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Diabatic paths through the scission point in nuclear fission
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An outstanding problem in the theory of nuclear fission is to understand the Hamiltonian dynamics at the
scission point. In this work the fissioning nucleus is modeled in self-consistent mean-field theory as a set of
generator coordinate method (GCM) configurations passing through the scission point. In contrast to previous
methods, the configurations are constructed in the Hartree-Fock approximation with axially symmetric mean
fields and using the K-partition numbers as additional constraints. The goal of this work is to find paths
through the scission point where the overlaps between neighboring configurations are large. A measure of
distance along the path is proposed that is insensitive to the division of the path into short segments. For
most of the tested K partitions two shape degrees of freedom are adequate to define smooth paths. However,
some of the configurations and candidate paths have sticking points where there are substantial changes in the
many-body wave function, especially if quasiparticle excitations are present. The excitation energy deposited in
fission fragments arising from thermal excitations in the pre-scission configurations is determined by tracking
orbital occupation numbers along the scission paths. This allows us to assess the validity of the well-known
scission-point statistical model, in which the scission process is assumed to be fully equilibrated up to the
separated fission fragments. The nucleus 236U is taken as a representative example in the calculations.
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I. INTRODUCTION

The final step of nuclear fission, namely the scission into
two (or more) distinct fragments, has always been difficult
to understand in fully microscopic models. In particular,
self-consistent mean-field theory has been very successful in
treating many aspects of fission theory but has shed little
light on the final scission dynamics. The problem can be
seen in typical constructions of fission paths by the generator
coordinate method (GCM) [1]. This involves a constrained
minimization of the mean-field configurations, treating the
expectation value of each constraining field as a coordinate.
Most important among the coordinates is the elongation of
the system. Configurations along the fission path are step-
wise defined by reminimizing the previous configuration at
a slightly larger elongation, but more sophisticated prop-
agation methods are possible [2–4]. At the scission point
these procedures break down: the reminimization produces a
configuration very different from the previous one. Efforts to
construct a continuous path have often focused on introducing
more shape constraints, but the difficulties remain [5,6].

In this work we will also follow the GCM approach,
but with some differences from previous work. We will use
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the Hartree-Fock rather than the Hartree-Fock-Bogoliubov
approximation to represent the configurations. We assume that
the mean-field potential is axially symmetric, so the angular
momentum of the orbitals about the fission axis K is con-
served. Then the dynamics conserves the number of particles
in orbitals of a given K . The set consisting of the number of
occupied orbitals for each K will be called the Kpartition.
The resulting dynamics, preventing particles from jumping
orbitals, is called1 diabatic [10–13]. In Ref. [14] we have
explored some of the diabatic configurations in 236U leading
to scission. In this work we study in more detail the changes
in the wave functions and energies going through the scission
point.

One may question whether the axially symmetric basis
is adequate for representing configurations along the fission
path. It is accepted wisdom that axial symmetry is broken at
the first fission barrier and triaxial shapes should be taken into
account for computing the barrier height.2 But the computed
shapes farther along the fission path are axially symmetric or
nearly so. In particular, the mean-field shapes we found at the
scission point have minima at axial symmetry.

1See Refs. [7–9] for examples of its application in other research
fields.

2See [15] and references cited therein.
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There are several characteristics of a diabatic path through
scission that we will examine. The first is to determine the
difficulty in defining a smooth path in terms of the number of
shape constraints need. Our original hope was that a single
elongation constraint would suffice, but that turns out not
to be adequate. We also define and evaluation a measure
of the length of the path through the scission point; long
path are more difficult to traverse, and the quantum theory
would require more GCM configurations to describe them.
An important physical question is how the scission dynamics
affects the energies in the final state fragments. The con-
figurations on the fission path are the lowest energy ones
subject to the constraints, which we call the zero-quasiparticle
configurations (ZQP). The excitation energy above the ZQP
configuration can be affected by the scission in two ways.
First, the diabatic dynamics could induce quasiparticle exci-
tations, thereby increasing the total excitation energy in the
final state. Even if this does not occur, the diabatic evolution
will change the excitation energy because the quasiparticle
energies will change. Also, the excitation energy sharing be-
tween fragments is determined at the scission point. In Sec. II
below we take the example of the configuration named Glider
in Ref. [14] to explain how we calculate the various properties
of interest. An important question is how much of the behavior
seen for Glider is generic with respect to different K partitions
or different energy functionals. In Sec. III we analyze several
more K partitions with two quite different energy functionals
to see what general conclusions can be made. One particular
question is how well statistical approaches to the scission
dynamics can be justified in a microscopic approach. There
has been considerable success of the scission-point statistical
model [16–18], which assumes that the excitation energy is
fully equilibrated between the two fragments at some fixed
separation between their surfaces. In particular, Ref. [18]
finds good agreement with experiments sensitive to the energy
sharing.

