ρn

)
ρp,τp,τn

; Up(�r, t ) =
(

∂ε

∂ρp

)
ρn,τp,τn

. (10)

Substituting Eq. (4) in Eq. (10) and adding the finite range the
potential part of neutron and proton mean fields for the BUU

calculation are

Un,loc = (
vis

0 + viv
0 δ2

) +
4∑

k=1

k + 1

k!

(
vis

k + viv
k δ2

)
xk

+ 1

3

4∑
k=1

1

(k − 1)!

(
vis

k + viv
k δ2

)
xk−1

+ 2δ(1 − δ)
4∑

k=1

1

k!
viv

k xk + exp{−b(1 + 3x)}

×
[

(ais + aivδ2)

{
5

3
x4 + (6 − b)x5 − 3bx6

}

+ 2δ(1 − δ)aivx5

]
+ 3c

ρ
2/3
0

∇2x, (11)

Up,loc = (
vis

0 + viv
0 δ2) +

4∑
k=1

k + 1

k!

(
vis

k + viv
k δ2)xk

+ 1

3

4∑
k=1

1

(k − 1)!

(
vis

k + viv
k δ2

)
xk−1

− 2δ(1 + δ)
4∑

k=1

1

k!
viv

k xk + exp{−b(1 + 3x)}

×
[

(ais + aivδ2)

{
5

3
x4 + (6 − b)x5 − 3bx6

}

− 2δ(1 + δ)aivx5

]
+ 3c

ρ
2/3
0

∇2x + Uc , (12)

where x = (ρ(�r, t ) − ρ0)/3ρ0 and δ = (ρn(�r, t ) −
ρp(�r, t ))/ρ(�r, t ). Uc is Coulomb potential.

The density dependence of the effective masses induces an
extra term for the mean field given by

U eff
q =

∑
q=n,p

τq
∂

∂ρq

(
mq

m∗
q

)

= τq
κ0 + κsym

ρ0
+ τq′

κ0 − κsym

ρ0
. (13)

The complete parameter set of the metamodelling comprises
the ten EoS empirical parameters (ρ0, Esat, Ksat, Qsat, Zsat,
Esym, Lsym, Ksym, Qsym, Zsym), the two parameters defining
the density dependence of the effective mass and the proton-
neutron mass splitting (κ0, κsym), and the finite size parameter
c. This is a very large parameter space, and for this first
application we will neglect the density dependence of the
effective mass and the mass splitting, which are expected to
be less influential than the EoS parameters [32]. Concerning
these latters, only the lowest order ones are influential at the
low densities studied here, and since we are interested in
pinning down isospin effects we will only concentrate on an
independent variation of the lowest order isospin dependent
parameters, namely Esym, Lsym, Ksym. Values of fixed param-
eters (ρ0, Esat, Ksat, Qsat, Zsat, Qsym, Zsym, κ0, and κsym) and
varying parameters (Esym, Lsym, Ksym) used for the calcula-
tions described in Sec. III B and C are given in Table I.
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TABLE I. Set of fixed parameters (upper part) and varying
parameters (lower part) used for the calculations described in
Secs. III B and III C.

Fixed parameters

Parameter Average Parameter Average Parameter Average
value value value

Esat −16.03 Ksat 251 Qsat 13
(MeV) (MeV) (MeV)
Zsat 3925 Qsym 388 Zsym −5268
(MeV) (MeV) (MeV)
ρ0 0.1543 κ0 0.338 κsym −0.002
(fm−3)

Varying parameters

Parameter Minimum Average Maximum
value value value

Esym 26.83 33.30 38.71
(MeV)
Lsym 29.2 76.6 122.7
(MeV)
Ksym −394 −3 213
(MeV)

III. RESULTS

A. Freeze-out time and asymptotic time

We first determine meaningful times to be considered
for further analyses. For this purpose, we consider the Sly5
interaction. Central b = 0 64Ni on 64Ni, 58Ni on 58Ni, and
58Ni on 64Ni collisions at 50 MeV/nucleon beam energy have
been simulated up to 900 fm/c. The freeze-out time can be
identified from the behavior of the isotropy ratio as a function
of time, as shown in Fig. 1. The isotropy ratio is defined as

I = 〈(px − 〈px〉)2〉 + 〈(py − 〈py〉)2〉
2〈(pz − 〈pz〉)2〉 , (14)

where the average is taken over the test particles belonging
to the heaviest residue and z is the beam axis. We can see
that full equilibrium of the momentum distribution is never
completely reached, but the collisional dynamics which tends
to randomize the momenta of the nucleons is over at at tFO =
150 fm/c, and this freeze-out time does not change for the
three systems considered.

