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The quark-meson-coupling (QMC) model self-consistently relates the dynamics of the internal quark structure
of a hadron to the relativistic mean fields arising in nuclear matter. It offers a natural explanation to some open
questions in nuclear theory, including the origin of many-body nuclear forces and their saturation, the spin-orbit
interaction, and properties of hadronic matter at a wide range of densities. The QMC energy density functionals
QMC-I and QMCπ -I have been successfully applied to calculate ground state observables of finite nuclei in the
Hartree-Fock + BCS approximation, as well as to predict properties of dense nuclear matter and cold nonrotating
neutron stars. Here we report the latest development of the model, QMCπ -II, which includes higher order terms
in density in the expansion of the relativistic energy-density functional, as well as the self-interaction of the
σ meson. A derivative-free optimization algorithm has been employed to determine a new set of the model
parameters and their statistics, including errors and correlations. QMCπ -II predictions for a wide range of
properties of even-even nuclei across the nuclear chart, with fewer adjustable parameters, are comparable with
other models. The nuclear incompressibility is significantly reduced in this version, leading to a description of
giant monopole resonances which is consistent with experimental data.
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I. INTRODUCTION

The quark-meson-coupling (QMC) model is based on the
self-consistent adjustment of the internal structure of hadrons
immersed in a nuclear medium in which there are strong
Lorentz scalar and vector mean fields [1,2]. These changes
lead naturally to the appearance of many-body nuclear forces
through higher-order terms in density in the QMC energy-
density functional (EDF) [3,4]. The model has been applied to
a wide range of problems of experimental interest [5], includ-
ing the possible existence of meson-nucleus bound states [6,7]
and the structure of hypernuclei [8].

The first systematic application of the QMC model in
the Hartree-Fock (HF) + BCS framework to a wide range
of even-even nuclei (QMC-I) [9] produced promising results
with fewer and well constrained free parameters as compared
to the traditional and frequently used EDF of the Skyrme type.
The accuracy with which the ground state binding energies of
superheavy nuclei were reproduced, although they were not
included the fitting procedure, was particularly encouraging.
This feature was explored further in Ref. [10], using the next
development of the model by including one-pion-exchange
(QMCπ -I).

In this work, we report the latest version of the QMC model
(QMCπ -II), where the earlier version has been extended to
include higher order terms in density in the expansion of

the EDF, especially in the finite range and kinetic terms. In
addition, it includes the self-interaction of the σ meson [11].
Modern search procedures were used to optimize the model
parameters to give the best fit to known ground state properties
of a large number of magic and semimagic nuclei, while
retaining consistency with empirical nuclear matter properties
at saturation.

This paper is organized as follows: Section II gives a
short outline of the main features of the QMC EDF; the
method of obtaining the QMCπ -II parameter set as well the
statistics necessary to validate the results against experiment
are presented in Sec. III; Sec. IV contains assessment of the
quality of the fit and summarizes the main results together
with their analysis and discussion, followed by Sec. V with
main conclusions and outlook for future study.

II. THEORETICAL FRAMEWORK

A. QMCπ-II EDF

The full derivation of the EDF can be found in the recent
review [11]. Here we outline only the main features of the
model. The basic idea is to apply self-consistently a scalar
mean field σ to a bound nucleon which has internal struc-
ture, responsive to the effect of the external field. While the
structure of the intermediate range attraction between two
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nucleons is undoubtedly complex, involving various types of
two-pion exchange as well as the exchange of the observed σ

meson, relativistic models have enjoyed considerable success
replacing all of this by the exchange of effective mesons
(σ, ω, ρ). This approach is adopted in the QMC model.

Assuming that the nucleon is modeled as the MIT bag,
the equation of motion of the bag in the external fields can
be derived. Solution of the equation of motion of a bag
in a constant field yields an effective mass which can be
approximated as

M*
B = MB − gσ σ + d

2
(gσ σ )2, (1)

where gσ σ is the strength of the scalar field, gσ is the coupling
of the scalar meson to the free nucleon and is related to
the quark-meson coupling, and d is the scalar polarizability.
It quantifies the effects of the scalar field on the nucleon
structure and is determined within the model to a good ap-
proximation as d ≈ 0.18RB, with RB being the bag radius.
The coupling of the nucleon with the vector meson fields, gωω

and gρρ, does not affect the internal structure of the bag but
contributes a constant shift to its energy.

When applied to finite nuclei, we consider a bag in meson
fields which vary slowly as a function of position and assume
that in the nucleus the meson fields essentially follow the nu-
clear density. This assumption should secure the instantaneous
adjustment of the motion of the quarks, which are relativistic,
to the actual value of the field.

Taking the nuclear system as a collection of nonoverlap-
ping bags, the classical total energy can be written as a sum of
contributions from the bag motion and the meson fields [11],

EQMC =
∑

i=1,...

√
P2

i + M2
i (σ ( �Ri )) + gi

ωω( �Ri )

+ gρ �Ii · �B( �Ri ) + Eσ + Eω,ρ, (2)

where �Ri and �Pi are the position and momentum of a baryon i
and �I is the isospin matrix. Following the notation of Ref. [11],
�B stands here for the isovector ρ field, to avoid confusion with
the baryon number density ρ used in Sec. III A.

