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Emergence of nuclear clustering in electric-dipole excitations of 6Li
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Nuclear clustering plays an important role, especially in the dynamics of light nuclei. The importance of
the emergence of the nuclear clustering was discussed in the recent measurement of the photoabsorption cross
sections as it offered the possibility of the coexistence of various excitation modes which are closely related to
the nuclear clustering. To understand the excitation mechanism, we study the electric-dipole (E1) responses of
6Li with a fully microscopic six-body calculation. The ground-state wave function is accurately described with
a superposition of correlated Gaussian (CG) functions with the aid of the stochastic variational method. The
final-state wave functions are also expressed by a number of the CG functions including important configurations
to describe the six-body continuum states excited by the E1 field. We found that the out-of-phase transitions
occur due to the oscillations of the valence nucleons against the 4He cluster at the low energies around 10 MeV
indicating “soft” giant-dipole-resonance (GDR)-type excitations, which are very unique in the 6Li system but
could be found in other nuclear systems. At the high energies beyond ∼30 MeV typical GDR-type transitions
occur. The 3He-3H clustering plays an important role to the GDR phenomena in the intermediate-energy regions
around 20 MeV.

DOI: 10.1103/PhysRevC.100.024334

I. INTRODUCTION

Nuclear cluster structure often appears in the spectrum of
light nuclei. Especially, the α(4He) cluster plays a vital role
to explain the low-lying spectra of N = Z nuclei [1,2]. Much
attention has been paid to the understanding of the role of
nuclear clustering in the electromagnetic transitions of light
nuclei, as their importance in the nucleosynthesis represented
by the triple-α processes related to the famous Hoyle state in
12C [3].

The electric-dipole (E1) transition strengths contain nu-
merous information on the ground- and final-state wave func-
tions and have often been used as a probe for the nuclear
structure and dynamic properties. The giant dipole resonance
(GDR) can be observed in any nuclear systems, which has
been recognized as the classical picture of the out-of-phase
oscillation between protons and neutrons induced by the E1
external field [4,5]. Since its resistance force stems from the
nuclear saturation properties, the peak position, as well as its
distributions, is closely related to the bulk properties of the nu-
clear matter, especially to the nuclear symmetry energy [6,7].

Recently, due to the new advancement of experimental
techniques, exploration of new E1 excitation modes has
attracted the interest of the nuclear physics community. In
neutron-rich nuclei in which the neutron wave function is
extended further than that of protons. In the low excitation
energies the possibility of emerging the soft dipole excitation
mode was pointed out as oscillations of a core against excess
neutrons [8–11]. Recent microscopic calculations for halo
nuclei showed that the low-lying E1 strengths have the typ-
ical soft-dipole type excitation character in 6He [12–14] and
22C [15]. Exotic excitations such as troidal and compressive
modes were also discussed in 10Be as possible new excitations
for light unstable nuclei [16].

Recently, the photoabsorption reaction cross sections of
6Li were measured [17] in the energy range up to ∼60 MeV,
where the E1 transitions are dominant. A two-peak structure
in the photoabsorption cross sections was found and the peak
at the lower and higher energies were respectively conjectured
as the GDR of 6Li and the GDR of the α cluster in 6Li
based on the idea given in the early study of the 6Li(γ , n)
reaction [18] for the interpretation of the higher peak. If this
interpretation is true, then these kinds of subnuclear excitation
modes may appear in various nuclear systems where the α-
cluster structure is well developed.

In this paper, we study the E1 transitions of 6Li. The 6Li
nucleus has often been described with an α + p + n three-
body model (see, for example, Refs. [19–22] and references
therein). However, to understand the E1 excitation mechanism
of 6Li, a fully microscopic six-body calculation is needed that
can describe the formation and distortion of nuclear clusters
in a wide range of the excitation energies up to ∼60 MeV.
We calculate the E1 transition strengths and their transition
densities and discuss how 6Li is excited by the E1 field as
a function of the excitation energy. We clarify the roles of
light clusters in the E1 excitation spectrum extending the
discussions given in Ref. [14]. In that paper, the proton-proton
distance in the wave function of 6He was introduced as a
measure of the α clustering. However, it is not useful for the
case of 6Li because the wave function is totally antisymmetric
with respect to the exchange of the nucleons and thus we
cannot distinguish protons either in the α cluster or the valence
part of 6Li. Therefore, we calculate the spectroscopic factors
of various cluster configurations as direct quantities of the
clustering degrees of freedom.

The paper is organized as follows. In the next section,
we define basic inputs used in the many-body variational
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calculation. Section III explains details of the procedures
to obtain the ground- and final-state wave functions for the
six-nucleon system. In Sec. IV, we calculate the E1 tran-
sition strength distributions and discuss how the transition
occurs as a function of the excitation energy by analyzing
their transition densities focusing on the roles of the nuclear
clustering. The compressive isoscalar dipole strengths are also
evaluated as they reflect the other profiles of the transition
densities. Conclusions are made in Sec. V. In the Appendices,
we give details of the evaluation of the spectroscopic factors
and complementary analyses for the nuclear clustering in the
E1 transitions.

II. MICROSCOPIC FEW-NUCLEON MODEL

Here we briefly describe the microscopic few-nucleon
model employed in this paper. The Hamiltonian for an N-
nucleon system consists of the kinetic energy and two-body
potential terms Vi j as

H =
N∑

i=1

Ti − Tc.m. +
∑
i> j

Vi j, (1)

where Ti is the kinetic energy of the ith nucleon. The center-
of-mass (c.m.) kinetic energy Tc.m. is properly subtracted, and
hence no spurious E1 excitation appears in the calculation. As
a nucleon-nucleon potential, we employ an effective central
potential, the Minnesota (MN) potential [23], which offers a
fair description of the binding energies and radii of s-shell
nuclei, 2H (d), 3H (t), 3He (h), and 4He (α) [24,25] without a
three-body force. For a more quantitative discussion, we need
to use realistic nucleon-nucleon and three-nucleon forces.
However, this is too involved for the complicated six-body
system. As shown in Refs. [26,27], the central effective force
also give a fair description of the photoabsorption reactions
for the s-shell nuclei. For the sake of simplicity, in this paper,
we use the MN potential that drastically reduces the compu-
tational costs. The MN potential includes the one parameter u
that controls the strength of the odd-parity waves. Later we
will discuss how to choose the u parameter. The Coulomb
interaction is also included.