This choice of freeze-out time is confirmed by inspection
of Fig. 2 which displays the free proton and neutron emis-
sion rates as a function of time for the three systems. The
presence of a peak in the emission rate is a clear indication
of change of emission mechanism for particle production,
from pre-equilibrium fast emission at early times to nucleon
evaporation at later times [35]. From these observations, we
will keep t = 150 fm/c as freeze-out time.

It is customary in HI transport calculations to stop the
dynamical evolution at the freeze-out time and couple the
calculation to a statistical decay code or afterburner [35]. Such
a procedure allows calculating realistic multiplicities for the
light particles which would not be correctly bound in the
mean-field approximation implicit in the transport equation.

FIG. 1. Variation of isotropy of momentum distribution (I) with
time for 58Ni on 58Ni (green dashed line), 58Ni on 64Ni (blue
dotted line), 64Ni on 64Ni (red solid line) at projectile beam energy
50 MeV/nucleon.

However, the precise choice of the coupling time and of the
algorithm used for the calculation of excitation energy is del-
icate, because the final yields depend on these unconstrained
parameters. Moreover, there might be some conceptual incon-
sistency between the mean-field model used for the dynamical
evolution and the level density and mass model used for the
secondary decay. This can create ambiguities in a study like
the present one aimed at exploring the sensitivity to the sym-
metry energy functional. For these reasons, we do not couple
the dynamical code to an afterburner and rather continue
the evolution to an asymptotic time where the evaporation
dynamics is essentially over. The drawback of this procedure
is that we will not be able to give realistic predictions for
the light particles yields (only free protons and neutrons are
evaporated), but we believe that global collective variables
such as the global average N/Z ratio of the emitted particles,
and the size and charge of the evaporation residue, will be
reasonably trustable for a comparison with experimental data.

FIG. 2. Variation of neutron (left part) and proton (right part)
emission rate as a function of time for central for 58Ni on 58Ni (green
dashed line), 58Ni on 64Ni (blue dotted line), 64Ni on 64Ni (red solid
line) reaction at 50 MeV/nucleon.
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FIG. 3. Variation of the 〈N〉/〈Z〉 of light particles emitted as
a function of time, for 58Ni on 58Ni (green dashed line), 58Ni on
64Ni (blue dotted line), 64Ni on 64Ni (red solid line) reaction at
50 MeV/nucleon.

Since we want to study the sensitivity to the isospin part
of the equation of state, we fix our asymptotic time on the
saturation of the N/Z ratio of the emitted light particles.
This is shown in Fig. 3 for the three systems studied in this
paper. We can see that a saturation of this ratio is achieved
starting from t = 500 fm/c, and again this time is seen to be
independent of the entrance channel.

Further insights can be obtained from Fig. 4 , which shows
the time variation of the largest and second largest cluster
mass with time for the different systems.

It is observed that the average mass of the second largest
cluster are maximum at t = 500 fm/c. The same is true if we
consider the charge instead of the mass (not shown). This is a
strong indicator of the end of the dynamics.

At further times, the mass and charge of the residue still
slowly decrease. A part of the reason is that evaporation
is a very slow process, but this is also partially due to the
finite lifetime of nuclei in the semiclassical approach. For
this reason, the further evolution cannot be considered as

FIG. 4. Variation of largest (left) and second largest (right) clus-
ter mass with time for 58Ni on 58Ni (green dashed line), 58Ni on 64Ni
(blue dotted line), 64Ni on 64Ni (red solid line) at projectile beam
energy 50 MeV/nucleon.

TABLE II. Average values and standard deviations of the dif-
ferent observables at freeze-out time (t = 150 fm/c) and asymptotic
time (t = 500 fm/c) calculated for Sly5 EOS.

Result at Result at
freeze-out time asymptotic time
(t = 150 fm/c) (t = 500 fm/c)

Observable Reaction Average Standard Average Standard
deviation deviation

58Ni + 58Ni 0.878 0.077 1.001 0.023
(N/Z )free

58Ni + 64Ni 1.099 0.104 1.152 0.025
64Ni + 64Ni 1.351 0.124 1.311 0.031
58Ni + 58Ni 46.156 0.764 21.246 2.176

Zmax
58Ni + 64Ni 46.902 0.712 21.246 2.176
64Ni + 64Ni 47.770 0.671 22.889 1.991
58Ni + 58Ni 97.541 1.225 46.332 4.698

Amax
58Ni + 64Ni 102.981 1.113 49.256 4.384
64Ni + 64Ni 108.620 1.155 51.634 4.478
58Ni + 58Ni 15.066 0.662 12.688 0.356

Ek
58Ni + 64Ni 15.194 0.511 12.776 0.326

(MeV/A) 64Ni + 64Ni 15.224 0.543 12.844 0.389

a physical evaporation and we will take t = 500 fm/c as
asymptotic time. If this time is doubled, the absolute values
of the mass and charge of the evaporation residues slightly
decrease, but all the qualitative conclusions of this paper are
unchanged.