The energy of the σ field is

Eσ =
∫

d�r
[

1

2
( �∇σ )2 + V (σ )

]
(3)

and the expressions for Eω,ρ are analogous. The potential
energy in (3), V (σ ) = m2

σ σ 2/2 + · · · , is generally limited
to the quadratic term. This was the case in the QMC-I and
QMCπ -I models. Here we take a more general form [11],

V (σ ) = m2
σ σ 2

2
+ λ3

3!
(gσ σ )3 + λ4

4!
(gσ σ )4. (4)

This extension involves an additional parameter λ3 which
must be obtained from a fit to experimental data. The quartic
term is added to guarantee the existence of a ground state.
The constant λ4 may be arbitrarily small but must be positive.
It has been set to zero in the present work because we are
not concerned with the limit of large gσ σ . The generalization
allows a contribution of the σ exchange in the t channel to the
polarizability, that cannot arise from the response of the bag

to the σ field. This extension leads to a significant improve-
ment of the QMCπ -II predictions of saturation properties of
symmetric nuclear matter.

After quantization, the Hamiltonian HQMC, corresponding
to the classical energy (2), still depends on the meson fields.
They are eliminated through the equations of motion:

δHQMC

δσ (�r)
= δHQMC

δω(�r)
= δHQMC

δB(�r)
= 0. (5)

In practice, we write the meson field operator σ = σ̄ + δσ

(and similarly for the other mesons) where σ̄ is the expecta-
tion value 〈σ 〉 determined by the mean field equation

〈δHQMC〉
δσ̄

= 0 (6)

and the δσ is a fluctuation determined as a perturbation around
the mean field. In our HF approximation, the fluctuations
generate the Fock term. The full QMC Hamiltonian reads

HQMC = Hσ + Hω + Hρ + Hso + Hπ , (7)

with the detailed expressions given in Ref. [11]. Note that for
consistency the density dependent modification of the mass of
the σ meson is not yet included.

The first three terms in Eq. (7) are spin independent. The
spin-orbit term, Hso, arises naturally within the model from
the first order correction associated with the variation of the
external field over the volume of the nucleon (see for details
Sec. 2.2.2 of Ref. [11]). It is fully expressed in terms of the
existing QMC parameters. The pion exchange, because of its
long range character, is calculated as a perturbation in a local
density approximation [11] and does not introduce additional
free parameters.

The Hamiltonian (7) is used to develop the QMC EDF in
HF calculation of finite nuclei,

EQMC = 〈�|HQMC|�〉. (8)

The expectation value of 〈HQMC〉 in a Slater determinant �

for Z protons and N neutrons, obtained by filling the single-
particle states {φi(�r, σ, m)} up to a Fermi level Fm with m =
±1/2 being the isospin projection such that p ↔ 1/2, n ↔
−1/2, is calculated as a function of density ρ, kinetic energy
density τ , and spin-orbit density �J ,

ρm(�r) =
∑
i∈Fm

∑
σ

|φi(�r, σ, m)|2, ρ = ρp + ρn, (9)

τm(�r) =
∑
i∈Fm

∑
σ

| �∇φi∗(�r, σ, m)|2, τ = τp + τn, (10)

�Jm = i
∑
i∈Fm

∑
σσ ′

�σσ ′σ × [ �∇φi(�r, σ, m)]φi∗(�r, σ ′, m),

�J = �Jp + �Jn. (11)

B. Pairing and Coulomb terms

Pairing and Coulomb terms are not included in the QMC
model. For modeling of finite nuclei, QMCπ -II EDF is aug-
mented by Epair, based on the BCS model with δ-function
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pairing interaction acting through the whole nuclear vol-
ume [12],

Epair = 1

4

∑
q∈(p,n)

V pair
q

∫
d3rχ2

q , χq(�r) =
∑
α∈q

uαvα|φα (�r)|2,

(12)

where q ∈ (p, n), vα , uα = √
1 − v2

α are the occupation ampli-
tudes and α stands for quantum numbers of a single-particle
state. The two pairing strengths V pair

p and V pair
n for proton

and neutron are two additional parameters to be fitted to
experimental data.

The Coulomb term is taken in its standard form [13],

ECoulomb = e2 1

2

∫
d3rd3r′ ρp(�r)ρp(�r′)

|�r − �r′|

− 3

4
e2

(
3

π

)1/3 ∫
d3r[ρp]4/3, (13)

including the exchange term in the Slater approximation. ρp

stands for density distribution of pointlike protons.

III. METHOD

The HF+ BCS calculation was performed using the com-
puter code code SKYAX, allowing for axially symmetric and
reflection-asymmetric shapes, adapted by Reinhard [9,14] for
use with QMC-type EDF. The minimization process was per-
formed in two ways, either without any additional constraint
of the path to the final minimum or applying a constraint
(CHF) requiring a fixed value of quadrupole moment 〈Q2〉 =

3
4π

AR2
0β2 with A being a mass number and R0 = 1.2 fm.

The latter procedure, particularly useful for calculation of
ground state shapes of axially deformed nuclei in terms of the
quadrupole deformation parameter β2, involves determination
of the equilibrium wave functions and single-particle energies
at each chosen value of β2 used to calculate the quadrupole
moment. Changing the deformation parameter by a fixed
amount through an expected range of deformations yields the
lowest energy of the system and its equilibrium shape.