The N-nucleon wave function with spin J and its projection
MJ are expanded in terms of the fully antisymmetrized basis
function �

(N )
JMJ ,i

�
(N )
JMJ

=
K∑

i=1

C(N )
i �

(N )
JMJ ,i

. (2)

For the basis function, we employ the global vector represen-
tation of the correlated Gaussian basis function [24,28] as

�
(N )
JMJ ,i

= A{
exp

(− 1
2 x̃Aix

)[YLi (ṽix)χ (N )
Si

]
JMJ

η
(N )
MT

}
, (3)

where A is the antisymmetrizer. As the coordinate set x =
(x1, . . . , xN−1)t excluding the center-of-mass coordinate of
the N-nucleon system, xN , we conveniently take it as the Ja-
cobi coordinate set: xk = rk+1 − x(k)

c.m. with the center-of-mass
coordinate of the k-nucleon subsystem, x(k)

c.m. = ∑k
j=1 r j/k.

A tilde denotes the transpose of a matrix. The matrix A is
an (N − 1)-dimensional positive-definite symmetric matrix.

The correlations among the particles are explicitly described
through the off-diagonal matrix elements of A, noting that a
quadratic form x̃Ax = ∑

jk A jkx j · xk on the exponent. The
rotational motion of the system is described with the so-called
global vector ṽx = ∑N−1

j=1 v jx j [28,29]. Because the func-
tional form does not change under any linear transformation
of the coordinate, the form of Eq. (3) is convenient to include
various configurations such as single-particle α + p + n and
h + t cluster configurations as described in Sec. III B. With
this nice property, the correlated Gaussian method has been
applied to many examples related to nuclear clustering. The
readers are referred to various applications [30–32] and re-
view papers [33,34].

The N-nucleon spin function with the total spin S and its
projection MS is given as the successive coupling of N single-
particle spin functions χ 1

2 ms
as

χ
(N )
SMS

= [
. . .

[[
χ 1

2
(1)χ 1

2
(2)

]
S12

χ 1
2
(3)

]
S123

. . .
]

SMS
. (4)

All possible intermediate spins S12, S123, . . . , S123···N−1 are
taken into account in the calculation. The isospin function
with the total isospin T and its projection MT = ∑N

j=1 mtj is
represented by the particle basis which is the direct product of
N single-particle isospin functions η 1

2 mt
as

η
(N )
MT

= η 1
2 mt1

(1) · · · η 1
2 mtN

(N ) (5)

with mtj = 1/2 for neutron and −1/2 for proton. In the
particle basis, the mixture of possible total isospin states with,
e.g., T = 0, 1, 2, and 3 for 6Li, is naturally taken into account.

After those parameters of the basis functions are set,
we determine the K-dimensional coefficient vector C =
[C(N )

1 , . . . ,C(N )
K ]t by solving the generalized eigenvalue

problem

HC = EBC (6)

with Bi j = 〈�(N )
JMJ ,i

|�(N )
JMJ , j〉 and Hi j = 〈�(N )

JMJ ,i
|H |�(N )

JMJ , j〉.
These matrix elements can be evaluated analytically. See
Refs. [24,25,28] for the detailed mathematical derivation and
expressions.

III. CALCULATIONS OF THE WAVE FUNCTIONS

In this paper, we mainly discuss the E1 transitions. The
reduced E1 transition probabilities or E1 transition strengths
are defined by

B(E1, E f ) = 1

2J0 + 1

∑
Jf M f M0μ

∣∣〈� (N )
Jf M f

(E f )
∣∣

× M(E1, μ)
∣∣� (N )

J0M0
(E0)

〉∣∣2
(7)

with the E1 operator

M(E1, μ) = e

√
4π

3

N∑
i∈p

Y1μ(ri − xN ) (8)

with a solid spherical harmonic, Yλμ(r) = rλYλμ(r̂), where
the summation i runs only for proton. In this section, we de-
scribe detailed setup of the calculations for the initial-ground-
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TABLE I. Ground-state properties of 6Li. Energy and radii are
given in units of MeV and fm, respectively. See text for details. The
experimental data are taken from Refs. [35,36].

u E0(6Li) E0(α) Spn rm rp rn rpp S2
αd

1.00 −34.63 −29.94 4.7 2.20 2.20 2.20 3.62 0.856
0.93 −33.63 −29.90 3.7 2.33 2.34 2.33 3.86 0.869
0.87 −32.94 −29.87 3.1 2.45 2.46 2.45 4.07 0.882

Expt. −31.99 −28.30 3.70 2.452

state and final-continuum-state wave functions, �J0M0 (E0) and
�Jf M f (E f ), respectively.

A. Ground-state wave functions

For the ground-state wave function with the total angular
momentum and parity Jπ = 1+, in this paper, we consider
only the total orbital angular momentum L = 0 with the total
spin S = 1 state because the MN potential does not mix with
the higher-angular-momentum states. It does not mean that
the particles are not correlated. Higher partial waves for all
relative coordinates are taken into account through the off-
diagonal matrix elements of the matrix A of Eq. (3) in the
optimization procedure explained below.

As mentioned in the previous section, we need to optimize
a huge number of the variational parameters. To achieve
it efficiently, we employ the stochastic variational method
(SVM) [24,28]. First, we adopt the competitive selection from
randomly selected candidates and increase the basis size until
a certain number of basis states is obtained with u = 1.00.
Then we switch the selection procedure for the refinement
of the variational parameters in the already-obtained basis
functions until the energy is converged within tens of keV.
The convergence is reached at K = 600 in Eq. (2) as adopted
in Ref. [14]. This number is very small by noting that the
matrix A includes N (N − 1)/2 parameters as well as the spin
degrees of freedom for each basis function. For the wave
functions with other u parameters, we start with the optimal
basis functions with u = 1.00 and refine those basis functions
by keeping the total number of basis unchanged until the
energy convergence is reached.

Table I lists the ground-state properties of 6Li with different
values of the u parameter in the MN potential. As shown
in the binding energy of 6Li, E0(6Li), the original MN po-
tential (u = 1.00) offers slightly strong odd-wave interaction
to reproduce the two-nucleon separation energy of 6Li, Spn,
leading to the small rms point-proton radius, rp, compared to
the measurement [36]. It is noted that the u parameter does
not affect the interaction for the even-parity partial waves
but only for the odd-parity ones. Roughly speaking, the u
parameter controls the interaction of the valence nucleons
from the α core on the p-shell orbital. In fact, as listed in
Table I, the binding energies of the α particle, E0(α), have
almost no dependence on u. Therefore, we prepare two more
sets by considering the repulsive odd-wave strength: One set
is to reproduce the experimental Spn value (u = 0.93), and
the other set reproduces the experimental rp value (u = 0.87).
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FIG. 1. Point-matter densities of 6Li with different values of the
u parameter in the MN potential. The densities of α, h, and t with
u = 0.93 are also plotted for comparison.