The values of the different observables examined in this
paper at the freeze-out time and at the asymptotic time are
reported for the three systems in Table II. These predictions
will serve us as reference for the study of the symmetry
energy dependence. At the asymptotic time t = 500 fm/c, the
average kinetic energy falls below the expected value at zero
temperature ekin,0 ≈ 14 MeV/A, which should be associated
to the zero point motion considering the average density
for the evaporation residue 〈ρ〉 ≈ 0.08 fm−3. This is a clear
indication that the further emission cannot be identified with
physical evaporation from a hot source, but it is rather a
drawback of the semiclassical treatment.

We now turn to examine the sensitivity of the global ob-
servables to the different coefficients of the symmetry energy.
The isoscalar EoS parameters are fixed by the average EOS
given in Table I, and the isovector ones are independently
varied around the average value.

B. Sensitivity to the symmetry energy at freeze-out

This sensitivity study is first done at freeze-out time with
respect to the three symmetry energy parameters Esym, Lsym,
and Ksym in Figs. 5, 6, and 7, respectively.

Three values are considered for each parameter, within a
variation domain taken from Ref. [15]. In that work, those
values are obtained from a compilation of present constraints
extracted from empirical nuclear data. The intermediate ref-
erence value for each parameter is given by the average EoS
of Table I, while the extreme minimum and maximum value
cover the present uncertainties on the symmetry energy. The
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FIG. 5. Variation of 〈N/Z〉 of the unbound emitted particles
(upper left), charge (lower left), mass (lower right), and total kinetic
energy (upper right) of the fusion system for independent variations
of Esym, at the freeze-out time t = 150 fm/c. The vertical error bars
represent the standard deviation of the distributions. Results are given
for 58Ni on 58Ni (green triangles), 58Ni on 64Ni (blue squares), 64Ni
on 64Ni (red squares).

values of the different parameters are reported in Table I. The
three parameters are independently varied, that is two of them
are kept fixed at the corresponding average value given in
Table I, while the third one is modified. Therefore, the point

FIG. 6. Variation of 〈N/Z〉 of the unbound emitted particles
(upper left), charge (lower left), mass (lower right), and total kinetic
energy (upper right) of the fusion system for independent variations
of Lsym, at the freeze-out time t = 150 fm/c. The vertical error bars
represent the standard deviation of the distributions. Results are given
for 58Ni on 58Ni (green triangles), 58Ni on 64Ni (blue squares), 64Ni
on 64Ni (red squares).

FIG. 7. Variation of 〈N/Z〉 of the unbound emitted particles
(upper left), charge (lower left), mass (lower right), and total kinetic
energy (upper right) of the fusion system for independent variations
of Ksym, at the freeze-out time t = 150 fm/c. The vertical error bars
represent the standard deviation of the distributions. Results are given
for 58Ni on 58Ni (green squares), 58Ni on 64Ni (blue squares), 64Ni on
64Ni (red squares).

in each panel corresponding to the intermediate value of the
symmetry parameter under study, represents the prediction of
the average EoS of Table I. For comparison, the prediction
of realistic EoS Sly5 are reported in Table II. The other points
cannot be considered as realistic predictions, because physical
correlations exist among the different empirical parameters,
which are neglected here. However, they measure the sensi-
tivity of the observables to the different parameters describing
the symmetry energy, and can therefore give information on
the quantities that can be best constrained by intermediate
energy heavy ion collisions.

As it is well known, pre-equilibrium neutrons are prefer-
entially emitted by neutron-rich systems. This very general
feature is reproduced by our results. However, the isospin
excess is not entirely dissipated by pre-equilibrium emission.
Indeed we can observe that heavier and more neutron rich
fusion sources are associated to heavier and more neutron rich
systems. This appears to be a simple geometrical effect hardly
related to the equation of state: the results are essentially un-
changed if the parameters governing the density dependence
of the symmetry energy are varied.

