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random-phase approximation

D. S. Delion,1,2,3 A. Dumitrescu,1,2 and J. Suhonen4

1“Horia Hulubei” National Institute of Physics and Nuclear Engineering, 30 Reactorului, RO-077125 Bucharest-Măgurele, România
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We use the available experimental Gamow-Teller β− and β+/EC (electron-capture) decay rates between
0+ and 1+ ground states in neighboring even-even and odd-odd nuclei, combined with 2νββ half-lives, to
analyze the influence of the nuclear environment on the weak axial-vector strength gA. For this purpose,
the proton-neutron deformed quasiparticle random-phase approximation (pn-dQRPA), with schematic dipole
residual interaction is employed. The Hamiltonian contains particle-hole (ph) and particle-particle (pp) channels
with mass-dependent strengths. In deriving the equations of motion we use a self-consistent procedure in terms
of a single-particle basis with projected angular momentum provided by the diagonalization of a spherical mean
field plus the quadrupole-quadrupole interaction. Our analysis evidenced a quenched average effective value
〈gA〉 ≈ 0.7 with a root-mean-square deviation of σ ≈ 0.3 for transitions from even-even emitters and σ ≈ 0.6
for transitions from odd-odd emitters.
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I. INTRODUCTION

One of the central topics in modern subatomic physics
is the investigation of nuclear double-beta (ββ) decay pro-
cesses [1,2]. The neutrinoless double-beta 0νββ decay, not
yet experimentally detected, is particularly important when
exploring physics beyond the standard-model connected to the
fundamental nature of the neutrino. The basic problem is to
relate the nuclear matrix elements (NMEs) entering nuclear
many-body calculations to the neutrino properties [3]. At
present there are several models describing double-beta decay
in medium-heavy and heavy nuclei [4–7].

A major issue is the unknown effective value of the weak
axial-vector coupling strength gA entering the 0νββ-decay
amplitude as g2

A and the decay half-life as g−4
A . This problem

is similar to the use of an effective charge to describe electro-
magnetic excitations in nuclei. The first studies of gA in the
context of 2νββ decays were performed in Ref. [8] by using
the microscopic interacting boson model (IBM-2). There,
strongly quenched effective values were obtained, in the range
gA ≈ 0.5. Similar values were also obtained in earlier shell-
model (SM) studies of Gamow-Teller (GT) β decays, as in
Refs. [9,10]. Even earlier, simultaneous studies of GT β and
2νββ decays were done to probe the effective value of gA.
The first investigation was performed in Ref. [11], using the
spherical proton-neutron quasiparticle random-phase approx-
imation (pn-QRPA) to describe the β and 2νββ decays in the
A = 100, 116 isobaric triplets with an effective value of gA.
A similar study in the A = 100, 116, 128 isobaric triplets was
later performed in Ref. [12] and close effective values of gA

were obtained for the β [gA(β )] and 2νββ [gA(ββ )] decays.
Recently, in Ref. [13], the A = 128, 130 isobaric triplets were

investigated within the interacting boson-fermion-fermion
model (IBFFM-2). An up-to-date review concerning various
systematics of the effective axial-vector strength is given in
Table 3 of Ref. [14].

A common outcome of these studies is the relatively large
scattering of gA values, in the range gA ≈ 0.25–0.82. In
particular, the obtained range based on β decays is gA(β ) ≈
0.25–0.71. Let us mention that the extracted effective value
of gA depends on the adopted nuclear many-body framework,
such as IBM-2, IBFFM-2, pn-QRPA, SM, etc. (see Ref. [14]
for details). There are also several other sources that affect the
value of gA, as shown in Refs. [15,16].