As shown in the table, the smaller the Spn value, the larger
the nuclear radii becomes. The small difference between rp

and the rms point-neutron radius, rn, is due to the Coulomb
interaction, which is described in this study. The proton-
proton distance, rpp, is also calculated and listed in the table
for the sum-rule evaluation given in Appendix C.

Figure 1 plots the point-matter densities of 6Li with dif-
ferent values of the u parameter. The nuclear surface slightly
extends with decreasing the odd-wave strength or the u pa-
rameter. Peak positions are located in the range 1.6–1.7 fm
and their magnitude becomes half at about 2.7–2.8 fm. We
also plot the densities of α, h, and t with u = 0.93. The
calculated binding energies of h and t are respectively −7.68
and −8.38 MeV for u = 1.00. They also do not depend on
the choice of the u parameter. Only a 0.01-MeV difference is
obtained for decreasing u to 0.93 and 0.87. The peak of the
density of α is at about 1 fm, showing the sharper distribution
as compared to that of 6Li. The peak position of h and t are
almost the same as that of 4He but the half-density positions
are somewhat larger than that of 4He due to the weaker
binding.

The 6Li nucleus is known to have developed α cluster
structure and is well described with an α + p + n three-body
model [21] having a significant amount of the α + d com-
ponent [22,37]. As a measure of the clustering degrees of
freedom, we also show the spectroscopic factor of the α +
d configuration. The probability of finding the two-cluster
(a and b) configurations in the 6Li wave function is defined
by

S2
ab = ∣∣〈� (a)� (b)

∣∣� (6)
JMJ

(E )
〉∣∣2

, (9)

where � (a), � (b), and �
(6)
JMJ

(E ) are the ground-state wave
functions of nuclei a, b, and 6Li with energy E , respectively.
The relative wave function on the coordinate between the
center of mass of the nuclei a and b is integrated out. Details of
this evaluation are given in Appendix A. We calculate the S2

αd
values (a = α, b = d ) for the ground-state wave functions,
which are listed in Table I. The S2

αd values are large (0.86–
0.88) for all the values of the u parameter, which is consistent
with the value obtained with the variational Monte Carlo
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calculation, 0.84 [38]. The α + d cluster structure is some-
what distorted by the NN interaction and the Pauli principle.
In fact, the S2

αd value slightly increases by adding the repulsive
α-nucleon interaction with u = 0.93 and 0.87. Though S2

αd
values are large, no bound state in the 6Li system is obtained
only with the α + d configurations with a relative s-wave.
Inclusion of those distorted configurations is essential to get
binding in the six-nucleon system.

B. Final-state wave functions

In this subsection, we explain how to construct the final-
state wave functions excited by the E1 operator. We follow
almost the same prescription as given in Refs. [14,39,40] but
extended to adapt it to the 6Li case. The ground-state wave
function with Jπ = 1+ is excited by the E1 operator. Since
the operator does not change the spin of the initial state S = 1,
the orbital angular momentum of the final state should be
L = 1 and thus the Jπ = 0−, 1−, and 2− states need to be
considered. In this paper, we did not include the spin-orbit
interaction. These states are energetically degenerate; only its
multipolarity is different.

We expand the final-state wave function in a large number
of the correlated Gaussian basis functions of Eq. (3). To
incorporate the complicated six-body correlations efficiently,
physically important configurations are selected and cate-
gorized into three types: (I) single-particle (sp) excitation,
(II) 4 + 1 + 1 cluster, and (III) 3 + 3 cluster configurations.
All these configurations are again expressed by the same
functional form as in Eq. (3) with appropriate coordinate
transformations.

The configurations of type (I) is based on the idea that
the E1 operator excites one coordinate in the ground-state
wave function and these configurations are further subcate-
gorized into three channels which will be explained later in
this paragraph. The resulting coherent states are important to
satisfy the E1 sum rule [39]. The configurations of type (I)
are constructed by using the basis set of the ground-state wave
function of 6Li by multiplying additional angular momentum
L = 1 as

�
(sp,m)
JMJ ,i

= A[
�

(6)
1,i (123456)Y1

(
r1 − x(m)

c.m.

)]
JMJ

, (10)

where �
(6)
1,i is the ith basis (i = 1, . . . , 600) of the ground-

state wave function of 6Li. The coordinate r1 denotes the
single-particle coordinate of a proton. As a first choice, we
take the coordinate of one proton measured from the center of
mass of the system (m = 6). Considering that 6Li has a large
S2

αd component (∼0.9), we include the additional sp basis
sets that the four- and two-nucleon subsystems are excited
by the E1 operator (the channels with m = 4 and 2). Finally,
the total number of the basis of the type (I) is 1800 including
the channels with m = 6, 4, and 2.

The configurations of types (II) and (III) explicitly take
care of the cluster configurations of α + p + n and h + t ,
which correspond to the two lowest thresholds, 3.7 and
15.8 MeV [35], respectively. They are expected to be
important for describing the low-lying (�16 MeV) and inter-
mediate energies (�16 MeV).

The configurations of type (II) are defined in the following:

�
(411,l )
JMJ ,i jk = A{

�
(4)
0,i (1234) exp

[− 1
2 ỹB( jk)y

][Y1
(
y(X)

l

)
× [

χ 1
2
(5)χ 1

2
(6)

]
S56

]
JMJ

η 1
2 ,− 1

2
(5)η 1

2 , 1
2
(6)

}
, (11)

where �
(4)
0,i is the ith basis that gives the ground-state energy

of 4He with the full set of these basis functions. The following
two types of relative coordinates are considered:

(i) Y-type

y(Y)
1 = r5 − x(4)

c.m., y(Y)
2 = r6 − r5 + 4x(4)

c.m.