The QMCπ -II EDF depends on three effective coupling
constants Gσ , Gω, and Gρ ,

Gσ = g2
σ

m2
σ

, Gω = g2
ω

m2
ω

, Gρ = g2
ρ

m2
ρ

, (14)

the σ meson mass mσ , and the σ self-interaction parameter λ3.
With the two pairing strengths V pair

p and V pair
n , there are seven

free parameters that need to be fitted to experimental data.
The remaining parameters of the model, the ω and ρ meson
masses, and the isoscalar and isovector magnetic moments,
which appear in the spin-orbit interaction [11], were taken at
their physical values. The MIT bag radius RB was set to 1 fm.

The fit has been performed first to properties of infinite
nuclear matter and further narrowed down using extensive
data on ground state observables of even-even finite nuclei.

A. Nuclear matter properties (NMPs)

The EDF (8) significantly simplifies in infinite nuclear
matter, a medium with uniform density ρ without surface

and spin-orbit effects. All gradient terms vanish and 〈HQMC〉
reduces to 〈HNM〉. The binding energy per particle of cold
matter containing protons and neutrons is expressed as a
function of density and the proton-neutron ratio,

E

A
(ρ, I ) = 〈HNM〉

ρ
(ρ, I ), (15)

where ρ = ρp + ρn is the total density and ρp,n are proton and
neutron number densities. The neutron excess I is defined as
the ratio of the difference between the number of neutrons
N and protons Z to the mass number A of the nucleus, I =
(N − Z )/A.

Symmetric nuclear matter (SNM), with N equal to Z and
thus I = 0, is bound at the saturation point ρ0 ∼ 0.16 fm−3

with energy E0 ∼ −16 MeV. It is customary to use properties
of the SNM at saturation, derived from E/A at ρ0 to con-
strain parameters of nuclear structure models. In this work
we employ the symmetry energy S0, its slope L0, and the
incompressibility K0.

The symmetry energy S0 is defined as the difference be-
tween E/A of symmetric and pure neutron matter,

S0 = E

A
(ρ0, I = 0) − E

A
(ρ0, I = 1). (16)

S0(ρ) can be expanded about E/A with the second-order
term being related to the asymmetry coefficient asym in the
semiempirical mass formula

asym = 1

2

∂2(E/A)

∂I2

∣∣∣∣
I=0

. (17)

The slope of the symmetry energy, L0, is

L0 = 3ρ0

(
∂S

∂ρ

)∣∣∣∣
ρ=ρ0

, (18)

and the incompressibility is calculated as

K0 = 9ρ2
0
∂2(E/A)

∂ρ2

∣∣∣∣
ρ=ρ0

. (19)

B. Observables for finite nuclei

The requirement on input data for adjustment of the pa-
rameters of the QMCπ -II is, as usual, to be known from ex-
periment with high accuracy and least affected by correlations
beyond mean field. The first obvious choice is the ground state
binding energy BE which is directly available from solution
of the mean field equations and can be readily extracted from
highly precise measurements of atomic masses.

The second choice relates to the density distribution of
protons in the nucleus. Elastic electron scattering and optical
methods provide information on the charge density distribu-
tion of a nucleus and, in particular, its mean-square charge
radius 〈R2

ch〉. The model calculation provides the mean-square
radius of the proton distribution, 〈R2

p〉, assuming the protons
are pointlike particles without internal structure. The two
quantities are related by [15]

〈
R2

ch

〉 = 〈
R2

p

〉 + 〈
r2

p

〉 + N

Z

〈
r2

n

〉
, (20)
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FIG. 1. Doubly magic and semimagic nuclei included in the fit. The nuclear observables and number of data points per nucleus entering
the fitting procedure are indicated. For more explanation see the text.

with the free proton and neutron charge radii taken as 〈r2
p〉 =

0.7071 fm2 and 〈r2
n〉 = −0.1161 fm2 [16]. Note that the

standard relation in Eq. (20) is valid for spherical nuclei. In
Ref. [17], additional terms appear in Eq. (20)for charge radii
in deformed nuclei.

Finally, because we work in the HF + BCS frame-
work, data are needed to constrain parameters of the pairing
EDF (12), added to the QMC EDF. The pairing gap, a measure
of nuclear pairing correlations, is a quantity that can be
extracted from experimental odd-even staggering in binding
energies, e.g., the neutron gap [13],

�(5)
n = − 1

8 E (Z, N + 2) + 1
2 E (Z, N + 1) − 3

4 E (Z, N )

+ 1
2 E (Z, N − 1) − 1

8 E (Z, N − 2), (21)

and an equivalent expression for the proton gap. However,
it is complicated to calculate the gaps in mean field mod-
els [13,18], in particular in a model including only even-
even nuclei, and is not applicable if some of the nuclei are
deformed.

We therefore adopt as a measure of pairing correlations the
average spectral gap (for details see Ref. [18]),

�̄q = �α∈quαvα�α

�α∈quαvα

, (22)

where vα , uα = √
1 − v2

α are the occupation amplitudes and
�α is the state-dependent single-particle pairing gap [19].

As noted in [13], �̄q and �(5)
n,p are reasonably well related in

midshell regions but exhibit different behavior in the vicinity
of (semi)magic nuclei which may introduce a larger difference
between experiment and model predictions.