II. GLIDER

We first summarize how the GCM scission configurations
were constructed in Ref. [14]. The calculations are carried
out3 with the code HFBAXIAL [20] using the Gogny D1S
energy functional [21]. The code finds minima in the Hartree-
Fock-Bogoliubov energy functional constrained by the ex-
pectation values of external fields that serve as generator
coordinates. The GCM fields available are the mass multipole
moments4

Q̂L = rLPL(cos θ ), (1)

and fields associated with particle number and its fluctuations
in the HFB wave functions. The code assumes that the single-
particle Hamiltonian is axially symmetric. To find typical
scission configurations, we constructed a fission path by HFB
minimizations with only one shape constraint, namely the

3See Supplemental Material [19] for sample wave functions and the
codes used to analyze them.

4Note that Q2 defined here is one-half the conventional definition.

TABLE I. K partition of the configuration Glider and others to be
discussed in Sec. III. The entries are the number of occupied orbits
of a given K > 0. The total number of particles of given |K| is twice
that.

K partition Protons Neutrons

2K 1 3 5 7 9 11 1 3 5 7 9 11

Glider 22 14 6 3 1 0 31 20 11 6 3 1
A 22 14 7 3 0 0 31 21 12 6 2 0
B 21 13 7 4 1 0 30 20 11 7 3 1
C 21 14 7 3 1 0 30 21 11 6 3 1
C’ 22 14 7 3 0 0 31 21 12 6 2 0

mass quadrupole moment Q2. The minimizations were carried
out iteratively starting from the ground-state configuration.
At each cycle in the iteration, the Q2 was increased by a
small amount using the previous minimum as the starting
configuration. For the nucleus 236U , the configuration un-
derwent a major rearrangement at Q2 ≈ 168 b. At that point
the shape changed abruptly with a near disappearance of the
neck joining the two protofragments. To get a closer view
of the wave function dynamics at that point we determined
the dominant Hartree-Fock configuration in the HFB wave
functions. This was carried out by re-minimization of the
HFB configuration with an added constraint on the number
operator N̂2, effectively turning off the pairing field. Since
the single-particle Hamiltonian is axially symmetric, the HF
configurations can be characterized by its K partition as well
as by its density moments.

Among the HF states found, Glider is an intermediate
configuration just at the edge of the scission point; its K
partition is given in Table I.

From that point the HFB fission path jumps abruptly to
a configuration of separated fragments with very different
shapes. The HF reduction shows that this is accompanied
by a major rearrangement of orbital occupancies. However,
constraining the K partition allows one to track Glider over a
wide range of deformations going into post-scission shapes.
Its energy as a function of deformation is shown in Fig. 1.
One can see a transition at Q2 = 168–170 b where the neck
disappears. Interestingly, there are two local minima at Q2 =
168 and 170 b in the HF energy surface when constrained
only by the Q2 moments. The higher energy configurations are
obtained by stepping from smaller to larger Q2 values, and the
lower ones by stepping in the opposite direction. Beyond these
two Q2 points, the iteration gives identical configurations
in both directions. The density distributions of the Q2 =
166 b configuration |166〉 and the post-scission Q2 = 168 b
configuration |168p〉 are shown in Fig. 2. These configurations
have a substantial overlap (〈166|168p〉 = 0.29) and there is
no obvious change in structure besides the disappearance of
the neck. To analyze the transition in more detail, we will
introduce an additional GCM coordinate based on a field
sensitive to the number of nucleons in the neck region [22].
The definition is

N̂neck = exp
[ − (z − zA)2/a2

N

]
, (2)
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FIG. 1. Energy of Glider with the D1S energy functional and
constrained by the quadrupole field Q2.

with zA chosen at the point along the fission axis z for which
the density has a minimum, and aN = 1 fm. Its expectation
value as function of Q2 is shown in Fig. 3. One sees that
there is a discontinuous change in Nneck from ≈1.7 to ≈0.6
where there are two local minima. In Table II we show
some of the characteristics of the two solutions. A continuous
scission path can be constructed by adding N̂neck as a generator
coordinate. For example, we can define a unique interme-
diate configuration |167m〉 by constraining Q2 = 167 b and
Nneck = 1.1, as both |166〉 and |168p〉 converge to it when
the wave functions are reminimized with the new constraint.
The overlaps of the configurations are given in Table III. In
principle, imposing a neck constraint will affect the mass
split following scission. However, since we only impose the
constraint when the neck is already formed, the effects will
be small. We have checked that imposing the neck constraint
as we do does not change the mass split in the generated
post-scission configurations.