5
, (12)

(ii) T-type

y(T)
1 = r6 − r5, y(T)

2 = r5 + r6

2
− x(4)

c.m.. (13)

These configurations are essential for describing the two
valence nucleon motion around the α core, which will be
important, especially, in the low-lying energies. For the Y-
(T-)type channel, we assume that both of the y(X)

1 and y(X)
2

coordinates are initially in p (s) wave and the one coordinate is
excited to the s- (p-) wave state. We consider that either y(X)

1 or
y(X)

2 in each coordinate set is excited by the E1 operator, that
is, the basis set with l = 1 and 2 are independently included
respectively for (i) and (ii). The relative wave functions of
the valence nucleons are expanded with several Gaussian
functions covering short to far distances, that is, the diagonal
matrix elements of a 2 × 2 matrix B, e.g., B11 = 1/b2

11, are
chosen by a geometric progression with 18 and 15 basis
ranging from 0.1 to 22 fm for the y(X)

1 and y(X)
2 coordinates,

respectively. For practical computations, we truncate the num-
ber of the basis function of the four-nucleon subsystem, �

(4)
0,i ,

with 15 bases. Though the energy loss of this α particle is tiny,
in which only a 0.3-MeV difference from the full model space
calculation is found, it drastically reduces the total number of
basis functions.

The configurations of type (III) are defined as

�
(33)
JMJ ,i jk = A{[[

�
(3)
1
2 ,i

(123)�(3)
1
2 , j

(456)
]

J3

× exp
( − 1

2 bkz2
)Y1(z)

]
JMJ

}
(14)

with

z = r1 + r2 + r3

3
− r4 + r5 + r6

3
, (15)

where �
(3)
1
2 ,i

(123) and �
(3)
1
2 , j

(456) are the ith and jth bases that

give respectively the ground-state energies of 3He and 3H
with the full set of these basis functions. These configurations
describe the model space that directly excites the h + t cluster
degrees-of-freedom imprinted on the ground-wave function of
6Li (S2

ht ≈ 0.4). The relative wave function for the coordinate
z is expanded by 10 Gaussian functions with p wave to reduce
the computational cost. We also truncate the total number of
basis functions for the three-nucleon subsystems by seven
bases resulting in only 0.2-MeV energy loss in these h and t
particles.

Figure 2 shows schematic figures of the sets of the basis
functions explained above. Circles and the red thick line
indicate the protons and the coordinate excited by the E1
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FIG. 2. Schematic figures of the basis functions for the final-state
wave functions. Colored and uncolored small circles represent pro-
tons and neutrons, respectively. Thick lines indicate the coordinates
excited by the E1 operator. See text for exact definitions.

operator, respectively. Note that we include all the basis
states for each subsystem independently. The final-state wave
functions are not restricted, as the subsystems are the ground
state, but the excitations and distortion of 6Li, α, h, and t are
included through the coupling of the pseudoexcited states of
those nuclear systems. The number of bases included in this
calculation is 1800, 16 200, and 490 for the configurations
of types (I), (II), and (III), respectively. We diagonalize the
Hamiltonian, including all the configurations with 18 490
basis functions, and find ∼2 × 103 states below the excitation
energy of 100 MeV.

IV. RESULTS AND DISCUSSIONS

A. Electric-dipole transitions and nuclear clustering

Figure 3 plots the E1 transition strengths obtained with
the full model space that includes the configurations of types
(I)–(III) described in the previous section with different values
of the u parameter as a function of the excitation energy, Ex =
E f − E0. For all these u values, we see several large B(E1)
values in the low- (Ex � 16 MeV), intermediate- (Ex ≈ 16–
30 MeV), and high- (Ex � 30 MeV) energy regions. Though
there is little quantitative difference among these three differ-
ent cases up to Ex ≈ 40 MeV, hereafter we discuss the results
with u = 0.93 unless otherwise mentioned.

The structure of those peaks becomes more transparent
by categorizing those states with respect to the spectroscopic
factors of the α + p + n configuration,

S2
αpn = ∣∣〈� (α)� (p)� (n)

∣∣� (6)
JMJ

(E )
〉∣∣2

, (16)

0
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 0.25

 0.3
(a) u=1.00

0

 0.05
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B
(E

1)
 (

e2  fm
2 )

(b) u=0.93

0

 0.05

 0.1

 0.15

 0.2

 0.25
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Ex (MeV)

(c) u=0.87

FIG. 3. Electric-dipole strengths of 6Li with the full model space
with (a) u = 1.00, (b) 0.93, and (c) 0.87. Arrows indicate the the-
oretical α + d , α + p + n, and h + t thresholds from left to right,
respectively.

where � (α) is the ground-state wave function of 4He, and � (p)

(� (n)) is the proton (neutron) wave function. All the relative
coordinates between clusters, spins and isospins are integrated
out. Details about the evaluation are given in Appendix A.
Note that S2

αd is a subset of S2
αpn but the states with large S2

αd
value do not contribute to the E1 transition. No E1 transition
occurs from the ground state to those states because their total
isospins are almost 0.

Figure 4(a) displays the transition strengths to the states
with S2

αpn > 0.80. We find that the E1 transition strengths
distribute in ranges from 10 to 40 MeV and that most of the
low-lying states below 20 MeV have a large α + p + n cluster
component, which is consistent by reminding the facts that the
lowest h + t threshold is 15.8 MeV [35].

Figure 4(b) shows the E1 strengths with S2
ht > 0.50. Three

large E1 strengths appear after the h + t threshold opens. We
find that these peak structures are robust, and their positions
and strengths do not depend much on the values of the u
parameter. The first two structures may correspond to the
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FIG. 4. Electric-dipole strengths of 6Li with the full model space
with u = 0.93 categorized by the amount of the spectroscopic factors
into three: (a) S2

αpn > 0.80, (b) S2
ht > 0.5, and (c) neither (a) nor (b).

See text for details. Arrows indicate the theoretical α + d , α + p + n,
and h + t thresholds from left to right, respectively.

observed Jπ = 2− levels at Ex = 17.98 and 26.59 MeV with
the h + t decay widths of 3.0 and 8.7 MeV, respectively [35].

The other strengths, which cannot be categorized into the
above two conditions, are plotted in Fig. 4(c). They appear
beyond 30 MeV and some prominent E1 strengths are found
between 30 and 40 MeV. In this energy region, all the particle
thresholds are open. Various configurations can couple with
each other. We will discuss more details in Sec. IV B.