C. Parameter constraints

The bounds for the QMCπ -II parameters were determined
by first establishing the range of values over which com-
binations of the model parameters reproduce the properties
of nuclear matter within reasonable bounds. For symmet-
ric nuclear matter, ρ0 and E0 are widely accepted to be
0.16 fm−3 and −16 MeV, respectively. Here, the search
range was allowed to be within 10% of the accepted values.
Reference [20] summarizes 28 available results from various
terrestrial measurements and astrophysical observations for
asym which varies from around 29 to 33 MeV. For the incom-
pressibility, recommended values vary widely over the range
200–315 MeV [21–24]. As we show below, the application of
the QMCπ -II model to giant monopole resonances (GMRs)
favors the lower end of this range. For the internal consistency
of the present model it is important that the σ self-interaction
parameter λ3 not be too large—a large λ3 gives a lower
incompressibility. This consideration leads us to search for
λ3 within the range 0.0–0.05. The search for a best fit to
the properties of finite nuclei was then carried out within
the boundaries defined by these constraints on nuclear matter
properties.

Binding energies BE, root-mean-square rms charge radii
Rch, and proton and neutron pairing gaps �p,n [calculated
using Eq. (22)] for seventy magic and doubly magic nuclei
with Z = 8, 20, 28, 50, 82 and N = 126 were included in the
fit. This same set of even-even nuclei was used by Klupfel
et al. [13] to fit parameters for the Skyrme EDF with the
exceptions of some updated values taken for binding ener-
gies [25] and for rms charge radii [26]. Figure 1 shows the
distribution of the data across the nuclear chart, consisting
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of a total of 161 data points. The best parameter set for the
fitting to finite nuclei was sought using POUNDerS which is
discussed in the next subsection.

D. Parameter optimization

The search algorithm POUNDerS, which stands for pa-
rameter optimization using no derivatives for sums of
squares [15], was used for the fitting procedure. POUNDerS is
a part of the Toolkit for Advanced Optimization which is made
available by the Portable, Extensible Toolkit for Scientific
Computation (PETSc) [27–29]. The algorithm has proven
to be efficient in optimizing nuclear energy-density func-
tionals of the Skyrme type [15,30,31]. The main advantage
of POUNDerS over other optimization procedures is that it
employs a derivative-free algorithm, which is highly efficient
in terms of the speed, accuracy, and reliability of results [32].
Starting from initial values of the parameters, the total sum of
squares of the deviations from experiment, or the chi-squared
value (χ2), is minimized. In this work, the objective function
F (x̂) for minimization was chosen to be dimensionless,

F (x̂) =
n∑
i

o∑
j

(
s̄i j − si j

w j

)2

, (23)

where n is the total number of nuclei, o is the total number
of observables, and si j and s̄i j are the experimental and fitted
values, respectively, for each nucleus i, and each observable
j. w j stands for the effective error for each observable, set
in this fit to be wBE = 1 MeV, wRch = 0.02 fm and w�p,n =
0.12 MeV for all nuclei without weighting. These errors,
much higher than the errors reported by the experimenters,
take into account a realistic estimate of accuracy of the model
as well of the fitting procedure.

Following Kortelainen et al. [15], the covariance matrix
was approximated as

Cov(x̂) ≈ χ2

d − p
(JTJ)−1, (24)

where J is the Jacobian matrix with derivatives computed
using finite differences, d is the total number of data points,
and p is the number of parameters. The objective function was
evaluated at {x̂ ± ηe j}, with η set to 10−3 and e j being the
scale used for each parameter during the search.

The square root of the diagonal terms of the covariance
matrix gives the standard deviation σ for each parameter and
the off-diagonal terms give the correlation coefficient between
any two parameters xk and xl ,

Cor(xk, xl ) = Cov(xk, xl )√
σ 2

xk
σ 2

xl

. (25)

A residual is defined as the difference between the theoretical
and experimental results, s̄i j − si j , and is used to evaluate the
root-mean-square deviation (RMSD) for each observable,

RMSD( j) =
√√√√1

n

n∑
i

(s̄i j − si j )2. (26)

The percentage deviation from experiment is 100 × ( s̄i j−si j

s̄i j
).

TABLE I. Confidence intervals (CIs) and standard deviation σ

of the final QMCπ -II parameter set. The proton and neutron pairing
strengths are included for completeness.

Parameter Value 95% CI σ

Gσ (fm2) 9.66 [9.62, 9.70] 0.02
Gω (fm2) 5.23 [5.22, 5.24] 0.01
Gρ (fm2) 4.75 [4.68, 4.83] 0.04
mσ (MeV) 494 [491, 497] 2
λ3 (fm−1) 0.051 [0.050, 0.052] 0.001
V pair

p (MeV) 258 [249, 267] 5

V pair
n (MeV) 237 [228, 246] 5

IV. RESULTS AND DISCUSSION

In this section the results of the optimization are presented.
The final parameter set has been used to calculate ground state
observables for the 70 nuclei included in the fit (Sec. IV B)
and further applied to calculate binding energies and charge
radii for even-even nuclei with experimentally known masses
and with Z � 8 (Sec. IV C). Predictions of the model for other
observables not included in the fit are discussed (Sec. IV D),
along with calculations of ground state binding energies of
superheavy even-even nuclei (Sec. IV E).

