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Dynamics of a dinuclear system in charge-asymmetry coordinates: α decay,
cluster radioactivity, and spontaneous fission
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The possibility of application of the dinuclear system model to the simultaneous description of α decay, cluster
radioactivity, and spontaneous fission is discussed. The half-lives of cluster decay and spontaneous fission for
the nuclei 232,234,236U, 236,238Pu, 242Cm, and 248Cf are calculated within the same approach and compared with
existing experimental data. The cluster radioactivity in the 248Cf nucleus is predicted.
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I. INTRODUCTION

After the emission of 14C by 223Ra was discovered [1,2],
other cluster radioactivities have been observed. Nowadays, α

decay, cluster radioactivity (CR), and spontaneous fission (SF)
attract attention in connection with the studies of the structure
of heavy and superheavy nuclei. One of the most challenging
tasks is to describe the SF and CR processes in a single
approach with the same parameters. While the SF results in
the products with masses close to the half of the mass of
mother nucleus, the CR produces quite asymmetric fragments.
So, the CR can be considered as the superasymmetric fission
[3–6]. The existing models of the CR are distinguished by
means of calculation of preformation or spectroscopic factors
SL for cluster L. In the models with SL = 1, the effect of
preformation is effectively taken into account through the
parameters used to calculate the barrier penetration. The pre-
formed cluster model [7–9] either calculate S by solving the
Schrödinger equation in charge (mass) asymmetry coordinate
or assume some parameterization like SL ≈ S(AL−1)/3

α , where
AL is the mass number of cluster and Sα is the preformation
factor for α decay.

In the liquid-drop consideration, the shape parameter is
introduced to trace the evolution from the mother nucleus
to dinuclear-like system. This evolution is usually assumed
to proceed in the coordinate describing the elongation of the
system. However, the formation of cluster configuration can
also occur in charge (mass) asymmetry coordinate as shown
in Refs. [10,11]. The liquid-drop consideration of cluster
decay was improved by adding the shell effects in Ref. [12]
and considering the tunneling via quasimolecular shapes. A
simple formula was derived [9] for calculating cluster decay
half-lives using only one adjustable parameter Sα .

In the fragmentation theory [10,11,13,14], the Schrödinger
equation was solved to find the probabilities of formation of
cluster configurations. An important step of this approach is to
calculate properly the potential energy and inertia parameters.
If we assume the cluster configuration to be identical to the
dinuclear system (DNS), one can use the achievements of the
DNS model [15–18] and consider the DNS motion in charge

(mass) asymmetry coordinate to find the preformation factor.
The decay of the cluster configurations close to symmetry is
equivalent to the fission. So, the DNS approach allows us to
consider simultaneously the CR and SF.

The model presented here belongs to the cluster type
[15–24]. As assumed, the ground state of the nucleus has a
small admixture of the cluster-state components [25–30]. In
Refs. [15,16], a good description of the CR has been achieved.
The next step is to check if our model is able to describe
the SF. The problem has to be solved is the calculations
of spectroscopic factors and partial half-lives of nuclei with
respect to the emission of various clusters. In Refs. [31,32],
the microscopic cluster model was applied to produce four-
nucleon correlation on the nuclear surface. The shell model
was used in Refs. [33–36] to calculate the α-decay width.
However, an application of this model to the SF seems to
be cumbersome. The relation between the shell model and
the cluster model was discussed in Ref. [37]. Recent analysis
of experimental data both within the shell model [38,39]
and within the cluster model [40] show the importance of
shell-like cluster structure in nuclei [41–45]. This means the
importance of the microscopic effects in the DNS.