We discuss the structure of the states with large E1
strengths. For quantitative discussions, we list, in Table II, Ex,
B(E1), S2

αpn, and S2
ht of the states giving the four largest B(E1)

values in the low-, intermediate-, and high-energy regions
with u = 0.93. In the low-energy regions (Ex � 16 MeV)
below the h + t threshold, all the states have large S2

αpn values,
being almost unity, whereas their S2

ht values are almost zero.
In the intermediate-energy regions around 20 MeV where it

is energetically possible that the α cluster can break, although
most of the states still have large S2

αpn values, the state at

TABLE II. Excitation energy (Ex), reduced electric-dipole tran-
sition probability [B(E1)] in unit of e2fm2, and α + p + n (S2

αpn)
and h + t (S2

ht ) spectroscopic factors of 6Li with u = 0.93. Note
that two prominent strengths with different configurations appear at
Ex = 30.6 MeV.

Ex (MeV) B(E1) S2
αpn S2

ht

9.6 0.066 0.999 0.000
12.1 0.140 0.999 0.011
14.3 0.063 0.997 0.000
15.7 0.064 0.999 0.010

18.9 0.077 0.991 0.004
19.8 0.075 0.994 0.003
22.8 0.249 0.113 0.850
23.3 0.089 0.963 0.003

30.6 0.236 0.264 0.533
30.6 0.095 0.780 0.158
33.0 0.148 0.962 0.005
34.6 0.132 0.195 0.019

Ex = 22.8 MeV has a small S2
αpn value in which the α cluster

in the six-nucleon system is strongly distorted. This state is
dominated by the h + t configuration having a large S2

ht value,
0.850.

In the high-energy regions beyond ∼30 MeV where all
the particle thresholds are open, various structures are found:
a mixture of α + p + n and h + t components at Ex =
30.6 MeV, an almost pure α + p + n component at Ex =
33.0 MeV, and neither α + p + n nor h + t components at
Ex = 34.6 MeV.

We have shown the E1 strength distributions with the full
model space including the breaking and polarization of the
clusters in 6Li. To make the role of these effects clearer, we
discuss the E1 transition strengths only with the α + p + n
and h + t configurations in Appendix B and the impact of the
clustering configurations on the E1 sum rule in Appendix C.

B. Structure of the electric-dipole excitation

Let us discuss the spatial structure of the E1 transitions.
For this purpose, we calculate the transition densities of 6Li
for the analysis of the E1 transition mode [14],

ρ tr
p/n(r) =

∑
i∈p/n

〈
�

(6)
Jf

∥∥Y1(ri − x6)δ(|ri − x6| − r)
∥∥�

(6)
J0

〉
,

(17)

for proton and neutron. These quantities represent the spatial
distributions of the proton and neutron transition matrices and
we note that the E1 transition matrix can be obtained with

〈
�

(6)
Jf

∥∥M(E1)
∥∥�

(6)
J0

〉 = e

√
4π

3

∫ ∞

0
dr ρ tr

p (r). (18)

We discuss the transition densities of 6Li to the selected
states that show some characteristic behaviors. Figure 5 plots
the transition densities for proton and neutron that correspond
to the prominent B(E1) peaks with B(E1) > 0.1 e2 fm2. At
the low-energy (a) Ex = 12.1 MeV, we see the in-phase
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FIG. 5. Transition densities of 6Li with the excitation energy of
(a) 12.1, (b) 22.8, (c) 23.3, (d) 30.6, (e) 33.0, and (f) 34.6 MeV
selected from Table II. See text for details. Note that left panels plot
the transition densities with the states having large S2

αpn ≈ 1. Vertical

thin lines indicate theoretical nuclear radii,
√

5
3 rm, with rm = 1.41

and 2.33 fm for 4He and 6Li, respectively.

transition below the 6Li radius and the out-of-phase transi-
tions occur outside the nuclear surface. This characteristic
transition can be interpreted as the GDR-like or Goldhaber-
Teller-(GT) dipole-type oscillation [4] of the valence proton
and neutron around the core (α). In fact, the state has a
large S2

αpn value, as listed in Table II. This type of “soft”
GT-dipole mode is very unique in 6Li and differs from the
soft-dipole mode expected in 6He because of the oscillation
between the valence two neutrons against the core. We note
that the E1 transitions to α + d is almost forbidden because
the E1 operator is isovector and the ground state of 6Li is an
almost-pure T = 0 state though a small mixture of the other
total isospin states is included. Actually, the S2

αd value for this
state is 0.02. Studying the low-lying E1 excitations of 6Li is
the ideal example that the soft GT-dipole mode dominates.

In the energy regions where the h + t threshold opens,
we see clear out-of-phase transitions in all regions at (b)
Ex = 22.8 MeV, which is typical for the GDR mode. As S2

ht is
large >0.8, this behavior comes from the E1 excitation of the
relative motion between the h and t clusters. Peak positions
are at ∼2 fm located at the sum of the peak positions of the
density distributions of 3H and 3He displayed in Fig. 1. Such
cluster GT-dipole modes can appear in any nuclear system
but its emergence depends on the location of the cluster

threshold. In light nuclei, since the cluster threshold becomes
low, the cluster GT dipole modes can appear in the lower-lying
regions. For the 7Li case, the α + t threshold is lowest (2.47
MeV [35]; it differs from the case of 6Li), and the cluster
GT-dipole mode is expected to appear in the lowest-energy
regions.

We also find large B(E1) value at almost the same energy
(c) Ex = 23.3 MeV. Similarly to the transition density at (a)
Ex = 12.1 MeV, we see the in-phase transition below the 6Li
radius, but more oscillations in the out-of-phase transition
appear in the outside of the nuclear surface. Since this state
has large S2

αpn values, as listed in Table II, this state can
be interpreted as a vibrational excitation of the soft GT-dipole
mode. The transition densities with (e) Ex = 33.0 shows the
similar character having more oscillations.

At (d) Ex = 30.6 MeV, this shows the out-of-phase tran-
sition in all regions. Since the peak position is almost the
same as that of (b) Ex = 23.3 MeV and has large mixture of
h + t configurations, ∼0.5, listed in Table II, this state can
be regarded as a vibrational excitation of the state with (c)
Ex = 23.3 MeV which exhibits h + t clustering.

Finally, the state with (f) Ex = 34.6 MeV shows also the
out-of-phase transition in all regions but the peak positions are
located outside of the nuclear surface showing totally different
structure from that of the h + t oscillation. Neither S2

αpn nor
S2

ht is large, as listed in Table II. This state can be regarded
as having the typical GDR structure where the protons and
neutrons oscillate opposite to each other [4].