On the contrary, the pre-equilibrium emission is seen to be
sensitive to the density dependence of the symmetry energy:
higher values of Esym leading to more neutron rich emission.
This finding is in good qualitative agreement with previous
studies [35,36] where the density dependence was controlled
by a single parameter. In our analysis, we can see that the
effect of the different isospin parameters is very different: an
increasing Lsym acts in the opposite direction as an increase
in Esym, while Ksym is seen to play a similar role as Esym.
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This can be understood from the fact that at these relatively
low bombarding energies only subsaturation densities are
explored. In the subsaturation density region, a higher value
of symmetry energy slope (Lsym) leads to a lower symmetry
energy whereas higher value of Esym and Ksym represent
higher symmetry energy. Similar behavior is also observed in
the other observables shown in the next figures.

The sensitivity of light particle emission to isospin is
maximized at the earliest stage of the collision, as it can be
seen from Fig. 3. This means that an amplified effect might be
seen if kinematical cuts are employed to explicitly isolate the
first chance emission [35]. This analysis is left for future work.

Finally the upper right panel of Figs. 5, 6, and 7 displays
the average kinetic energy per nucleon of the residue in its
reference frame. The internal kinetic energy is correlated to
the excitation energy of the fused system. We can see that this
quantity is completely independent of the isospin content of
the system. This is in agreement with the observation that the
dynamical evolution is largely independent of the isospin, and
a same freeze-out and asymptotic time can be associated to
the three systems. It is interesting to remark that the density
dependence of the symmetry energy is very influential in the
determination of the kinetic energy, a stiffer EoS leading to a
higher excitation.

C. Sensitivity to the symmetry energy at asymptotic times

We now turn to explore the sensitivity to the symmetry en-
ergy observed at the asymptotic stage of the reaction. Indeed
it was observed in previous studies using hybrid models that
secondary decay can at least partially wash out the sensitivity
to the equation of state [37–39].

The same study done for Figs. 5, 6, and 7 is repeated
at the asymptotic time t = 500 fm/c in Figs. 8, 9, and 10.
We can see that the effect of the secondary decay on the
light particles is very small, as it could have been anticipated
from Fig. 3. As already observed above, this is most likely
due to the fact that the characteristic pre-equilibrium time
is smaller than the freeze-out time, and a deeper analysis is
needed to deconvolute primary and secondary emitted parti-
cles. Still, the preserved sensitivity to the symmetry energy
density dependence is encouraging because it suggests that
the secondary decay should not blur up the signal.

In all calculations, the kinetic energy at asymptotic time is
reduced with respect to the values at freeze-out, due to particle
evaporation. The residual internal kinetic energy is consistent
with zero temperature Fermi motion at the typical average
densities of the residues, ρ ≈ ρ0/2, consistent with the choice
of asymptotic time discussed in Sec. III A.

The entrance channel dependence of the mass and charge
of the heavy residue appears reduced at the asymptotic time.
This is however essentially a visual effect due to the differ-
ent scales of the figures. If we consider as a reference the
calculation corresponding to Sly5 (see Table II), we can see
that the average number of evaporated particles per nucleon
is Aevap/A f

max = (A f
max − Aa

max)/A f
max = 0.52 (superscript “ f ”

and “a” represent values at freeze-out and asymptotic time,
respectively), independent of the system, and only a slight
difference is observed for the average number of evapo-

FIG. 8. Variation of 〈N/Z〉 of the unbound emitted particles
(upper left), charge (lower left), mass (lower right), and total kinetic
energy (upper right) of the fusion system for independent variations
of Esym, at the asymptotic time t = 500 fm/c. The vertical error bars
represent the standard deviation of the distributions. Results are given
for 58Ni on 58Ni (green triangles), 58Ni on 64Ni (blue squares), 64Ni
on 64Ni (red squares).

rated protons per nucleon [Zevap/A f
max = (Z f

max − Za
max)/A f

max]
which changes from 0.23 for the most neutron rich, to 0.26
for the most neutron poor. This is consistent with the con-

FIG. 9. Variation of 〈N/Z〉 of the unbound emitted particles
(upper left), charge (lower left), mass (lower right), and total kinetic
energy (upper right) of the fusion system for independent variations
of Lsym, at the asymptotic time t = 500 fm/c. The vertical error bars
represent the standard deviation of the distributions. Results are given
for 58Ni on 58Ni (green triangles), 58Ni on 64Ni (blue squares), 64Ni
on 64Ni (red squares).
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FIG. 10. Variation of 〈N/Z〉 of the unbound emitted particles
(upper left), charge (lower left), mass (lower right), and total kinetic
energy (upper right) of the fusion system for independent variations
of Ksym, at the asymptotic time t = 500 fm/c. The vertical error bars
represent the standard deviation of the distributions. Results are given
for 58Ni on 58Ni (green triangles), 58Ni on 64Ni (blue squares), 64Ni
on 64Ni (red squares).

stant excitation energy per nucleon at freeze-out observed in
Sec. III B.