II. MODEL

The process of cluster formation with charge number ZL �
2 can be described as an evolution of the system in the
collective coordinates of the charge asymmetry,

ηZ = ZH − ZL

ZH + ZL
, (1)

and relative separation R of the cluster centers of mass. Here
Zi (Ai), where i = L, H , is the charge (mass) number of the
ith cluster and Z = ZL + ZH (A = AL + AH ) are the total
charge (mass) number of the DNS. The mass asymmetry
coordinate η = AH −AL

AH +AL
is assumed to be strongly related to ηZ

by the condition of the potential energy minimum. Though the
consideration of ηZ and η as independent variables is possible,
the firm relation imposed between these variables is supported
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by the experimental data and allows us to simplify treatment
significantly.

A DNS [30] with any ηZ is presented in the ground state
of the nucleus with a certain probability which depends on
the DNS potential energy with respect to the mother nucleus.
Such a DNS decays via tunneling through the barrier of the
nucleus-nucleus potential. In the first approximation, the CR
or SF can be divided into two independent stages, that are
the DNS formation, which is the result of motion in ηZ (η),
and the DNS decay in the coordinate R. Therefore, the decay
width in the certain channel is proportional to the product of
the probability SL of the DNS formation and the probability
of decay of this DNS.

The determination of SL requires the solution of the sta-
tionary Schrödinger equation:

H�(ηZ ) = E�(ηZ ), (2)

where the collective Hamiltonian

H = − h̄2

2

∂

∂ηZ
(B−1)ηZ

∂

∂ηZ
+ U (R, ηZ ,�), (3)

contains the inertia coefficient (B−1)ηZ
and the potential en-

ergy U (R, ηZ ,�). So, to find SL, one should determine the
DNS potential energy and DNS mass parameters as functions
of ηZ and R.

A. Potential energy of DNS

The potential of DNS [46],

U (R, ηZ ,�) = V (R, ηZ ,�) − (B − BL − BH ), (4)

is referred to a driving potential. Here B is the mass excess
of the mother nucleus and BL, BH are the mass excesses of
the nuclei forming the DNS considered. The potential energy
(4) is normalized with respect to the potential energy of the
mother nucleus.

The nucleus-nucleus interaction potential V is represented
as the sum:

V (R, ηZ ,�) = VC (R, ηZ ) + VN (R, ηZ ) + Vr (R, ηZ ,�), (5)

of the Coulomb VC , nuclear VN , and centrifugal Vr =
h̄2�(� + 1)/(2�) [where � is the moment of inertia of the
DNS] potentials. Here, we consider the decays of even-even
nuclei in the case of zero orbital angular momentum �.

The Coulomb potential VC is calculated as follows:

VC = e2ZLZH

R

{
1 + 3

5R2

∑
i=L,H

R2
i β2iY20(θi )

+ 12

35R2

∑
i=L,H

[Riβ2iY20(θi )]
2

}
, (6)

where β2i are the parameters of quadrupole deformation. In
our calculations, we employed the experimental values of BL

and BH from Ref. [47] and the values of the quadrupole defor-
mation parameters from Ref. [48]. If the relevant experimental
data were not available, we took the calculated values from
Ref. [49]. The shape of each cluster is described as

Ri(θ ) = r0iA
1/3
i [1 + β2iY20(θ )].

Because the mode which is responsible for N/Z equilibrium in
the DNS is rather fast, the potential energy U was minimized
in η for each fixed value of ηZ .

The nuclear part VN of the interaction potential is calcu-
lated in the double folding form:

VN =
∫

ρH (rrrH )ρL(RRR − rrrL )F (rrrH − rrrL )drrrH drrrL, (7)

where the density-dependent nucleon-nucleon forces

F (rrrH − rrrL ) = C0

{
Fin

ρ(rrrH )

ρ0
+ Fex

[
1 − ρ(rrrH )

ρ0

]}
δ(rrrH − rrrL )

are folded with the nucleon densities ρH (rH ) and ρL(R − rH ).
Here

Fin,ex = ξin,ex + ξ ′
in,ex

AL − 2ZL

AL

AH − 2ZH

AH

and ρ(rH ) = ρH (rH ) + ρL(R − rL ). The constants ξin =
0.09, ξex = −2.59, ξ ′

in = 0.42, ξ ′
ex = 0.54, C0 = 300 MeV

fm3 are from Ref. [50]. We take the spatial axial symmetric
nucleon density in the form