The traditionally employed microscopic model for ββ-
decay calculations is the pn-QRPA [17]. Mostly the pnQRPA
based on a spherical mean field has been used in calculations.
However, many β and ββ decaying nuclei are more or less
deformed and therefore it is very important to extend the
description to a deformed mean field. This is the starting point
of the deformed pn-QRPA (pn-dQRPA). Most of the earlier
approaches describe GT beta decays by using a pn-dQRPA
phonon in the intrinsic system of coordinates, i.e., in terms
of pairs of Nilsson quasiparticles coupled to a K = 1 spin
projection. The physical observables, such as β-decay transi-
tion probabilities, are then estimated by rotating the intrinsic
phonon to the laboratory system of coordinates [18,19]. This
formalism was applied in the attempt to describe 1+ GT states
and 2νββ decays in several papers [20–25]. We stress one
important point, namely that this projection procedure restores
only the symmetry of the phonon by leaving the pn-dQRPA
ground state deformed. A more consistent approach is to
use a single-particle (sp) basis with good angular momentum
directly in the derivation of the pn-dQRPA equations.
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One way to obtain this basis consists in projecting good
angular momentum from the product between a coherent state,
describing the deformed core, and a spherical sp state [26].
The pn-dQRPA phonon, describing GT β decays, is built
by using pairs of these quasiparticles that are “dressed by
deformation” and coupled to the spin J = 1 [27,28]. Later on,
in Ref. [29], this approach was generalized by considering all
allowed spherical sp states in order to build a sp state “dressed
by deformation.” A particular case is the adiabatic limit,
which is nothing else than the usual Nilsson wave function
expressed in the laboratory frame. We successfully described
the available experimental B(E2) values for collective states
in the range 50 � Z � 100 in even-even nuclei by using
the adiabatic version of this formalism [29]. Later on we
described 2νββ decays within the proton-neutron version of
dQRPA (pn-dQRPA) in Ref. [30].

In the present work we use the pn-dQRPA to generalize our
earlier results [31] on the problem of the effective axial-vector
strength by using the available data on GT β− and β+/EC
(electron-capture) decay rates between 0+ states in even-even
and 1+ states in neighboring odd-odd nuclei. It turns out
that an additional analysis of 2νββ half-lives is essential for
determining the effective value of gA.

The paper is organized according to the following scheme:
in Sec. II we describe the theoretical framework of pn-
dQRPA, in Sec. III we analyze the experimental data, and in
the last section we draw conclusions.

II. THEORETICAL BACKGROUND

In order to describe the 1+ GT states in odd-odd deformed
nuclei, we proceed with the steps described in Refs. [30,32].

(1) We first build a deformed sp basis with good angular
momentum starting from the standard Nilsson sp representa-
tion in the intrinsic frame, which is then transformed in the
laboratory system of coordinates [29]:

|τ jm) = a†
τ jm(�)|0)

=
∑

J=even

∑
js� j

X Jks
τ j [YJ (�) ⊗ |τks〉] jm,

|τksν〉 = c†
τksν

|0〉, τ = p, n, (2.1)

where � denotes the Euler angles of the intrinsic symmetry
axis with respect to the laboratory system and j ≡ (ε, jπ )
(deformed eigenvalue, total spinparity). The creation operators
c†
τksν

describe the eigenstates of a spherical nuclear plus
proton Coulomb mean field having the quantum numbers ks ≡
(e, l, js) (spherical eigenvalue, orbital angular momentum,
total spherical spin), with ν being the z projection of js. The
expansion coefficients are proportional to standard Nilsson
amplitudes with j = K , where K is the spin projection on the
intrinsic symmetry axis:

X Jks
τ j =

√
2〈 j j; js − j|J0〉xks

τ j, (2.2)

and by the bra-ket product we denoted the Clebsch-Gordan
coefficient. The amplitudes xks

τ j in Eq. (2.2) are found by
diagonalizing the quadrupole-quadrupole (QQ) operator in the
spherical Woods-Saxon basis. Let us mention that both the X

and x amplitudes satisfy orthonormality relations. Notice that
in the spherical limit, where one has xks

τ j = δ js j , the operator
(2.1) is proportional to the usual spherical sp creation operator
with a “statistical” coefficient

X Jks
τ j =

√
2

2 j + 1
δ js j, (2.3)

expressing the fact that two particles with intrinsic projections
K = ± j are distributed over 2 j + 1 projections in the labora-
tory system of coordinates.

The particular case of laboratory sp amplitudes given by
Eq. (2.2) is what we call “adiabatic approach,” because we
used the standard intrinsic Nilsson wave function with com-
ponents x, having a given intrinsic angular momentum projec-
tion, but “seen” in the laboratory frame according to the re-
lation (2.1). Thus, the Coriolis mixing of angular momentum
projections is neglected. In the general case, the amplitudes
X entering Eq. (2.1) can be obtained by diagonalizing the QQ
interaction directly in the laboratory frame. This is of course
a trivial operation, but unfortunately the particle occupancy
of the obtained sp levels implies a more involved rule than
two particles/level and, for instance, a quasiparticle is built in
terms of all sp components instead of two time-reversed states
defined later by Eq. (2.9). Anyway, our analysis concerning
B(E2) values in well deformed nuclei [29] showed that the
so-called adiabatic approach gives very good results. For this
reason we also used this simplification in the analysis of beta
decays.