It will be useful to have a cumulative measure of the
overlaps along the scission path that is insensitive to the
details of the step sizes used to construct the path. This is
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FIG. 2. Density distributions of the Glider configurations at two
HF minima at the scission point. Top panel: configuration |168p〉;
bottom panel: |166〉. Contour lines of the mass density are spaced by
�ρ = 0.016 fm−3.

FIG. 3. Neck parameter Nneck as a function of deformation for
Glider. The circles starting from the upper left are the HF minima
constrained by Q2 stepping from the previous solution at Q2 − 2 b.
The minima starting from the lower right are similarly constrained
stepping from the previous solution at Q2 + 2 b. There are two
distinct minima at Q2 = 168 and 170 b.

achieved by the distance function ζ defined as

ζ =
N−1∑
n=1

(− ln |〈n|n + 1〉|)1/2. (3)

for diabatic paths consisting of a chain of N configurations
|n〉. Applying Eq. (3) to the path between end configurations
in Table III, we find ζ = 1.13, 1.12, and 1.13 with 0, 1,
and 3 intermediate configurations. Clearly this satisfies our
insensitivity demand.

A. Orbitals

Here we examine properties of the HF orbitals and how
they evolve during the scission. An important goal is to
calculate the changes in excitation energy associated with the
scission and how that energy is distributed between the final
state fragments. Up to now we have only treated ZQP configu-
rations, but the theory can be easily extend by allowing partial
occupation numbers nα for orbitals α in the vicinity of the

TABLE II. Properties of the configuration Glider at the pre-
scission point Q2 = 166, and the post-scission solution at Q2 =
168 b. The last two columns report properties of the daughter
nuclei, extracted from the density distribution of the post-scission
configuration at 168 b.

|166〉 |168p〉 heavy light

Z 92 92 52 40
N 144 144 84 60
E (MeV) −1775.8 −1776.1
Q2 (b) 166 168 1.5 4.8
Q3 (b3/2) 50.2 51.4 0.06 0.06
Nneck 2.0 0.7
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TABLE III. Overlaps of Glider configurations near the scission
point.

Overlaps 166 167m 168p

166 1.0 0.79 0.29
167m 0.79 1.0 0.67
168p 0.29 0.67 1.0

Fermi level. In the independent-quasiparticle approximation
the excitation energy E∗ above the ZQP value is given by

E∗ =
∑

α

εα

(
nα − n0

α

)
, (4)

where n0
α = 0 or 1 is the occupation number in the ZQP con-

figuration. In the diabatic approximation, the orbital energies
will change but the occupation factors will be frozen at the
their initial values.

To calculate the sharing of excitation energy between the
two fission fragments, we need to understand the localization
of the orbitals onto one fragment or the other. A rough
indicator is the expectation value of the orbital density along
the fission axis,

〈z〉α =
∫

d3r z|φα (�r)|2. (5)

Figure 4 shows the orbital energies and their z-averaged
positions for the configurations |166〉 and |168p〉, covering
the energy band −12 < ε − ε f < 5 Mev. The more deeply
bound orbitals have 〈z〉 close to −7.3 or 9.6 fm, corresponding
to the center-of-mass positions of the heavy or light fragment,
respectively. For the post-scission configuration (upper panel
of Fig. 4), practically all of the occupied orbitals follow that
pattern. The situation is quite different for the pre-scission
configuration shown in the lower panel. There are 10–20
orbitals that have much smaller 〈z〉, indicating a significant
probability on both protofragments. One would expect that
the extent of the bridging between the two fragments would
depend strongly on K : orbitals with high K quantum numbers
have small densities near the fission axis and would not have
a substantial presence in the neck region. This is confirmed
by the data shown in the figure. One can see that most of the
bridge orbitals have K = 1/2.

