Population of ¹¹O* in two-neutron removal from ¹³O

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

(Received 15 July 2019; published 27 August 2019)

I have used a simple model to estimate the relative populations expected for the ground state (g.s.) and three excited states of 11 O in 2n removal from 13 O. Results are ratios exc./g.s. of at most a few percent for each excited state, compared to ratios near unity suggested in a recent experiment involving 11 O.

DOI: 10.1103/PhysRevC.100.024332

I. INTRODUCTION

Recently, Webb *et al.* [1] produced ¹¹O with 2*n* removal from ¹³O and observed it by detecting ⁹C and 2*p* in coincidence. To reproduce the decay energy spectrum, they found that they needed four states—the ground state (g.s.) and three excited states, whose J^{π} they took to be 5/2⁺, 3/2⁻, and 5/2⁺. Here, I attempt to estimate the relative population of these states in a simple model.

II. CALCULATIONS AND ANALYSIS

Throughout, I treat ¹¹O and ¹¹Li as mirrors, and likewise for ¹³O/¹³B and ¹¹B/¹¹C. The main components of the g.s. of ¹³B are ¹³B_{1p} and ¹¹B_{1p} × ν (sd)², so that one may write

$$^{13}O(g.s.) = A^{11}C_{1p} \times \pi (sd)^2 + B^{13}O_{1p},$$

where the subscripts 1*p* denote structures totally within the 1*p* shell. The best evidence for core excitation of the type $^{11}\text{B} \times \nu(\text{sd})^2$ in $^{13}\text{B}(\text{g.s.})$ involves the observation [2] of the Gamow-Teller β decay of $^{14}\text{Be}(\text{g.s.})$ to a 1⁺ level at 1.28 MeV in ^{14}B , followed by emission of a neutron to the $3/2^{-13}\text{B}(\text{g.s.})$. The measured neutron width of the ^{14}B level then allows an estimate of the $^{13}\text{B}(\text{g.s.})$ configuration mixing. Details of the procedure are given elsewhere [2,3]. Results are listed in Table I, along with one other estimate [4]. Thus, for ^{13}B , estimates of A² range from 0.21 to 0.30 [2–4], with a "best" value of 0.21(2) [3].

The ¹¹Li(g.s.) has long been treated as a combination of ¹¹Li_{1p} and ⁹Li_{1p} × ν (sd)², so that one may use

¹¹O(g.s.) =
$$a^{9}C_{1p} \times \pi (sd)^{2} + b^{11}O_{1p}$$
.

In a two-state model, the excited $3/2^-$ state is just the orthonormal linear combination

$${}^{1}O(3/2^{-}exc) = -b^{9}C_{1p} \times \pi (sd)^{2} + a^{11}O_{1p}.$$

The latest estimate [5] of a^2 is $0.33^{+0.03}_{-0.05}$. Other values are similar [6,7]. Amplitudes for producing these two $3/2^-$ states in two-neutron removal from ¹³O are thus

$$\mathcal{A}(g.s.) = \operatorname{Aa} \mathcal{A}({}^{11}\mathrm{C}_{1p} \to {}^{9}\mathrm{C}_{1p}) + \operatorname{Bb} \mathcal{A}({}^{13}\mathrm{O}_{1p} \to {}^{11}\mathrm{O}_{1p});$$
$$\mathcal{A}(3/2^{-}\mathrm{exc}) = -\mathrm{bA} \mathcal{A}({}^{11}\mathrm{C}_{1p} \to {}^{9}\mathrm{C}_{1p}) + \mathrm{aB} \mathcal{A}({}^{13}\mathrm{O}_{1p} \to {}^{11}\mathrm{O}_{1p}).$$

Note that all transitions involve removal of a *p*-shell neutron pair, while the sd-shell protons act as spectators. Thus, the expected amplitude ratio is approximately

$$\mathcal{A}(3/2^{-}\text{exc.})/\mathcal{A}(\text{g.s.}) \sim (-bA + aB)/(Aa + Bb) = 0.135,$$

with an estimated uncertainty of about 24%, or a predicted cross section ratio of about 0.02(1).