A. Parameters

Table I summarizes the best fit QMCπ -II parameter set
with their confidence intervals and standard deviations. The
NMPs corresponding to this set are ρ0 = 0.15 ± 0.01 fm−2,
E0 = −15.69 ± 0.2 MeV, asym = 28.8 ± 0.6 MeV, and K0 =
230 ± 1 MeV. One important feature of QMCπ -II is the
smaller value for the incompressibility of around 230 MeV,
which tended to be somewhat high in the previous models,
QMC-I [9] and QMCπ -I [11], where the values were 340 and
319 MeV, respectively. The addition of the σ self-interaction
in the potential energy enhances the saturation effects in the
density dependent terms of the QMC model by increasing the
effective scalar polarizability, d → d̃ = d + λ3Gσ /2. Further
in the present model, taking σ mass to be density independent
and only allowing it to vary during the fitting process corrects
the overestimation in the fluctuation part of Hσ which was re-
sponsible for giving high incompressibility values in previous
versions.

Another significant result is that the slope of the symmetry
energy L0, not included in the fit but calculated afterwards
with the final parameter set, is now L0 = 40 ± 2 MeV. This
is improved compared to the lower values obtained in the
previous models QMC-I [9] and QMCπ -I [10,11] which gave
L0 = 23 ± 4 MeV and L0 = 17 ± 1 MeV, respectively. From
Ref. [20], the average values for the symmetry energy and its
slope are 31.6 and 58.9 MeV, respectively. The finite-range
droplet model combined with folded Yukawa microscopic
part (FRDM) [33], for example, has values asym = 32.5 ±
0.5 MeV and L0 = 70 ± 15 MeV. Recently, by studying
the radioactivity of 19 proton emitters having large isospin
asymmetry, L0 is constrained to have a value of 51.8 ±
7.2 MeV [34].
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TABLE II. Correlation between QMCπ -II parameters computed
as discussed in Sec. III D.

Gσ Gω Gρ mσ V pair
p V pair

n λ3

Gσ 1.00
Gω 0.68 1.00
Gρ −0.49 0.17 1.00
mσ 0.38 −0.24 −0.83 1.00
V pair

p 0.19 0.05 −0.26 0.16 1.00

V pair
n 0.14 0.05 −0.18 0.13 0.14 1.00

λ3 −0.07 0.33 0.82 −0.78 −0.19 −0.14 1.00

Obviously, all QMC EDFs have correlated parameters and
they vary accordingly in the optimization procedure. For the
QMCπ -II final parameter set, these correlations are computed
as discussed in Sec. III D. Table II shows the correlation
between any two parameters of the EDF. A positive (negative)
correlation means that parameters are directly (inversely)
proportional to each other and a value of 1.0 corresponds to
100% correlation.

Strong positive correlation is seen between the effective
couplings Gσ and Gω as well as between Gρ and the self-
coupling λ3 parameter. On the other hand, the σ meson mass
is inversely dependent on both Gρ and λ3. The introduction
of the new λ3 parameter in the QMCπ -II model led to a
decrease in the three coupling parameters and the value of mσ

compared to the QMC-I parameters [9], while it effectively
tuned down the incompressibility, K0. For the parameters of
the pairing EDF, both proton and neutron pairing strengths
have less than 20% positive correlation to Gσ and mσ and
a very small correlation to Gω. Furthermore, both pairing
parameters are inversely proportional to Gρ and λ3 but with
the highest correlation just 26%. This means that changes
in the coupling parameters and thus NMP values do not
significantly affect the pairing strengths.

B. Nuclei included in the fit

Table III shows a summary of percent deviations of the
observables for the 70 finite nuclei included in the fit in com-
parison with the previous QMC-I [9] and QMCπ -I [10,11]
and results from Skyrme force SV-min [13]. It should be
noted that QMC-I, QMCπ -I, and SV-min fits included data
on diffraction radii and surface thickness which were not
included in the current fit for QMCπ -II.

TABLE III. Percentage deviations of observable properties of the
nuclei included in the QMCπ -II fit. QMC-I [9] and QMCπ -I [10,11]
are results from previous versions of the QMC model. The results
from the Skyrme force SV-min [13] are added for comparison.

Data QMCπ -II QMCπ -I QMC-I SV-min

Binding energy 0.48 0.46 0.36 0.24
rms charge radius 0.59 0.48 0.71 0.52
Proton pairing gap 10.7 15.3 25.3 15.5
Neutron pairing gap 21.4 24.0 57.6 17.6

The QMCπ -II model, with inclusion of the σ self-
interaction together with the current fitting procedure, showed
slight changes in the predictions for finite nuclei observables
compared to the previous QMC versions. The deviation for
charge radii is higher compared to that of QMCπ -I but pairing
gaps are somewhat improved. It must be noted that while
the quality of fit for finite nuclei remains comparable in the
current model, the nuclear matter properties, specifically K0

and L0, are greatly improved.
Figure 2 illustrates the percent deviation from experiment

for BE and Rch of the 70 nuclei, including Z = 20, 28, 50,
and 82 isotopes and N = 20, 28, 50, 82, and 126 isotones. It
can be seen that the QMCπ -II results follow almost the same
trends as the other models, having relatively higher deviations
for lighter nuclei Z, N < 28 for BE and Rch. Both the BE and
rms charge radii absolute deviations are up to 2%. For the fit to
pairing gaps, deviations are typically within 20% for �p and
up to 40% for �n with relatively high values for tin isotopes
in the midshell region.