It is important for the diabatic treatment of the energy that
the evolution of the orbitals can be tracked across the scission
shape changes. This is hardly possible with the HFB wave
functions constrained only by shape. With the HF wave func-
tions and the two shape constraints Q2 and Nneck, the orbitals
evolve smoothly and one can identify the individual orbitals in
the two endpoint configurations with little ambiguity. This is
illustrated in Fig. 5, showing how the orbital energies and their
location vary as the neck size of the configuration decreases.
For most of the orbitals (marked with “A”), the absolute value
of 〈z〉 increases as the neck becomes smaller. This is exactly
what we expect: the bridge states straddle both prot-fragments
but become concentrated on one fragment or the other when
the neck disappears. Orbitals that are already localized on
one of the fragments (marked with “B”) hardly move at

FIG. 4. Orbital locations and their energies as a function their
expectation value 〈z〉α . Panel (a): |168p〉; panel (b): |166〉. Proton
and neutron orbitals are shown as circles and diamonds, respectively.
The markers are red for K = 1/2 orbitals and otherwise blue.

all. Interestingly, there are two orbitals that do not fit into
the pattern. The orbitals near the “C” marker move in the
opposite direction. Undoubtedly, the reason is that there are
two orbitals at nearly the same energy that mix together. When
diagonal energies become degenerate, the mixing becomes
maximal. This seems to occur in a configuration close to
|168p〉. The orbital evolution marked with “D” does not have
any physical explanation. Perhaps the chain of orbitals was
incorrectly assigned. Another feature seen in the bottom part
of Fig. 5 is the effect of Coulomb repulsion when the neck
becomes increasingly thinner: the repulsion between protons
tend to remove proton orbitals off the neck region while those
of neutrons progress more or less randomly.

B. Excitation energy

In principle there are three contributions to the energy of
the pre-scission configurations. The first is the ZQP energy
depending only on the shape parameters and the K partition.
The second contribution is the excitation energy associated
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FIG. 5. K = 1/2 orbital energies and location parameters 〈z〉
as the Glider neck parameter changes. Panels (a) and (b) show
proton and neutron orbitals respectively, for |ε − ε f | < 4 MeV. Red
diamonds: initial configuration |166〉; blue diamonds: final configu-
ration |168p〉. See text for comments on the marked orbitals.

with quasiparticle excitations. In this work we assume that
it can be computed from the difference in the single-particle
energies εα of the ZQP configuration. The last contribution,
the collective kinetic energy, will not be treated explicitly in
our work here.

We relate the excitation energy of the configuration to
its quasiparticle spectrum using the standard grand canonical
ensemble for occupation numbers nα ,

nα = 1

1 + exp [(εα − μ)/T ]
. (6)

Here μ is the chemical potential and T plays a role like tem-
perature. The qualification “plays a role” is needed because a
true temperature is a property of a fully equilibrated system
rather than a system constrained by a specific K partition.
The T in the above equation is only used to relate the partial
occupation probabilities to the total excitation energy. It is
also important that μ be adjusted to give the correct average
particle number in the ensemble.

TABLE IV. Thermal energy associated with Glider at the scission
point. Ensemble I: Eq. (4) with n−

α , ε−
α and preserving K partition

on average. Ensemble II: Eq. (8), diabatic with occupation numbers
from I. Ensemble III: Eq. (4) with post-scission n+

α , ε+
α and unre-

stricted by K-dependent chemical potentials. There are two rows for
each method giving results for starting energies of 10 and 20 MeV.
The third column is the number of quasiparticles Nqp = ∑

α |nα −
n0

α|. The last two entries are from a scission-point statistical model.
The parameter T and excitation energies E∗ are in units of MeV.

Ensemble T Nqp E∗ E∗
H E∗

L fH

I 0.893 5.4 10.0 4.8 5.2 0.48
1.164 8.7 20.0 10.4 9.6 0.52

II 0.896 5.4 10.1 5.4 4.6 0.54
1.164 8.7 20.6 11.8 8.8 0.57

III 0.923 7.5 10.0 4.6 5.4 0.46
1.21 10.7 20.0 9.8 10.2 0.49

We will calculate total excitation energies using single-
particle energies from both pre-scission and post-scission
configurations |166〉 and |168p〉. We separate the orbitals
into two sets, H and L, depending on each orbital’s location
as indicated by 〈z〉α . For the pre-scission configuration, the
orbital occupation numbers and single-particle energies are
denoted by a superscript (−) as n−

α and ε−
α , and similarly with

(+) for the post-scission orbitals. The excitation energy of the
pre-scission configuration is given by Eq. (4) with nα = n−

α .
We make a preliminary division between the two nascent
fragments from the energies