ρL,H (r) = ρ0

1 + exp(|r − RL,H |/aL,H )
, (8)

where ρ0 = 0.17 fm−3 and aL,H stands for the diffuseness
parameters of the nuclei in the DNS. The values employed
in our calculations fell within the range r0L,0H = 1.0–1.16 fm
for the nuclear radii RL,H = r0L,0H A1/3

L,H and within the range
aL,H = 0.47–0.56 fm for the diffuseness parameters, depend-
ing on nuclear mass.

In Fig. 1, the calculated nucleus-nucleus potential
V (R, ηZ ,� = 0) is shown for the pole-pole orientation in
the 24Ne + 208Pb system. There is a local minimum in this
potential at R0 corresponding to about 0.5 fm between the
nuclear surfaces, V (R0(ηZ ), ηZ ,� = 0) = V0. The value of
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FIG. 1. Calculated nucleus-nucleus potential for the 24Ne +
208Pb system. The bottom of the potential pocket corresponds to V0

at R = R0. The position of external turning point corresponding to
V = Q is shown as RJL .
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FIG. 2. Calculated contact distance R = R0(ηZ ) (dots) of the
DNS nuclei versus charge asymmetry coordinate in the system 234U.
The solid line is a guide to the eye.

a contact distance R0 in the DNS depends of ηZ and de-
formations of nuclei. The decay process is represented as
moving the system in R and ηZ coordinates (Fig. 2). The
smallest value of R0 achieves at ηZ = 1, which corresponds
to the mononucleus and represents its size. Generally, the
distance R0 increases with more symmetrical configuration
formation. The formation of cluster configurations or DNS
with ηZ occurs at R = R0(ηZ ). Motion to R > R0 can result
in the decay if the DNS escapes the potential pocket in the
nucleus-nucleus potential.

B. Inertia parameter

Because of the small overlap of nucleon density profiles
in the DNS, the inertia parameter for motion in R is well
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FIG. 3. Calculated driving potential U and inverse mass parame-
ter (B−1)ηZ

as the step functions of x for 234U (a) and 238Pu (b).
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FIG. 4. Calculated driving potential U and as the step function
of x for 242Cm (a) and 248Cf (b).

approximated by the reduced mass μ(ηZ ). For the calculation
of the mass parameter in ηZ , we use the results of Ref. [51]
where the following expression

(B−1)ηZ = 1

2m0

Aneck

2
√

2πb2A2
, (9)

FIG. 5. Calculated spectroscopic factors of the indicated clusters
emitted from 242Cm.
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FIG. 6. Calculated penetration probabilities and half-lives of the
indicated clusters emitted from 242Cm.

was derived. Here b characterizes the DNS neck size, m0 is
the nucleon mass, and

Aneck =
∫

[ρL(r) + ρH (R − r)] exp

(
− z2

b2

)
dr

is number of nucleons in the neck region between two nu-
clei. In the present calculations, we set the neck parameter
b = 0.479–0.019ηZ fm which corresponds to about three to
five nucleons in the neck region. Slightly larger b for the
symmetric DNS reflects a larger number of nucleons in the
neck region between two heavy nuclei.

FIG. 7. The same as in Fig. 5 but for 248Cf.
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FIG. 8. The same as in Fig. 6, but for 248Cf.

C. Spectroscopic factor

To solve Eq. (2) and find SL, it is convenient to replace ηZ

by

x = 2
ZL

Z
= 1 − ηZ .

This replacement of variables preserves the form of Eq. (2)
with the function �(x) domain change to x ∈ (0, 1), where
x = 0 corresponds to the state of the mononucleus, and x = 1
notes the symmetric DNS configuration.