To strengthen the interpretations given above, we present
the transition densities with the final-state wave functions only
with the α + p + n and h + t configurations in Appendix B.

In summary, various types of the E1 excitations of 6Li can
be classified by focusing on nuclear clustering. Figures 5(a),
5(c) and 5(e) have the same characteristics whereby the in-
phase transition below the 6Li radius is due to α clustering
and out-of-phase transitions of the valence nucleons beyond
the nuclear surface (Soft GT-dipole mode). Figures 5(b), 5(d)
and 5(f) show the out-of-phase transition in all regions. The
excitation modes of Figs. 5(b) and 5(d) originate from the
oscillations between the h and t clusters (Cluster GT-dipole
mode), and Fig. 5(f) is the typical GDR oscillation where
protons and neutrons oscillate opposite to each other (GT-
dipole mode).

C. Photoabsorption cross sections

The total photoabsorption cross section is calculated by
using the formula [41]

σγ (Eγ ) = 4π2

h̄c
Eγ

1

3

dB(E1, Eγ )

dE
. (19)

The continuum states are discretized in this calculation. For
a practical reason, they are often smeared by the Lorentzian
functions dB(E1, E )/dE = 

2π

∑
ν B(E1, Eν )/[(E − Eν −

E0)2 + (/2)2], using a certain  value as a free parameter
[42]. To compare with the recent experiment, we fix the width
parameter to reproduce the total sum of the experimental
cross sections of Ref. [17]. However, the energy-independent
width does not work, which results in the unphysically large
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FIG. 6. Comparison of the photoabsorption cross sections of
6Li. Experimental 6Li(γ , n) data are plotted as open rectangles
[18], closed rectangles [43], open triangles [44], and inverted open
triangles [45]. Since they are unavailable, most of error bars of
the experimental data in Refs. [18,45] are not plotted. Diamonds
are the cross sections taken from Ref. [46], where the contributions
of the h + t and p + d + t channels are analyzed and taken into ac-
count. Open circles denote the 6Li(γ , n) + 6Li(γ , 2n) + 6Li(γ , 3n)
data taken from Ref. [17].

decay width ∼40 MeV. Thus, we use the energy-dependent
decay width that starts from the lowest threshold:
(E ) = [E − E (α + d )] tan 2θ , where E (α + d ) is the α + d
threshold energy. The θ value is determined to 27◦, which
reproduces the total sum of the cross sections of Ref. [17].

Figure 6 compares the calculated and experimental pho-
toabsorption cross sections of 6Li. Note that most of the exper-
imental data are the cross sections for the 6Li(γ , n) reactions,
and some channels, e.g., the h + t and p + d + t channels,
are not taken into account in the data. Only the cross sections
of Ref. [46] consider the h + t and p + d + t contributions.
In the calculated total photoabsorption cross sections, only a
single-peak structure is found. We remark that Refs. [12,13]
also predicted a broad single-peak structure at around 20 MeV
for the total photoabsorption cross sections of 6Li with the
six-body calculation, showing good agreement with the data
[46]. One possible reason for the two-peak structure found
in Ref. [17] could be that the contributions from the h + t
and p + d + t channels are not included in the data [17]. In
any case, the calculated results are almost identical for all
u parameters due to large smearing width (E ). Though all
fine structures are smeared out, the cross-section values are
quantitatively consistent with the measured cross sections,
considering that the measured values are very scattered. For
the quantitative comparison to the measured cross sections,
it is necessary to describe the six-body continuum states
appropriately with the aid of, e.g., the complex scaling method
[47,48] and the Lorentz integral transform method [49], as
well as the improvement of the nuclear interaction, although
they are involved.

Let us compare the interpretation given in Refs. [17,18] and
our findings. The measured cross sections of Ref. [17] show

the two-peak structure and their interpretation on the two-peak
structure was that the low-lying (Eγ � 20 MeV) peak comes
from the typical GDR transition mode of 6Li and the higher
peak (from ∼30 to ∼40 MeV) corresponds to the GDR of
the α cluster in 6Li. Contrary to that interpretation, we see
that the typical GDR or GT mode appears in the higher-lying
energy regions around 35 MeV, where the α cluster is strongly
distorted. In Ref. [18], the lower peak is interpreted as the
disintegration to the α + p + n channels, whereas the higher
peak is the GDR of 6Li due to the disintegration of the α

core. From the theoretical point of view, it is difficult to
say whether this GDR mode is the GDR of the α cluster in
6Li or not in the high-energy regions because they consist
of identical fermions. In our interpretation, in the low-lying
energy regions below the h + t threshold (15.8 MeV), the soft
GT-dipole transitions dominate the out-of-phase transition
between the valence nucleons around the α cluster, which
is consistent with the interpretation given in Ref. [18] for
the lower-energy peak. This can be determined, as all the
spectroscopic factors, S2

αpn, of the final states in this energy
regions are almost unity. It is known that the excitation energy
of the GDR is inversely proportional to the nuclear radius.
According to the systematics of the GDR energy [41], this
low-lying energy region corresponds to the GDR energies
of A ≈ 200 nuclei. Therefore, it is natural to interpret that
the typical excitation mode in this energy region is the GT
mode of the valence nucleons around the tightly bound α core,
whereas the typical GDR mode of 6Li suggested in Ref. [17]
is unlikely, and we note that the 6Li radius is about one half
of the radii of the A ≈ 200 nuclei [36]. In the intermediate
energies from ∼20 to ∼30 MeV just between the low- and
high-lying peaks of 6Li, the prominent h + t cluster GT-dipole
mode appears, which is consistent with the interpretation
given in Ref. [18] for the higher-energy peak. As summarized
at the end of the previous subsection, the emergence of these
various excitation modes can simply be recognized by the
threshold energies, the Ikeda threshold rule [1].

D. Isoscalar dipole transitions

Here we discuss another operator to present more details
on the transition densities. The compressive isoscalar dipole
(IS1) operator [50] is defined by

M(IS1) =
∑

i

(ri − xN )2Y1μ(ri − xN ). (20)

The transition matrix of IS1 can be calculated by using the re-
lation:

∫ ∞
0 dr r2(ρ tr

p + ρ tr
n ). The IS1 transitions have recently

been intensively discussed because they are of particular im-
portance to study the cluster structure (see recent theoretical
and experimental papers [16,51,52] and references therein).