E∗−
S =

∑
α∈S

(
n−

α − n0−
α

)
ε−
α , (7)

where S is the set H or L. This changes to

E∗d
S =

∑
α∈S

(
n−

α − n0+
α

)
ε+
α (8)

after scission. Here the orbital occupation numbers are taken
from pre-scission occupation factors but the quasiparticle
energies are taken from the post-scission configuration. As
mentioned earlier, Eq. (8) requires tracking individual orbitals
along the scission path. We saw in the last section that this can
be carried out fairly confidently, at least for the orbitals near
the Fermi energy. More details of how we link the pre-scission
and post-scission orbitals are given in the Appendix. For
Glider orbitals, our procedure satisfies the check n0+

α = n0−
α

required for a ZQP diabatic path.
Table IV shows the energy partition calculated by the above

equations for |166〉and |168p〉 at initial excitation energies of
10 and 20 MeV. For each set of orbital energies, the parameter
T in Eq. (4) is chosen to reproduce a given total E∗. The
orbitals are assigned to H or L sets according to the sign of
〈z〉α . The average number of quasiparticles is given as Nqp

in the table. The final column in the table is the fraction of
excitation energy in the heavy fragment,

fH = E∗
H

E∗ . (9)
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The first point to notice is that the excitation energy hardly
changes during the diabatic evolution. This is contrary to the
expectation that diabatic transformations increase the internal
energies of the system. Evidently this is not the case for
Glider, which in fact evolves almost adiabatically within its K-
partition constraint. However, we will see below an example
of a diabatic evolution that explicitly injects excitation energy
into the final state fragments.

Another important observable is the energy sharing be-
tween the post-scission fragments. We see from the table that
the quasiparticle excitation energy sharing is about the same
in the pre-scission (Ensemble I) and post-scission (Ensemble
II) states. To make contact with the scission-point statistical
model, we also show energy sharing in an ensemble based
entirely on the final state quasiparticle energy (Ensemble III).
Here the occupation probabilities are computed with Eq. (4)
without any K-dependent chemical potential. This ensemble
shows some slight favoring of the lighter fragment. The
computed energy fraction fH is shown in the bottom entries
to the table. Experimentally, there is a strong favoring of the
lighter fragment at this mass splitting. It is attributed to the
proximity of the magic numbers 50 and 132 in the charge and
mass numbers of the heavy fragment. Of course, our results
should not be compared directly with experiment because the
ZQP energy has not been included.

III. OTHER EXAMPLES

Glider is perhaps one of hundreds of configurations that
can carry the 236U nucleus past the scission point. Any gen-
eral conclusions would require investigating a representative
sample of them. Toward this end, we have found several other
K partitions that transition from shapes with distinct necks
to separated fragments. Also, we present calculations with a
different energy functional to get some indication of which
qualitative features of the dynamics are generic or strongly
functional dependent.

A. Other K partitions

We consider here the three additional K partitions, labeled
A, B, and C in Table I. We have two measures of the dis-
similarity of the configurations on either side of the scission.
The first measure is the number of jumps in occupation num-
bers for the Q2-constrained path through the scission region.
In the case of Glider, there is a single jump down stepping
from the left and a corresponding jump up stepping from
the right; the two are very close in the Q2 coordinate. These
numbers are compared with the other configurations in Ta-
ble V. The number of downward jumps range from zero for
K partition B to two for A. Partition A is an especially difficult
case for constructing a path through the scission point. Its
energy as a function of the single Q2 constraint is shown
in Fig. 6. There are two configuration jumps stepping from
smaller to larger Q2, and one jump stepping from the other
side, The coexistence of two configurations at the same Q2

extends over a much larger range (143 < Q2 < 171 b) than
for the other cases. Adding the neck constraint brings the two

TABLE V. Characteristics of the GCM paths through the scission
point. Nj is the number of jumps in Nneck going from pre-scission to
post-scission shapes in steps of �Q2 = 2 b.

K partition Functional Nj Q2 ζ

Glider D1S 1 152–162 2.2
A D1S 2 149 4.1
B D1S 0 136 1.7
C D1S 0 134 2.4

Glider BCPM 2 156–175 2.6
A 1 158 3.1
B 1 141 1.7
C 1 138 2.7

paths close together but there remains a small region with two
local minima.

Another measure of difficulty in traversing the scission
point is the overlap distance ζ . Table V shows ζ for a path
through the scission point defined by Q2 and the neck size,
with Nneck decreasing from 3.0 to 0.7. For most cases the
distance is insensitive to the choice of Q2. However, varying
the Q2 constraint along the path may make it somewhat
shorter. To get a sense of the smoothness of the diabatic paths
through the scission point, we show ζ in Fig. 7 as a function
of the neck constraint. One can see that partitions B and C
are quite similar to Glider, but A has a major rearrangement
at (Q2, Nneck ) ≈ (149 b, 2.1). We have traced this behavior to
the creation of a particle-hole (p-h) excitation at this point in
the path. A more detailed description is given in the Appendix.