C. Extended results of binding energies and charge
radii across the nuclear chart.

Figure 3 illustrates the performance of QMCπ -II for a set
of 739 even-even nuclei with known masses, of which 342
have known rms charge radii. This set includes the 70 nuclei
included in the QMCπ -II fit which was discussed in Sec. IV B.
The binding energy residuals vary within around ±8 MeV
and the charge radius residuals are within ±0.1 fm. These are
essentially the same ranges found for SV-min, DD-MEδ, and
UNEDF1 but with a different distribution of residual values
across the nuclear chart. The QMCπ -II RMSD for all nuclei
included in the plot is 2.34 MeV for masses and 0.03 fm for
radii.

The current QMCπ -II parameter set predicts overbinding
in most of the nuclei with N = Z and the residuals are rela-
tively higher for these nuclei compared with the other models.
N = Z nuclei are known to exhibit the Wigner effect [36] that
must be accounted for in the binding energy. Furthermore, the
QMCπ -II parameter set predicts mostly underbinding on the
neutron-rich side, as shown in Fig. 3. There are also relatively
larger errors around the magic isotones N = 50 and 82 and in
the uranium region.

For charge radii in Fig. 3, note that they have been calcu-
lated using the standard relation in Eq. (20). QMCπ -II residu-
als for Rch are relatively higher near the Z = 82 shell closure,
specifically in the mercury (Z = 80) region. Neutron-deficient
lead isotopes are mostly spherical from laser spectroscopy
experiments but mercury and platinum (Z = 78) isotopes with
neutron number around N = 104 show deformations when
compared with droplet model calculations [37,38].

To compare the performance of QMCπ -II with other mod-
els, binding energy and rms charge radii residuals were also
computed for exactly the same set of nuclei included in Fig. 3.
Table IV presents the RMSD computed using Eq. (26). Over-
all, QMCπ -II results appear to be more or less on par with
other models. FRDM gives the best predictions for masses
with an RMSD of 0.68 MeV but there is no available record
of its predictions for charge radii.
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D. Observables not included in the fit

1. Two-nucleon separation energies

Separation energies provide important information about
shell closures and the existence and location of drip lines.
Two-nucleon separation energy is defined as the amount of
energy needed to remove two nucleons from a particular
nucleus. Figure 4 shows the residuals for even-even nuclei
with available data for two-proton (S2p) and two-neutron (S2n)
separation energies, comparing results from QMCπ -II and
SV-min. Both models are within the same range of residuals.

In particular, two-neutron separation energies for the magic
isotopes calcium, nickel, tin, and lead are shown in Figs. 5
and 6. Shell closures at N = 28 for the Ca and Ni isotopes
and N = 50 for Ni are visible through the sudden dip in the
separation energies. The same is true for shell closures at N =
82 and N = 126 for the Sn and Pb isotopes, respectively.

Compared to other models in Fig. 5, QMCπ -II shows pro-
nounced shell closure at N = 28 for both calcium and nickel
and at N = 50 for nickel. The deviation from experiment is,
however, relatively larger at N < 28 for calcium as well as
around N = 50. The expected closure at N = 20 for Ca is not
as pronounced for QMCπ -II as is the case for SV-min. This
is due to a low energy gap in the single-particle spectra of
neutrons which is further discussed in Sec. IV D 4. Around the

N = 126 closure, the QMCπ -II results are in good agreement
with experiment, as shown in Fig. 6.

2. Isotopic shifts in charge radii

In an isotopic chain, the evolution of charge radii with mass
number is characterized by the difference between the mean-
square charge radii of two isotopes of an element calculated
using δ〈r2〉A′,A = 〈r2〉A′ − 〈r2〉A. Here 〈r2〉 is the mean-square
charge radius for the isotope with nucleon number A′ and
A is the reference isotope. Figure 7 shows the shifts in
radii for calcium and lead from their stable reference isotope
40Ca and 208Pb, respectively. Experimental data are taken
from Ref. [26] with updates for Ca isotopes from Refs. [40]
and [41].

The QMCπ -II radius computations for both the Ca and
Pb isotopes are done under the constraint that they should be
spherical. For Ca isotopes, none of the models included in the
plot reproduce the trend of the experimental data, where the
radius shift initially increases from the reference isotope 40Ca
and then drops to almost zero at 48Ca. All models predicted
a continued increase in the radius shift, starting from 40Ca. It
was reported that this trend can be replicated by the Fayans
EDF or with a Skyrme force augmented with Fayans pairing
and the inclusion of shifts and odd-even staggering of energy
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and radii in the fitting procedure [42]. Taking 48Ca as the
stable reference isotope for isotopic shift to 52Ca, QMCπ -
II predicts a radius shift of 0.294 fm2 and SV-min gives
0.262 fm2, while the recent data yield 0.530(5) fm2 [40].
Certainly this behavior will be studied further as the QMC
model continues to develop. Data for 36Ca and 38Ca were
recently measured and were found to be smaller than 40Ca
but most of the models predicted slightly larger sizes. QMC
prediction overestimates the experimental data but predicts
that the sizes for the two proton-rich calcium isotopes are
smaller than 40Ca.