Figure 7 plots the IS1 strength distributions as a function
of the excitation energies. We see some prominent strengths
below 5 MeV having the isoscalar nature possibly by the
α + d continuum, which cannot be excited by the E1
operator, which only has the isovector term. In fact, the S2

αd
values of those states are found to be almost unity and the
transition densities of the state with the most prominent IS1
peak at Ex = 3.3 MeV shows in-phase transition in all regions.
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FIG. 7. Isoscalar dipole strengths of 6Li as a function of the
excitation energy. Arrows indicate the theoretical α + d , α + p + n,
and h + t thresholds from left to right, respectively.

Beyond 5 MeV, the IS1 strengths drop suddenly and very
small strengths appear in the higher-energy regions. Most of
the IS1 strengths are exhausted by the transitions to the α + d
states below 5 MeV. In case of 6He [14], since the low-lying
soft-dipole mode is dominated by the surface excitation of
the valence neutrons, several IS1 strengths appear at the
low-lying regions. Contrary to the 6He case, the states with all
the prominent E1 strengths have the out-of-phase excitation
character. The IS1 transition matrix, which is obtained by the
sum of proton and neutron transition densities, is strongly
canceled out in such excitation modes where the out-of-phase
transitions dominate. The contributions from the in-phase
transition regions in the soft GT-dipole mode become small in
the IS1 strengths due to the additional r2 factor appearing in
the IS1 operator. The strong suppression of the IS1 transition
strengths can be evidence that all the 6Li final states beyond
5 MeV are dominated by the out-of-phase transitions. We
remark that similar transition strengths are observed in the
proton inelastic scattering on 6Li [53], although a proton
probe can excite both the isoscalar and isovector components.
The experimental confirmation using an isoscalar probe such
as an α particle is desired to clarify the excitation mechanism
of 6Li.

V. CONCLUSION

Motivated by the recent measurement of the photoabsorp-
tion cross sections of 6Li [17], we have performed fully
microscopic six-body calculations for the electric-dipole (E1)
transition strengths. The ground-state wave function of 6Li
was obtained precisely by using the correlated Gaussian (CG)
functions with the stochastic variational method. The final-
state wave functions populated by the E1 operator were
expanded by a number of the CG functions, including the
explicit asymptotic cluster wave functions as well as their
distorted configurations, which are important to describe the
complicated six-nucleon dynamics. Emergence of various
excitation modes has been found through the analysis of the
transition densities from the ground- to final-state wave func-
tions. The degrees of the clustering in those states have been
quantified by evaluating the components of the α + p + n and

h + t clusters in the 6Li wave functions to understand the role
of these cluster configurations in the E1 excitations.

Nuclear clustering plays a crucial role in explaining the
E1 excitation mechanism of 6Li and its emergence strongly
depends on the positions of the threshold energies. In the low-
energy regions below the α breaking or h + t threshold energy
�16 MeV, we found that the E1 excitations are dominated by
the “soft” dipole mode that exhibits the in-phase transitions of
proton and neutron transition densities in the internal regions
and the out-of-phase transitions beyond the nuclear surface.
This can be interpreted as the out-of-phase oscillation between
valence nucleons around the α cluster in 6Li (“soft” GT-dipole
mode), which is a very unique excitation mode. After the h + t
thresholds open, the h + t cluster mode appears showing the
out-of-phase transition in all regions and they also compete
with the vibrational excitation of the soft GT-dipole modes
having the α + p + n structure. Beyond 30 MeV, where all
decay channels open, α + p + n and h + t and other possible
channels can mix and compete and, finally, the typical GDR
mode appears in these energy regions.

These interpretations are different from the speculation
given in Ref. [17] that the low-energy peak corresponds to
the typical GDR of 6Li. From the present analysis, we found
that the E1 transition strengths of the 6Li are dominated by
the out-of-phase transitions of protons and neutrons in the
surface regions from the low- to high-energy regions, which
is in contrast to 6He where the neutron transition dominates
at the low-energy regions. This phase property can be verified
by using an isoscaler probe such as an α inelastic-scattering
measurement to confirm whether no prominent strength is
found after the α + p + n threshold.

It is interesting to explore whether the soft GT mode ap-
pears in the low-lying energy regions of heavier nuclei. Since
the excitation mode emerges from the out-of-phase transition
of the proton and neutron of the d-cluster around the core in
the initial ground-state wave function, the ground-state wave
function should have a well-developed core plus d-cluster
structure. The most probable candidate is 18F because the
ground-state spin-parity is 1+ like 6Li and a 16O + p + n
cluster structure component can be large.

Also, as a natural extension of 6Li, a nucleus 7Li is
worth studying [17]. Since the α + t threshold is the lowest
(2.47 MeV), the cluster GT mode of α + t is expected to
appear first, and then the other excitation modes appear with
respect to the opening of the particle decay channels α + d +
p, α + p + p + n, t + h + n, etc., in order.

These studies will serve as the universal understanding
of the emergence of the nuclear clustering and reveal the
excitation mechanism of nuclei through the E1 field, which
is one of the simplest probes of the nuclear structure.
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APPENDIX A: CALCULATION OF THE
SPECTROSCOPIC FACTORS

As a measure of degrees of the clustering, we evaluate the
spectroscopic factors, which are the components of finding the
α, α + d , and h + t configurations in the wave function of 6Li.
Equations (16) and (9) are respectively written more explicitly
as

S2
αpn =

∣∣∣∣
∫∫

dr dr′〈� (α)� (p)� (n)|

× δ(y1 − r)δ(y2 − r′)
∣∣� (6)

JMJ
(E )

〉∣∣∣∣
2

, (A1)

S2
ht =

∣∣∣∣
∫

dr
〈
� (h)� (t )δ(z − r)

∣∣� (6)
JMJ

(E )
〉∣∣∣∣

2

. (A2)

All the relative wave functions are integrated out by using
the orthonormal basis

∑
lm φl,i(r)Ylm(r̂) constructed from a

sufficient number of Gaussian functions, rl exp(−ar2), as a
complete set. Practically, we make the orthonormal basis sets
by diagonalizing the relative wave functions used in the final-
state wave function of types (II) and (III). More explicitly, we
diagonalize the following overlap matrices using the coeffi-
cients of the bases that give the ground-state wave function of
a nucleus x, C(x)

i for the α + p + n spectroscopic factor,

B(αpn)
mn =

K4∑
i, j

C(α)
i C(α)

j

〈
�

(411,k)
JMJ ,im

∣∣�(411,l )
JMJ , jn

〉
(A3)

with k and l run for 1 and 2 corresponding to the Y and T
types, respectively. We take K4 = 15. In the end, the dimen-
sion of B(αpn) is 1080. For the h + t spectroscopic factors, we
diagonalize the following overlap matrix:

B(ht )
mn =

K3∑
i, j,k,l

C(h)
i C(t )

j C(h)
k C(t )

l

〈
�

(33)
JMJ ,i jm

∣∣�(33)
JMJ ,kln

〉
(A4)

with K3 = 7. Finally, all the spectroscopic factors calculated
in this paper are evaluated by the overlap matrix element of the
correlated Gaussians [25,28]. The same procedure is applied
for the evaluation of the α + d spectroscopic factor as well.