B. The BCPM functional

We now carry out the same path analysis with the BCPM
functional [23] that was used in a previous fission study [24].
The single-particle potential in BCPM is purely local, giving
a more realistic single-particle energy spectrum than the D1S.

FIG. 6. Energy of the A configuration with the D1S energy
functional and constrained by the quadrupole field Q2. Black circles:
iteration from the left; red diamonds: iteration from the right.
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FIG. 7. Overlap distance ζ from Nneck = 3.0 to 0.7 for the four
configurations Glider, A, B, and C with the D1S energy functional.
The A configuration is distinguished by red lines and markers.

Despite the differences between the D1S and the BCPM,
the fission paths along the valley bottom are very similar
(Fig. 8). In particular, the sequence of K partitions is identical
starting from the ground state at Q2 = 14 b to Q2 = 150 b.
However, closer to the scission point the paths are far from
identical. Figure 9 shows Glider’s Nneck vs Q2 calculated as
in Fig. 3, but using the BCPM functional. One sees that
the region of ambiguity is larger and that there is a sudden
jump from Nneck = 1.8 to 0.2 that is not present in the D1S
trajectory. Numerical data about the paths for all the partitions
treated in the last section are tabulated in the bottom rows of

FIG. 8. Hartree-Fock potential energy surfaces for 236U along
the fission valley constrained by Q2. The energies functionals are
the D1S (black lines) and the BCPM (red lines). The cusps in the
curves mark the positions where the orbital occupancies and K
partitions change. While the Q2 is continuous by construction, the
other moments of the shape distribution have discontinuities at these
points. For example, the Q3 moment jumps by ≈2 b3/2 at Q2 = 96 b
where a neutron pair in a K = 3/2 orbital jumps to a K = 1/2 orbital.

FIG. 9. Glider neck size with the BCPM energy functional and
constrained by the quadrupole field Q2. As in Fig. 6, iterations from
the left and right are shown as black circles and red diamonds,
respectively.

Table V. The Nj for BCPM are all different from the D1S
values. Nevertheless the overlap distances through the scission
point are within 0.4 units of each other, with the exception
of partition A. Unlike the experience with D1S, the BCPM
permits one to construct a path through the scission point with
only two shape constraints. Figure 10 shows ζ as function
of Nneck as in Fig. 7. The curves look quite similar to the
better-behaved D1S curves.

C. Excitation energies

As a final task to explore the sensitivities to input assump-
tions we repeat the calculation of excitation energy production
and sharing during the scission. The results for all configu-
rations and both energy functionals are shown in Table VI.
The pre-scission and post-scission configurations are chosen

FIG. 10. Overlap distance ζ from Nneck = 3.0 to 0.7 for the four
configurations Glider, A, B, and C calculated with the BCPM energy
functional.
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TABLE VI. Fraction of excitation energy in the heavy fragment
and total final state excitation energy for the diabatic evolution
Details of the path constraints are given in Table V. The parameter T
and excitation energies E∗ are in units of MeV.

Model K partition T f −
H f d

H E∗d

D1S Glider 0.9 0.41 0.57 10.6
A 0.86 0.31 0.35 18.9
B 0.89 0.50 0.47 9.7
C 0.85 0.50 0.39 8.6

BCPM Glider 0.75 0.52 0.53 10.2
A 0.695 0.29 0.39 11.9
B 0.762 0.50 0.55 8.9
C 0.705 0.54 0.50 4.9

at neck sizes Nneck = 3.0 and 0.7, respectively. The first thing
to note is that the effective temperature is higher for the
D1S functional than for the BCPM. This is not unexpected.
Roughly speaking, the temperature associated with a given
excitation energy depends quadratically on the effective mass
in the energy functional. The BCPM has an effective mass
of m∗

bcpm = 1 while the D1S has an effective mass of about
m∗

D1S = 0.67. The average temperatures in the above Tables
are 0.825 and 0.728 MeV for BCPM and the square of their
ratio is 0.7, rather close to m∗

D1S/m∗
BCPM.