The variable x is discrete by definition and the values of
driving potential and inertia parameter are calculated at points
xL = 2 ZL

Z . However, the variable x is chosen to be continuous
on the interval (0, 1) for solving Eq. (2). Therefore, the values
of U and (B−1)ηZ

are extended to the segments of the width
2 = 2/Z so that the points xU,B are placed in the middle
of the corresponding segments. The only exception is the
mononucleus, for which we set x ∈ [0, 4) and the α particle
with x ∈ [4, 5].

As seen in Figs. 3 and 4, there are local minima of the
driving potentials at ηZ close to zero. The potential energies
in these minima are smaller than the energy of mononucleus
at ηZ = 1. Thus, the energy resolved configurations appear for
the SF. These DNS configurations are excited.

To get the continues functions in Eq. (2), the potential
energy and the inertia parameter are approximated with the
stepwise functions (Figs. 3 and 4). In this case, Eq. (2) is
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TABLE I. Calculated cluster spectroscopic factors SL for 242Cm
and 248Cf.

242Cm 248Cf

Cluster SL Cluster SL

4He 7.96 × 10−04 4He 1.21 × 10−03

10Be 3.75 × 10−08 10Be 1.70 × 10−08

11B 2.52 × 10−10 11B 2.66 × 10−10

14C 1.28 × 10−11 14C 1.42 × 10−11

15N 8.36 × 10−12 15N 9.51 × 10−13

20O 3.92 × 10−14 20O 4.21 × 10−14

23F 1.67 × 10−15 23F 1.52 × 10−16

24Ne 6.51 × 10−17 24Ne 2.95 × 10−17

27Na 3.14 × 10−18 27Na 1.61 × 10−19

28Mg 4.42 × 10−19 28Mg 1.50 × 10−20

31Al 3.05 × 10−21 31Al 7.37 × 10−21

34Si 2.64 × 10−22 34Si 3.96 × 10−23

35P 2.35 × 10−23 39P 2.81 × 10−24

40S 2.12 × 10−24 40S 2.98 × 10−26

41Cl 3.67 × 10−25 43Cl 5.16 × 10−28

46Ar 9.92 × 10−27 46Ar 1.10 × 10−29

47K 2.72 × 10−28 47K 2.15 × 10−30

48Ca 7.63 × 10−30 50Ca 4.36 × 10−32

51Sc 2.0 × 10−30 51Sc 8.67 × 10−33

56Ti 5.91 × 10−31 56Ti 1.70 × 10−34

57V 1.80 × 10−33 57V 3.44 × 10−35

58Cr 5.98 × 10−34 60Cr 7.60 × 10−36

61Mn 2.08 × 10−34 61Mn 1.78 × 10−36

solved by replacing it by the system of equations

− h̄2

2

(
B−1

j

)
ηZ

∂2

∂x2
ψ j (x) + Ujψ j (x) = Eψ j (x). (10)

So Eq. (10) is solved for each interval of x and the functions
ψ j (x) are related to each other by the boundary conditions
(see Appendix A).

The wave function is normalized∫ 1

0
|�(x)|2dx = 1.

Using the ground state wave function of Eq. (2), we define the
preformation probability SL of the DNS with certain charge
number ZL of light cluster as follows:

SL =
∫ ηZ (ZL )+

ηZ (ZL )−

|�(ηZ )|2dηZ . (11)

The products of SF usually correspond to ηZ < 0.3. In-
deed, the potential energies of some DNS configurations with
these ηZ are smaller than the potential energy of fissioning

TABLE II. Calculated (T th
1/2) and experimental (T exp

1/2 ) α-decay
half-lives for even-even U isotopic chain.

232U 234U 236U

T th
1/2 (s) 3.021 × 109 9.15 × 1012 9.49 × 1015

T exp
1/2 (s) [52] 3.20 × 109 7.74 × 1012 1.00 × 1015

TABLE III. Calculated (T th
1/2) and experimental (T exp

1/2 ) CR half-
lives for even-even U isotopic chain.