Moreover, we can see from Figs. 8, 9, and 10 that the
sensitivity to the symmetry energy of Amax and Zmax is greatly
amplified at the asymptotic time. The stiffer the equation of
state at subsaturation density, the higher the mass and charge
of the residue.1 This behavior seems in contradiction with the
behavior of the kinetic energy at freeze-out time observed in
Figs. 5, 6, and 7. The stiffer EoS being associated to a higher
excitation at freeze-out, one would have expected lower mass
and charge residues produced at the asymptotic times. A
deeper analysis on the correlation between kinetic energy,
excitation energy, and mass is needed to fully understand this
point. This analysis is in progress, but some hints can already
be obtained from inspection of Fig. 11.

This figure displays the behavior of the variance to mean
value ratio for the kinetic energy and charge of the heavy
residue in the case of the 58Ni on 58Ni system. Both values
at freeze-out and asymptotic time are shown, as well as their
dependence on Esym, Lsym, and Ksym. The other observables
and the other entrance channels are not shown because they
bear very similar information with respect to Fig. 11. We can
see that at the freeze-out time the mass and charge fluctuations
are very small and independent of the equation of state. This
is however not the case for the excitation energy. Indeed,
the highest average internal kinetic energies at freeze-out,

1As already remarked above, a stiffer equation of state corresponds
either to higher values of Esym and Ksym, or to lower values of Lsym.

FIG. 11. Dependence of σ (Zmax)/Zmax (left panels) and
σ (Ek )/Ek (right panels) of the heavy residue with Esym (upper
panels), Lsym (middle panels), and Ksym (lower panels) for 58Ni on
58Ni reaction studied at freeze-out time t = 250 fm/c (black circles)
and asymptotic time t = 500 fm/c (magenta squares).

obtained from the stiffer equations of state, are systematically
associated to the lowest relative dispersions. Because of sec-
ondary evaporation, this sensitivity to the equation of state
is transmitted to the asymptotic fluctuations of the mass and
charge of the residue.

This ensemble of observations indicates that, in addition
to the well-known sensitivity to the equation of state of pre-
equilibrium particles, also the size and charge of the evapora-
tion residue can bring interesting information on the density
dependence of the symmetry energy, and this is true both for
their average values and their fluctuations. This sensitivity
does not appear to be washed out by secondary decay, if
the collision and the evaporation dynamics are consistently
calculated using the same transport formalism. In particular,
we observe a strong sensitivity to the Lsym parameter which
has been deeply studied in the astrophysical context, and
shown to be well correlated to a number of astrophysical
phenomena, such as the radius of neutron stars and the density
of the crust-core transition.

IV. CONCLUSIONS

In this paper we have presented a first application of the
BUU@VECC-McGill transport model including a realistic
mean field functional with parameters optimized for the Sly5
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effective interaction. The mean-field is implemented with a
metamodelling technique, that allows performing sensitivity
studies of the measurable observables to the different em-
pirical parameters of the nuclear EoS. We have concentrated
our study on the influence of the symmetry energy empirical
parameters to the mass and charge of the fusion residues ob-
tained in central Ni+Ni collisions with different isospin con-
tents, systems which are going to be studied experimentally by
the Indra/FAZIA collaboration in an upcoming experiment at
Ganil.

To avoid the ambiguities in the definition of coupling time
and coupling parameters with a statistical model, we have run
the calculations up to an asymptotic time. We have shown
that the mass and charge of the residue are affected by the
density dependence of the symmetry energy in an important
way, while the isotopic ratio of free nucleons is less sensitive
to the EoS. This can be understood from the fact that the
free nucleon yield is dominated by the late stage of the
collision, and kinematical cuts have to be imposed to recover
the sensitivity to the EoS of the prompt nucleon emission.

On the other side, energy conservation at freeze-out imposes
a lower average energy deposited in the fused system for a
high symmetry energy below saturation (high Esym and Ksym

or low Lsym), and therefore a reduced effect on the secondary
decay.

These observations suggest that the charge and isotopic
composition of the fusion residue in intermediate energy
Ni + Ni heavy ion collisions can be an interesting probe of
the symmetry energy.

An interesting aspect of the metamodelling technique in-
corporated in the transport model is that the EoS extracted
from microscopic ab initio models can be directly imple-
mented, thus reducing the uncertainty intervals presently ex-
isting on the different empirical parameters. This work is
currently in progress.
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