For lead isotopes, QMCπ -II and SV-min show almost the
same behavior for radius shifts in the neutron-deficient region
where experimental data are underestimated, while UNEDF1
predicts oblate deformation for Pb isotopes around A = 190.
The latter is caused by its low proton state gap at Z = 82 [30].
Radius shifts from DD-MEδ are also higher than those found
experimentally for isotopes with A < 200. The kink at the
doubly magic 208Pb is not reproduced well by QMC and

TABLE IV. RMSD for binding energies and rms charge radii
for QMCπ -II in comparison with Skyrme forces SV-min [13], UN-
EDF1 [30], covariant EDF with the DD-MEδ interaction [35,39], and
macroscopic-microscopic FRDM [33].

Data QMCπ-II SV-min UNEDF1 DD-MEδ FRDM

Binding energy (MeV) 2.34 3.10 2.12 2.40 0.68
rms charge radius (fm) 0.03 0.02 0.03 0.03

Skyrme forces and on the neutron-rich side shifts are slightly
lower than those found empirically. The isotopic shift from
208Pb to 214Pb was considered in Ref. [13], with different
values for the effective mass. For QMCπ -II, this Pb radius
shift has a value of 0.489 fm2, where the measured value is
0.615 ± 0.001 fm2.

3. Neutron skin thickness

Another observable relating to size, which is of consider-
able interest, is the neutron skin thickness �rnp, defined as
the difference between the neutron and proton point radii.
Neutron skin thickness has been found to be linearly related to
the slope of the symmetry energy for nuclear matter, L0 [43].
Recently, the skin thickness for 208Pb has been experimen-
tally determined to be 0.15 ± 0.03 fm through coherent pion
photoproduction [44]. The same value but with an error of
±0.02 fm has been obtained from antiprotonic x rays while
hadron scattering experiments give an average value of 0.17 ±
0.02 fm [45]. Figure 8 shows predictions for the skin thickness
of those nuclei included in the fit with available experimental
values. �rnp is plotted against the relative neutron excess,
I = (N − Z )/A, as defined in Sec. III A. Higher values of
I correspond to neutron-rich nuclei, while symmetric nuclei
have I = 0. In the figure, the gray band is taken from a linear
fit of skin thickness experimental data as a function of I:
�rnp(I ) = (−0.03 ± 0.02) + (0.90 ± 0.15)I [45]

On the proton-rich side (I < 0), the mean field models
predict a negative value for the skin thickness for 36Ca and
38Ca with QMCπ -II values a little lower than the other
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models. As with other models, the skin thickness for 48Ca and
64Ni are overestimated and are above experimental errors.
Towards the neutron-rich side, most values from QMCπ -II
are within the error bounds of experiment. The prediction for
208Pb is in good agreement with data from antiprotonic x rays
and is within the error of data deduced from hadron scattering
experiments.
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4. Single-particle states

Figures 9–11 show neutron and proton single states for
doubly magic symmetric 40Ca nuclei as well as for neutron-
rich 78Ni and 132Sn nuclei. Results for QMCπ -II and SV-min
are compared with experimental data from Ref. [46]. Note that
the spin-orbit splittings for some doubly magic nuclei were
included in the fitting for SV-min but were left out for the
present QMC parameter search.

The calculated values for both QMCπ -II and SV-min
for the proton single-particle energies of 40Ca appear to be
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FIG. 10. Same as in Fig. 9 but for 78Ni.
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squeezed resulting in a low energy gap compared to exper-
iment. This is also true for the case of 40Ca neutron states
which explains the reduction in the shell closure at N =
20, as shown in Fig. 5. 78Ni isotope is not included in the
QMCπ -II fit but both proton and neutron states are fairly well
reproduced for the QMC model as can be seen in Fig. 10. For
132Sn, shown in Fig. 11, the proton states are slightly higher
compared to data while the neutron states agree reasonably
with experiment.

5. Nuclear deformations

In Refs. [15,30] several deformed nuclei were included in
the fitting for UNEDF0 and UNEDF1 parameter sets. Though

our current fitting procedure only includes magic nuclei,
which are mostly spherical, the final parameter set can be
used to extend the calculations to nuclei having deformations.
Figure 12 shows the performance of QMC in comparison with
other models and experiment [47] for the deformation param-
eter β2 and transition probability B(E2)↑ from the ground
state to the first excited 2+ state of gadolinium (Z = 64) iso-
topes. As computed in Ref. [47], B(E2)↑= [(3/4π )βZeR2

0]2

where R0 = 1.2A1/3 fm. The intrinsic quadrupole moment
Q0 is directly related to the transition probability by the
expression Q2

0 = (16π/5e2)B(E2)↑.
The models predict a spherical shape for 146Gd and pro-

late shapes for neutron-rich Gd isotopes. We note that the
computation here is done in the constrained case and from
Fig. 12, isotopes 140−144Gd are predicted to have oblate shapes
as opposed to unconstrained QMC-I results where they were
prolate [9]. B(E2)↑ values from QMCπ -II agree well with
experimental data where available. As with the calculations of
radii in Sec. IV C, deformation properties will be the subject
of future investigation in the QMC model.

6. Giant monopole resonance (GMR)

Isoscalar GMRs are important quantities related to the
incompressibility of the symmetric nuclear matter. They are
not measured directly but extracted from differential cross
sections of inelastic scattering of, typically, α particles but
also deuterons at energies of 35–100 MeV per nucleon [24].
The analysis of experimental data is rather involved but over
the years it has led to a reasonable consensus.
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Background-subtracted excitation spectra from inelastic
scattering are subject to multidecomposition analysis, yield-
ing multipole strength distribution as a function of excitation
energy, S(E ), for each multipole. The moments of the strength
function (the sum rules) are calculated as

mk =
∫

dE EkS(E ). (27)

The centroid of the strength function Ẽ = m1
m0

but also other

mean energies Ẽk can be calculated from moment ratios,

Ẽk =
√

mk

mk−2
. (28)

If the strength function is distributed in a narrow energy
region, the mean energies Ẽk are close together and can be
interpreted as the energy of a resonance state.