232U → 24Ne 234U → 26Ne 234U → 28Mg 236U → 30Mg

T th
1/2 (s) 4.07 × 1021 1.29 × 1025 4.33 × 1025 1.85 × 1026

T exp
1/2 (s) [52] 1.89 × 1021 1.20 × 1025 3.47 × 1025 1.89 × 1026

mother nucleus. The SF mainly occurs from these configura-
tions. To calculate the SF half-life, one should take all DNS
configurations at ηZ < 0.3 into account by calculating their
partial decay widths. In almost symmetric DNS configurations
the potential barrier, which keeps the DNS nuclei at contact,
is small or absent. In the configurations contributing to SF the
DNS excitation usually exceeds the hight of this barrier. So,
the decay width of SF is mainly determined by SL.

D. Half-lives

The value of the spectroscopic factor SL cannot be directly
measured. Only the experimental half-lives T1/2 with respect
to the CR and SF are available to be compared with the
theoretical estimates. Thus, to compare the theoretical T1/2

for the CR the probability PL of penetration through the
Coulomb barrier is calculated in the one-dimensional WKB
approximation

PL =
[

1 + exp

(
2

h̄

∫ RJl

R0

√
2μ{V [R, ηZ (ZL ),�] − Q}dR

)]−1

,

where R0 and RJl are marked in Fig. 1, Q is the decay energy.
The value of T1/2 depends on the products SLPL. So, the decay
width �L is calculated as

�L = h̄ω0

π
SLPL,

where ω0 is the frequency of zero-point vibration in ηz coordi-
nate near the mononucleus state, h̄ω0 is equal to the distance
between the ground and the first excited state of DNS. Using
the formulas presented, the half-lives are calculated as

T1/2 = h̄ ln 2

�L
= π ln 2

ω0SLPL
. (12)

III. CALCULATED RESULTS

The dependence of the spectroscopic factor SL on the
charge (mass) number of cluster was determined by formula
(11) and presented in Table I. The spectroscopic factor ex-
hibits a global trend toward a strong decrease as the charge
of the cluster grows. For example, for the nucleus 242Cm

TABLE IV. Calculated (T th
1/2) and experimental (T exp

1/2 ) SF half-
lives for even-even U isotopic chain.

232U 234U 236U

T th
1/2 (s) 7.43 × 1020 1.61 × 1022 1.10 × 1023

T exp
1/2 (s) [52] 3.73 × 1021 4.73 × 1023 6.38 × 1023
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TABLE V. Calculated (T th
1/2) and experimental (T exp

1/2 ) α-decay
CR, and SF half-lives for 236Pu.

4He 28Mg SF

T th
1/2 (s) 4.80 × 108 2.06 × 1021 4.24 × 1017

T exp
1/2 (s) [52] 1.30 × 108 4.67 × 1021 1.10 × 1017

(248Cf), the spectroscopic factor of 48Ca (50Ca) is about 26
(28) orders of magnitude smaller than that of 4He. For the
considered below nuclei, the value of h̄ω0 weakly changes
in the interval (1.8–2.1) MeV. In Figs. 5–8 and Table I, we
show how the penetration probability and the spectroscopic
factor predetermine the half-lives with respect to the emission
of different clusters from 242Cm and 248Cf. In the contrast to
SL, the penetration probability PL globally increases with the
charge number of cluster and the interplay between these two
factors determines the cluster with the minimum of half-life.
As a result of this interplay, the emissions of clusters 34Si
and 40S, respectively, from 242Cm and 248Cf have the minimal
lifetimes.

To verify the model, the half-lives (12) with respect to α de-
cay, CR, and SF were calculated (Tables II–IV) and compared
with the experimental data [52] for even uranium isotopes.
A good agreement between the theory and experiment has
been obtained. The maximal deviation from the experimental
half-lives is within the factor of 6 that is rather good in the
present case without special adjustment of the parameters.
Here, we consider only the decays of even-even nuclei from
their ground states. Simultaneous good description of the CR
and SF in 232,234,236U allows us to apply the model to other
nuclei (Tables V–VII).