The excitation energies shown in the table and how they are
shared between the fragments gives some idea of how much
the scission-point dynamics affects these important quantities.
Concerning the total excitation energy, the final diabatic ex-
citation energy can be larger or smaller than the initial 10
MeV. Excluding partition A under D1S, the average change
is −8%, largely driven by the 50% decrease in partition C
under BCPM. The corresponding standard deviation of the
energies is ±2 MeV. The other question is how the excitation
energy get shared between the two fragments. For the seven
normal cases in Tables VI, the average fraction to the heavy
fragment fH and its standard deviation are 0.48 ± 0.07. The
experimental fH depends strongly on the mass splitting, and it
can be reproduced in at least one version of the scission-point
statistical model [18]. There it was found that fH ≈ 0.36 at
E∗ = 10 MeV; in our Table VI, three out of the eight partitions
have energy fractions close to that value.

IV. CONCLUSION AND OUTLOOK

At the beginning of this study, we hoped that the constraint
on K partitions would be powerful enough to permit construc-
tion of paths through the scission point using a single shape
constraint. This condition is met in two of the configurations,
namely the ones that have no jumps in Table V. But typically
two constraints are needed and even that is inadequate for
partition A under the D1S energy functional.

This makes it much harder to build a basis of configurations
that could be treated with standard many-body techniques.
Still, it is reasonable to assume the scission paths with short
lengths (as measured by the overlap distance) will dominate
in the decays. The more lengthy paths might be ignored in

making first estimates of decay rates. It is intriguing to note
that in the time-dependent approach to fission dynamics it
has been found that there can be an important bottleneck at
the scission point [25]. There it was found that the nucleus
evolved smoothly to the scission point but remained there
for a variable amount of time ranging up to τscission ≈ 1.4 ×
104 fm/c. This implies that the pre-scission configurations
might have widths as small as 
 ≈ h̄/τscission ≈ 10 keV. De-
cay widths of the order 10 keV and higher would be consistent
with the measured autocorrelation function for the n + 235U
fission cross section, which does not show any systematic
correlation on lower energy scales that could be attributed to
the scission decay width [26].

As a next step in the present program, we would like to
estimate Hamiltonian matrix elements between configurations
along the scission path. In this respect, it will be quite
helpful to be guided by the ζ distances when setting up the
GCM space of intermediate configurations. It should then
be possible to calculate decay widths of configurations near
the scission point following the GCM methodology outlined
in Ref. [27]. This could be carried out with the present
computer codes, but it would be desirable to include collective
momentum variables among the generator coordinates. Once
one has the tools in place to calculate decay widths, it is
a simple extension to the calculation of branching ratios by
decay widths of different final states. For example, it would
permit a fully microscopic theory of the distribution of kinetic
energy in the final state (TKE).

In this study we have also used the diabatic paths to
estimate the transport and changes in excitation energy across
the scission point.5 This is very relevant to the scission-point
statistical model describing the distributions in mass yields
and excitation energies of fission fragments. In that model, it
is assumed that the scission itself has no dynamics role. This
is belied by partition A which undergoes a two-quasiparticle
excitation on its scission path. However, this may be an
anomalous case and it seems that ZQP paths are much more
likely. For those paths, the average decrease is not much
compared to all of the other uncertainties, and the variance
is also small compared to other sources of fluctuation in the
excitation energy. The conclusion is that ignoring diabatic dy-
namics remains an acceptable approximation in justifying the
scission-point statistical model. However, no firm conclusions
can be drawn until a more representative sample of partitions
can be examined.
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APPENDIX

The possibility of creating particle-hole excitations along
the fission path, and especially near scission, is of consider-
able interest in fission theory [29]. The excitation of intrinsic
states in the latter stages of fission has a direct bearing on the
excitation energy imparted to the fragments at scission, and
the energy available for neutron emission. In this Appendix,
we discuss in more detail how we track the orbitals along
the fission path by their overlaps, finding a particle-hole
excitations on the diabatic path.

In a HF formulation of the problem, the orbitals are defined
by the matrix W q diagonalizing the single-particle mean-
field Hamiltonian Hq. Here q are the constraints imposed in
the minimization of the energy functional. The overlaps of
orbitals α, α′ at different q is simply the dot product of the
two vectors

〈αq|α′q′〉 =
∑

i

W q∗
i,αW q′

i,α′ . (A1)

As noted in Sec. II, the calculations in this paper are carried
out within the HFB framework, with the HF wave functions
produced by constraining the pairing condensate to be small.
In that case, the columns of the W matrix map into rows of
the U matrix if the orbital is unoccupied and into rows of the
V matrix if the orbital is occupied. Both cases are covered by
the formula

〈αq|α′q′〉 =
∑

k

[
U q∗

αk U q′
α′k + V q∗

αk V q′
α′k

]
(A2)

when the occupation numbers are the same. If the occupation
number changes, the nonzero amplitudes reside in the U
matrix for one of the orbitals and in the V matrix for the other.
Then the overlap may be computed as