The calculation has been performed using time-dependent
Hartree-Fock (TDHF) technique [48]. The SKYAX code,
modified by Newton [49] for calculation of giant resonances
using Skyrme forces, has been further adapted for use with
the QMCπ -II model. To calculate giant resonance states,
the TDHF equations have to be solved. This is achieved
by using wave functions, obtained by solution of the static
Hartree-Fock equations and evolve them in time following
an external perturbation. The external perturbation consists
of a spatial part F (r), determining the type of resonance
to be excited and the time profile f (t ) of the perturbation.
For the isoscalar monopole resonance F (r) = ∑A

i=1 r2
i with

i being the label of a ith nucleon with a coordinate r and

TABLE V. GMR energies (in MeV) of 208Pb, 144Sm, 116Sn, and
90Zr calculated from the QMCπ -II and SV-min models. Errors from
calculation are indicated in parentheses.

QMCπ -II SV-min

208Pb 13.79 (0.01) 13.22 (0.07)
144Sm 15.29 (0.07) 15.42 (0.15)
116Sn 16.02 (0.04) 16.02 (0.20)
90Zr 17.35 (0.15) 17.47 (0.11)

f (t ) has been taken to have a Gaussian shape. The strength
function S(E ) is extracted from the TDHF calculation as the
Fourier transform of the fluctuation of the expectation of F (r),
inducing the excitation, divided by the Fourier transform of
the time profile f (t ) of the external perturbation. The GMR
energy is then calculated as the centroid of S(E ), Ẽ0. Details
of the calculation will be presented elsewhere [50].

A recent collection of experimental data has been presented
by Garg and Colò [24] in their Table I which includes GMR

energies calculated as Ẽ3 =
√

m3
m1

, Ẽ1 =
√

m1
m−1

, Ẽ0 = m1
m0

and

has been used in this work to compare with the QMCπ -II and
SVmin results.

We show in Table V the numerical results of the calculation
for 208Pb, 144Sm, 116Sn, and 90Zr for both the QMCπ -II and
SV-min models and a comparison with experimental data in
Fig. 13. We find a very satisfactory agreement with experi-
ment, confirming the value 230 MeV of incompressibility of
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the symmetric nuclear matter predicted in the present version
of the QMC model.

E. Binding energies of even-even superheavy nuclei

Calculations have also been extended to the superheavy
elements with Z � 96, which were not included in the fit.
Figure 14 shows the QMC predictions for binding energies
in comparison with other models. The RMSD for bind-
ing energies for these nuclei, calculated with QMCπ -II, is
2.0 MeV where FRDM and DD-MEδ give 1.9 and 2.5 MeV,
respectively. The Skyrme force SV-min and UNEDF1 give
6.8 MeV and 1.4, respectively. The success of the QMC model
in this region was also investigated in the QMCπ -I where α

decay energy and deformations were computed [10]. Further,
using the previous version, detailed studies of superheavies
including shell gaps and shape transition were carried out and
reported in Ref. [51]. Predictions for these observables in SHE
will certainly be done with the current QMC version as we
move forward.

V. CONCLUDING REMARKS

Parameter optimization of the new version of the quark-
meson coupling model, QMCπ -II, was carried out using
the derivative-free algorithm POUNDerS. Parameter errors

and correlations were presented and the final parameter set
was used to calculate various nuclear observables. QMCπ -
II produced nuclear matter properties within the acceptable
range and showed considerable improvement for the slope
of the symmetry energy, as well as for the incompressibility,
compared to the values obtained in the previous QMC version.
The new QMC parameters were also used to calculate ground
state properties of even-even nuclei across the nuclear chart.
The results were comparable to those of other well known
models in the predictions for binding energies, rms charge
radii, and pairing gaps. Calculations were extended to other
nuclear observables which had not been part of the fit, in-
cluding isotopic and isotonic shifts in energies and radii, skin
thickness, and single-particle energies, for a number of chosen
nuclei. Once again the results were found to be within a
similar range to that produced by other models. Deformations
were also investigated for gadolinium isotopes and are in
agreement with available data. Isoscalar GMR calculations
are particularly encouraging in the new QMC version, as it
agrees very reasonably with various experimental results. Fur-
thermore, the model appears to be effective in the superheavy
region giving an rms binding energy residual of only 2.0 MeV.
Calculations in this region and for unknown SHE up to the
drip lines are currently in progress.

In the future, energy calculations will be further investi-
gated for symmetric nuclei as well as in the region of the
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N = 50 and N = 82 shell closures, where the current QMC
residuals are relatively high compared to other regions in the
nuclear chart. Charge radii, especially in the region of the
mercury and platinum isotopes, and deformation properties of
finite nuclei will be analyzed further. Odd-mass nuclei will
also be studied using the QMC model. In addition, it will
be interesting to explore the predictions for nuclei far from
stability and currently unknown nuclei up to the proton and
neutron drip lines.
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