We consider the nuclei 236,238Pu and 242Cm for which the
CR is found. As seen in Tables V–VII, the description of α

decay and CR is pretty good. The emissions of neighboring
clusters 28Mg(T th

1/2 = 3.18 × 1025 s) and 30Mg(T th
1/2 = 2.79 ×

1025 s) from 238Pu are predicted. The SF mainly occurs from
the DNS configurations corresponding to the minima of the
driving potentials (Figs. 3 and 4) at ZL = 38–42. The potential
energies of these minima are smaller than the potential energy
of mother nucleus. The wave function in ηZ has local maxima
in these potential minima. As known, the U, Pu, and Cm
isotopes considered have asymmetric mass distributions of
fragments of the SF. The lifetime with respect to the SF is also
well described for most of the nuclei. The largest difference of
about factor of 8 is for 238Pu. However, it is acceptable for the
model without adjustment of the parameters which were set
the same for all nuclei considered.

TABLE VI. Calculated (T th
1/2) and experimental (T exp

1/2 ) α-decay
CR, and SF half-lives for 238Pu.

4He 30Mg 23Si SF

T th
1/2 (s) 1.21 × 109 2.79 × 1025 5.15 × 1025 1.01 × 1019

T exp
1/2 (s) [52] 3.90 × 109 5.01 × 1025 1.99 × 1025 1.26 × 1018

TABLE VII. Calculated (T th
1/2) and experimental (T exp

1/2 ) α-decay
CR, and SF half-lives for 242Cm.

4He 34Si SF

T th
1/2 (s) 3.49 × 107 2.09 × 1023 2.53 × 1014

T exp
1/2 (s) [52] 1.90 × 107 1.41 × 1023 2.32 × 1014

Besides the good description of half-lives with respect to
α decay and SF for 248Cf, we predict CR with the emission
of 40S in this nucleus (see Fig. 8 and Table VIII). This is
possible candidate for future experiment, which has has a
half-life to be measurable with present experimental setups
and reasonable branching ratio with respect to α decay.
For the comparison, T th

1/2(248Cf → 40S) = 233T th
1/2(242Cm →

34Si) = 4.88 × 1025 s, T th
1/2(248Cf → 46Ar) = 3.28 × 1026 s,

and T th
1/2(248Cf → 50Ca) = 2.63 × 1028 s.

In Fig. 9, we collect the calculated α decay, CR, and SF
half-lives as a function of the parent-nucleus charge number
Z . As seen, the α-decay and SF half-lives globally decrease
with increasing Z . In contrast, the CR half-life increases with
the charge number.

IV. SUMMARY

The model was developed to describe simultaneously the
α decay, CR, and SF. All these processes were considered as
the evolution of the system in the collective coordinates of
charge (mass) asymmetry and in the relative distance between
the centers of clusters. Calculating the penetrability of the
barrier in the nucleus-nucleus potential, the probability of
DNS decay in R is taken into consideration. The decays of
almost symmetric DNS configurations are attributed to the SF.
Indeed, the SF mainly occurs from the DNS configurations
with ηZ < 0.3 and corresponding to the minima of the driving
potential.

The calculated half-lives of α decay, CR, and SF for
the nuclei 232,234,236U, 236,238Pu, 242Cm, and 248Cf are in a
good agreement with available experimental data. In terms of
SF half-lives, the model presented describes well the values
which differ up to 12 orders of magnitude. So, the basic
assumption of the model on the collective coordinate for the
CR and SF seems to be correct. The model allows us to predict
the T1/2 with respect to the CR and SF for future experiments.
For example, the CR with the emission of 40S in the 248Cf
nucleus was predicted.

TABLE VIII. Calculated (T th
1/2) and experimental (T exp

1/2 ) α-decay,
CR, and SF half-lives for 248Cf.