APPENDIX B: ELECTRIC-DIPOLE TRANSITIONS ONLY
WITH α + p + n AND h + t CONFIGURATIONS

Here we discuss the E1 transitions only with the α + p + n
and h + t configurations, which are respectively constructed
by the diagonalization of the following basis functions:

�
(αpn),m
JMJ , jk =

∑
i

C(α)
i �

(411,m)
JMJ ,i jk, (B1)

�
(ht )
JMJ ,k

=
∑
i, j

C(h)
i C(t )

j �
(33)
JMJ ,i jk, (B2)

where C(x)
i are a set of the coefficients that give the ground-

state wave function of a cluster x(= h, t , and α). Figure 8 plots
the transition strengths only with the α + p + n and h + t
final-state configurations. As expected the transition strengths
only with the α + p + n configurations below 30 MeV are
similar to the results displayed in Fig. 4(a) where the S2

αpn
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FIG. 8. Electric-dipole strengths only with (a) α + p + n and
(b) h + t final-state configurations. Arrows indicate the theoret-
ical α + d , α + p + n, and h + t thresholds from left to right,
respectively.

values are large. We only find three significant strengths with
the h + t configurations and the positions of the two lowest
prominent peaks at Ex = 20.0 and 23.9 MeV remain un-
changed with the full model space calculations, while the most
prominent peak at Ex = 36.4 MeV split into small strengths in
the full model space calculation as shown in Fig. 3(b). We find
the state has relatively large square overlap with the α + p + n
configuration (0.281), leading to level splitting due to channel
coupling.

We calculate the transition densities with the α + p + n
configuration that give the three largest B(E1) strengths for
each configuration and are shown in Figs. 9(a), 9(c), and
9(e). These almost explain the characteristic behaviors of the
transition densities of the states with large S2

αpn, which are
the soft GT-dipole modes. All the transition densities have
in-phase transitions inside, around the nuclear radius, and
out-of-phase transitions beyond the surface. It is interesting to
note the nodal or oscillatory behavior in the in-phase regions
of the transition densities around the radius of the α particle.
This is due to the Pauli principle between the core and valence
nucleon. As we see in the transition densities of 6He, the
nodal behavior of the transition density can only be seen in
the neutron transition [14].

We also plot, in the Figs. 9(b) and 9(d), the transition densi-
ties only with the h + t configurations for the states giving the
two highest E1 strengths. They show typical GDR behavior
and peak positions are at around the nuclear surface, which
explains the behavior of the transition densities of Figs. 5(b)
and 5(d). In this restricted model space, we do not obtain the
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FIG. 9. Transition densities to the states that give the promi-
nent E1 strength only with the restricted model spaces: The α +
p + n final-state configurations at (a) Ex = 14.5, (c) 20.3, and (e)
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theoretical nuclear radii,
√

5
3 rm, of 4He and 6Li, respectively.

similar transition densities to the state with Ex = 34.6 MeV,
implying that these clusters are strongly distorted, as was
shown in the GDR mode at Ex = 32.9 MeV in 6He [14].

APPENDIX C: NON-ENERGY WEIGHTED SUM RULE

Here we discuss the impact of the clustering configurations
on the E1 sum rule. The non-energy-weighted sum rule
(NEWSR) can be evaluated by

∑
E f

B(E1, E f ) = e2

[
Z2r2

p − Z (Z − 1)

2
r2

pp

]
. (C1)

We obtain 4.49 e2 fm2 as a total sum of the E1 transition
strengths with the full model space. The NEWSR is fully
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FIG. 10. Cumulative sum of the E1 transition strengths of 6Li
with the full model space, α + p + n, and (α + p + n) + (h + t )
configurations with u = 0.93. The NEWSR value and the total sum
of the E1 strengths only with the α + p + n configurations are plot-
ted as thin dotted lines for comparison. See text for details. Arrows
indicate the theoretical α + d , α + p + n, and h + t thresholds from
left to right, respectively.

satisfied, that is, 99.6% of the right-hand side of Eq. (C1)
is fulfilled in the present model space. To quantify the im-
portance of the α clustering, we calculate the left-hand-side
equation only with the α + p + n configuration defined in
Eq. (B1) and the value is 2.45 e2 fm2, satisfying 55% of the
total sum-rule value.

Figure 10 compares the cumulative sum of 6Li of the E1
strengths with the full model space as well as the ones only
with the α + p + n configurations. To get the sum rule satis-
fied, say, 80%, the cumulative sum with the full model space
needs to integrate up to about 45 MeV, whereas the most of the
important configurations with the α + p + n configuration are
exhausted at 33 MeV where its cumulative sum exceeds 80%
of its total sum. We find that the configurations other than the
α + p + n configurations are also important in such low-lying
regions below ∼20 MeV and even the h + t threshold does not
open. They are used to describe the polarization of the clusters
through the coupling of those cluster configurations. The
difference between the cumulative sum of the full model space
and α + p + n are 30% at 10 MeV and the difference becomes
large as the incident energy increases. We also display in
Fig. 10 the cumulative sum of the transition strengths with
the mixing of α + p + n and h + t configurations defined
respectively in Eqs. (B1) and (B2). The h + t configurations
play a role beyond ∼20 MeV after opening the h + t threshold
and improve the NEWSR value by 8%. However, it is not
enough to explain all the needed configurations included in
the strengths with the full model space. In the higher energies,
the breaking of these cluster configurations becomes more
important as various configurations can contribute to the E1
transitions.

[1] K. Ikeda, N. Takigawa, and H. Horiuchi, Prog. Theor. Phys.
Suppl. E68, 464 (1968).

[2] Y. Fujiwara, H. Horiuchi, K. Ikeda, M. Kamimura, K. Katō, Y.
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