〈αq|α′q′〉 =
∑

k

[
U q∗

αk V q′
α′k − V q∗

αk U q′
α′k

]
. (A3)

In practice, the larger in absolute value of Eqs. (A2)
and (A3) is adopted as the optimal overlap. For each value
of the K quantum number, the optimal overlaps |〈αq|α′q′〉|
are calculated for all possible orbitals α, α′. The overlaps
are then sorted from highest to lowest in absolute value.
Proceeding down the list of sorted overlaps, the orbitals for
the largest overlap are considered matched and taken out of
consideration. The next largest overlap which does not involve
those orbitals already taken out of consideration gives the
next matched pair of levels. This process is repeated until all
orbitals have been matched.

We now examine in detail the case where we found a
possible particle-hole excitation, namely configuration A at
Q2 = 149 b in Table V, calculated with the D1S interaction.
The neck size was constrained from Nneck = 3 down to 0.75
in steps of �Nneck = 0.25. After calculating orbital overlaps
according to the above procedure, the first two proton orbitals

FIG. 11. Single-particle energies, relative to the Fermi energy,
plotted as a function of neck size for the two lowest K = 5/2 proton
orbitals for the configuration A at Q2 = 149 b. Energy units are MeV.

in the K = 5/2 block were found to change occupations when
going from Nneck = 2.25 to 2. The tracked single-particle
energies for those two orbitals are plotted as a function of
neck size in Fig. 11. One orbital switches from occupied to
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FIG. 12. Single-particle densities for the two K = 5/2 proton
orbitals closest to the Fermi energy for the configuration A at Q2 =
149 b Dashed red lines: Nneck = 2.00; solid black lines: Nneck = 2.25.
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unoccupied as the neck shrinks, while the other switches from
unoccupied to occupied. This swap in occupation probabilities
can be interpreted as a particle-hole excitation between the
two configurations. Interestingly, both orbitals reside largely
in the same fragment, but one has orbital angular momentum
M nearly parallel to the spin angular momentum, K = M +
1/2, while the spin in the other is mostly antiparallel. The
spatial densities of the orbitals in the HF representation are
given by

ρα (z) =
∑
i,k

δKi,Kk δMi,MkW
∗

i,αWk,α

×
∫

dx dy φ∗
i (x, y, z)φk (x, y, z), (A4)

where φk (�r) are the basis orbitals. In the HFB representation
we replace W ∗

i,αWk,α in the above equation by U ∗
α,iUα,k +

V ∗
α,iVα,k , similar to our treatment of Eq. (11).

The densities of the two K = 5/2 proton orbitals are
shown in Fig. 12. The upper panel shows the densities
in the orbital just below the Fermi level at Nneck = 2.10
(dashed red line) and Nneck = 2.09 (solid black line). The
lower panel shows the corresponding densities of the orbital
just above the Fermi level. It may be seen that the orbitals
have very different spatial character: one has a single lobe
centered near the middle of the fragment, while the other
is extended over a much larger range of z and has three
lobes.

The tracking results described above have an implicit de-
pendence on the step size along the scission path. The diabatic
evolution is (somewhat imprecisely) defined as the tracking
with large step sizes as in Fig. 11. For small step sizes, one
would expect an adiabatic evolution. That is, the orbitals will
keep their position as ordered by their single-particle energies.
The level crossings become avoided crossings, suppressing
particle-hole excitations, except if prevented by symmetries.
Indeed, we found this to be the case here. The particle-hole
transition takes place near Nneck = 2.1. We examine the orbital
matched between two configurations around that point and
separated by some �Nneck. For �Nneck � 0.07 the overlaps in
Eq. (A2) are favored, leading to a smooth transition across the
critical neck size without p-h excitation. For �Nneck � 0.07,
however, the overlaps in Eq. (A3) are favored, resulting in
a swap of occupation probabilities and a corresponding p-h
excitation. Although the calculations in this paper are entirely
static, the dependence on �Nneck mimics the range of dynamic
evolution at scission, where smaller �Nneck values can be
identified with a slow process, and larger �Nneck values with
a faster one.

However, there is one aspect of the Landau-Zener avoided-
crossing picture in this example that remains a puzzle.
Namely, the energies of the orbitals should smoothly pass
by each other as a function of the shape parameter, except
for a small region of the avoiding crossing. In fact, we find
that the energies remain nearly constant along the scission
path. Somehow, the wave functions are exchanged without
the energies coming close together. Clearly, this aspect of the
dynamics needs further study.
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