4He 40S SF

T th
1/2 (s) 3.16 × 107 4.88 × 1025 1.96 × 1012

T exp
1/2 (s) 3.50 × 107 [52] 1.29 × 1012 [53]
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FIG. 9. Calculated (symbols) α-decay, CR, and SF half-lives
versus the charge number of the parent nucleus. The solid lines are
to guide eye.
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APPENDIX

The solution of the system of Eqs. (10) in the step-
wise potential is the superposition of the plane waves [ j =
0, 1, . . . , (N − 1)]

ψ j (x) = a je
ik j x + b je

−ik j x; k j =
√√√√ 2

h̄2
(

B−1
j

)
ηZ

(
E − Uj

)
.

(A1)
The boundary conditions

{
ψ j (x j ) = ψ j+1(x j ),

∂ψ j (x j )
∂x = ∂ψ j+1(x j )

∂x

}
j=0,1,...,(N−1)

(A2)

for the wave functions at each point x j provide the continuity
of wave functions �(x). The parity conditions

∂ψ0(0)

∂x
= 0,

∂ψN (1)

∂x
= 0 (A3)

at the borders x = 0 and x = 1 are taken also into account.

Using (A2) and (A3) in Eqs. (A1), we obtain the complete set of equations
a0k0 − b0k0 = 0,

{
a jeik j x j + b je−ik j x j − a j+1eik j+1x j − b j+1e−ik j+1x j = 0,

a jk jeik j x j − b jk je−ik j x j − a j+1k j+1eik j+1x j + b j+1k j+1e−ik j+1x j = 0,

}
j=0,1,...,(N−1)

(A4)

aN kN eikN − bN kN e−ikN = 0

to find the coefficients {aj}, {b j}. This system of equations can be written in the matrix form:
DeC = 0, (A5)

where

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

b0

a1

b1

.

.

aN

bN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

De =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

k0 −k0 0 0 ... 0
eik04 e−ik04 −eik14 −e−ik14 ... 0

k0eik04 −k0e−ik04 −k1eik14 k1e−ik14 ... 0
0 0 eik15 e−ik15 ... 0
0 0 k1eik15 −k1e−ik15 ... 0
... ... ... ... ... ...

0 0 0 0 ... −kN bN e−ikN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Equation (A5) has the solutions in the case of det(De) = 0. The energy E of the ground state is set to zero. These two
conditions provide the equation

det [De(E = 0,U0)] = 0

for finding the potential energy U0 of mononucleus.

024606-7



ROGOV, ADAMIAN, AND ANTONENKO PHYSICAL REVIEW C 100, 024606 (2019)

[1] H. J. Rose and G. A. Jones, Nature 307, 245 (1984).
[2] D. V. Alexandrov et al., JETP Lett. 40, 909 (1984).
[3] D. N. Poenaru, M. Ivascu, A. Sandulescu, and W. Greiner, J.

Phys. G 10, L183 (1984).
[4] W. Greiner, M. Ivascu, D. N. Poenaru, and A. Sandulescu, Z.

Phys. A 320, 347 (1985).
[5] G. Royer, R. K. Gupta, and V. Yu. Denisov, Nucl. Phys. A 632,

275 (1988).
[6] G. Royer and R. Moustabchir, Nucl. Phys. A 683, 182 (2001).
[7] S. Kumar et al., J. Phys. G 29, 625 (2003).
[8] M. Balasubramaniam and R. K. Gupta, Phys. Rev. C 60, 064316

(1999).
[9] A. Zdeb, M. Warda, and K. Pomorski, Phys. Scr. T 154, 014029

(2013).
[10] H. J. Fink, W. Scheid, and W. Greiner, J. Phys. G 1, 685 (1975).
[11] H. J. Fink, J. A. Maruhn, W. Scheid, and W. Greiner, Z. Phys.

268, 321 (1974).
[12] X. J. Bao, H. F. Zhang, B. S. Hu, G. Royer, and J. Q. Li, J. Phys.