The lowest positive-parity state in ¹¹Li has the structure ${}^{9}\text{Li}_{1p} \times \nu((1p_{1/2})(2s_{1/2}))_{1-}$. This configuration actually contains three states, with $J^{\pi} = 5/2^{+}$, $3/2^{+}$, and $1/2^{+}$. Thus, the configuration of this state in ${}^{11}\text{O}$ is ${}^{9}C_{1p} \times$ $\pi((1p_{1/2})(2s_{1/2}))_{1-}$. This configuration in ¹¹O cannot be produced from the ${}^{13}O(g.s.)$ considered above. Rather, to make this configuration from ¹³O by two-neutron removal requires an sd-shell neutron in its g.s. By correspondence with the mirror ¹³B, the lowest such admixtures in ¹³O(g.s.) would be ${}^{11}N(1/2^-) \times (sd)^2{}_{10 \text{ or } 21}$, where the subscripts denote JT of the sd-shell pair, which must be one proton and one neutron. In the mirror ¹³B, I have argued elsewhere [8] that these admixtures are extremely small, 0.026 and <0.036, respectively. To make the $5/2^+$ state from either of these requires removal of two neutrons from two different major shells. Thus, I estimate that, even if $(s_{1/2})(p_{3/2})$ removal is as strong as $(p_{3/2})^2$ removal, the $5/2^+$ strength should be at most a few percent of ${}^{11}O(g.s.)$.

As mentioned by Webb *et al.*, the second $5/2^+$ state involves a $p_{3/2}$ to $s_{1/2}$ excitation of ¹¹O(g.s.). Hence, its population in two-neutron removal from ¹³O(g.s.) should be even weaker.

These predictions are listed in Table II, where they are compared with relative yields used in the spectrum fit of Webb *et al.*

I was able to reproduce the experimental ¹¹O to ${}^{9}C + 2p$ decay spectrum using only the g.s. of ¹¹O [9]. The energy and width needed were quite close to those predicted previously [10,11]. Thus, I consider it very unlikely that the ¹¹O decay spectrum contains excited states at anything near the magnitudes used by Webb *et al.* If the ℓ value(s) of the 2p decay pair can be determined, then the situation could be clarified.

TABLE I. Estimates	of	11 B × ν (sd) ²	neutron
intensity in ¹³ B(g.s.).			

Intensity	Reference
0.33 ^a	2
0.25(3) ^b	3
0.30(3) ^c	3
$0.21(2)^{d}$	3
0.25(5)	4

^a*R* matrix[,] using a ¹⁴B(1⁺) width of 49 keV and no reduction for S < 1.

^bAs above, but with $S({}^{11}B \rightarrow {}^{12}B(1^+)) = 0.75(5)$.

^cPotential model analysis, using width of 49 keV and S = 0.75(5).

^dAs above, but using width of 34(3) keV extracted in Ref. [3] from data of Ref. [2].

III. SUMMARY

In summary, I have estimated the relative yields expected for the g.s. of 11 O and three excited states in 2n removal from

- [1] T. B. Webb et al., Phys. Rev. Lett. 122, 122501 (2019).
- [2] N. Aoi et al., Phys. Rev. C 66, 014301 (2002).
- [3] H. T. Fortune and R. Sherr, Phys. Rev. C 68, 024301 (2003).
- [4] H. Iwasaki, A. Dewald, C. Fransen, A. Gelberg, M. Hackstein, J. Jolie, P. Petkov, T. Pissulla, W. Rother, and K. O. Zell, Phys. Rev. Lett. **102**, 202502 (2009); **102**, 239901(E) (2009).
- [5] H. T. Fortune, Phys. Rev. C 91, 017303 (2015).

TABLE II. Current predictions compared with relative populations of states included in fit to ${}^{11}O \rightarrow {}^{9}C + 2p$ spectrum (energies and widths in MeV) [1].

J^{π}	Predicted contribution ^a	$E_r^{\mathbf{b}}$	Γ^{b}	Contribution by Webb <i>et al.</i> [1]
3/2-	1.0	4.16	1.30	39%
$5/2^{+}$	0.02-0.04	4.65	1.06	29%
3/2-	0.02(1)	4.85	1.33	
5/2+	<0.02-0.04	6.28	1.96	32%

^aPresent.

^bReference [1].

 13 O. Ratios exc./g.s. are predicted to be at most a few percent for each excited state, compared to ratios near unity suggested in a recent treatment of 11 O.

- [6] N. B. Shulgina, B. Jonson, and M. V. Zhukov, Nucl. Phys. A 825, 175 (2009).
- [7] H. T. Fortune and R. Sherr, Eur. Phys. J. A 48, 103 (2012).
- [8] H. T. Fortune, Phys. Rev. C 98, 024322 (2018).
- [9] H. T. Fortune, Phys. Rev. C 99, 051302(R) (2019).
- [10] H. T. Fortune and R. Sherr, Phys. Rev. C 88, 034326 (2013).
- [11] H. T. Fortune, Phys. Rev. C 96, 014317 (2017).