G 39, 095103 (2012).
[13] J. A. Maruhn, W. Scheid, and W. Greiner, in Heavy Ion Colli-

sions, Vol. 2, edited by R. Bock (North Holland, Amsterdam,
1980), p. 399.

[14] R. K. Gupta, S. Singh, R. K. Puri, and W. Scheid, Phys. Rev. C
47, 561 (1993).

[15] S. N. Kuklin, G. G. Adamian, and N. V. Antonenko, Yad. Fiz.
68, 1501 (2005) [Phys. At. Nucl. 68, 1443 (2005)].

[16] S. N. Kuklin, G. G. Adamian, and N. V. Antonenko, Phys. Rev.
C 71, 014301 (2005).

[17] S. N. Kuklin, G. G. Adamian, and N. V. Antonenko, Yad.
Fiz. 71, 1788 (2008) [Phys. At. Nucl. 71, 1756 (2008)];
S. N. Kuklin, T. M. Shneidman, G. G. Adamian, and N. V.
Antonenko, Eur. Phys. J. A 48, 112 (2012).

[18] V. V. Volkov, E. A. Cherepanov, and Sh. A. Kalandarov, Phys.
Part. Nuclei Lett. 13, 729 (2016).

[19] Yu. M. Tchuvil’sky, Cluster Radioactivity (Moscow State Uni-
versity, Moscow, 1997).

[20] W. Greiner, M. Ivascu, D. N. Poenaru, and A. Sandulescu,
in Treatise on Heavy Ion Science, edited by D. A. Bromley
(Plenum, New York, 1989), Vol. 8, p. 641.

[21] D. N. Poenaru et al., At. Data Nucl. Data Tables 34, 423 (1986);
48, 231 (1991).

[22] Yu. S. Zamyatnin et al., Sov. J. Part. Nuclei 21, 231 (1990).
[23] S. G. Kadmensky, S. D. Kurgalin, and Yu. M. Tchuvil’sky,

Phys. Part. Nuclei 38, 699 (2007).
[24] D. N. Poenaru, Nuclear Decay Modes (IOP, Bristol, 1996).
[25] T. M. Shneidman, G. G. Adamian, N. V. Antonenko, R. V. Jolos,

and W. Scheid, Phys. Lett. B 526, 322 (2002); Phys. Rev. C 67,
014313 (2003).

[26] G. G. Adamian, N. V. Antonenko, R. V. Jolos, and T. M.
Shneidman, Phys. Rev. C 70, 064318 (2004).

[27] G. G. Adamian, N. V. Antonenko, R. V. Jolos, Yu. V. Palchikov,
and W. Scheid, Phys. Rev. C 67, 054303 (2003).

[28] G. G. Adamian, N. V. Antonenko, R. V. Jolos, Yu. V. Palchikov,
W. Scheid, and T. M. Shneidman, Phys. Rev. C 69, 054310
(2004).

[29] T. M. Shneidman, G. G. Adamian, N. V. Antonenko, and R. V.
Jolos, Phys. Rev. C 74, 034316 (2006).

[30] G. G. Adamian, N. V. Antonenko, and W. Scheid, Clusters in
Nuclei, Vol. 2, Lecture Notes in Physics, Vol. 848, edited by C.
Beck (Springer-Verlag, Berlin, 2012), p. 165.

[31] K. Wildermuth, F. Fernandez, E. J. Kanellopoulos, and W.
Sünkel, J. Phys. G 6, 603 (1980).

[32] T. Steimayer, W. Sünkel, and K. Wildermuth, Phys. Lett. B 125,
437 (1983).

[33] H. J. Mang, Phys. Rev. 119, 1069 (1960).
[34] T. Fliessbach and H. J. Mang, Nucl. Phys. A 263, 75 (1976).
[35] F. A. Janouch and R. J. Liotta, Phys. Rev. C 25, 2123 (1982).
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