(2) The one-body particle-hole (ph) operators in this repre-
sentation are given by

Qλμ =
∑
j1 j2

(τ1 j1||Qλ||τ2 j2)

λ̂
[a†

τ1 j1
⊗ ãτ2 j2 ]λμ, (2.4)

where we dropped the Euler angles � for simplicity. The
reduced matrix element in the deformed basis (2.1) is given
by integration over Euler angles

(τ1 j1||Qλ||τ2 j2) = ĵ1 ĵ2
∑

Jks1ks2

X Jks1
τ1 j1

X Jks2
τ2 j2

×(−) js1+ j2+λ−JW ( j1 js1 j2 js2; Jλ)

×〈τ1ks1||Qλ||τ2ks2〉, (2.5)

where ĵ = √
2 j + 1 and W is the Racah coefficient. One has

a similar result for a particle-particle (pp) operator. For the
monopole particle-number and pairing operators in the labo-
ratory system we will consider the leading J = 0 component:

Nτ j ≈ (
x j
τ j

)2 2

2 j + 1

∑
m

a†
τ jmaτ jm,

P†
τ j ≈ (

x j
τ j

)2 2

2 j + 1

∑
m

a†
τ jma†

τ j−m(−) j−m. (2.6)

We use a monopole pairing plus a separable proton-neutron
interaction with constant strengths in both the ph and pp
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channels:

H =
∑

p

(εp − λprot )Np − Gprot
pair

4

∑
pp′

P†
p Pp′

+
∑

n

(εn − λneut )Nn − Gneut
pair

4

∑
nn′

P†
n Pn′

+ gph

∑
μ

D−
1μ(D−

1μ)† − gpp

∑
μ

P−
1μ(P−

1μ)†, (2.7)

where the meaning of the shorthand notation is τ ≡ (τ, ε jπ ).
Here, the chemical potential for protons (neutrons) is denoted
by λprot (λneut). The strength parameters gph (particle-hole)
and gpp (particle-particle) are the ones of the corresponding
spherical limit in Refs. [33,34], and are given in units of MeV.

The GT operators are given by

D−
1μ = 1√

3

∑
pn

(p||σ ||n)[a†
p ⊗ ãn]1μ,

(2.8)

P−
1μ = 1√

3

∑
pn

(p||σ ||n)[a†
p ⊗ a†

n]1μ,

in terms of the Pauli operator σμ. The reduced matrix element
in the deformed basis (2.1) is given in terms of the standard
spherical matrix element by Eq. (2.5) with λ = 1.

(3) The next step involves introducing a quasiparticle rep-
resentation for protons and neutrons:

a†
τm = uτ α

†
τm + vτ ατ−m(−) jτ −m, τ = p, n, (2.9)

where u and v are the BCS vacancy and occupation am-
plitudes respectively. These are used to obtain the β-decay
operators entering the Hamiltonian (2.7). The BCS equations
have formally the structure of the deformed case due to the
“statistical” factors entering the particle-number and pairing
operators (2.6). By using the quasiparticle representation (2.9)
one obtains

D−
1μ =

∑
pn

[ξpnA†
1μ(pn) + ξ pnA1−μ(pn)(−)1−μ],

P−
1μ =

∑
[ηpnA†

1μ(pn) − ζpnA1−μ(pn)(−)1−μ], (2.10)

where

A†
1μ(pn) = [α†

p ⊗ α†
n]1μ = (−) jp+ jn A†

1μ(np),

A1μ(pn) = (A†
1μ(pn))† = (−)1−μ[α̃n ⊗ α̃p]1−μ (2.11)

depend also on the Euler angles �, and we have defined

ξpn = (p||σ ||n)√
3

upvn = (−) jp− jnξ np,

ξ pn = (p||σ ||n)√
3

vpun = (−) jp− jnξnp,

ηpn = (p||σ ||n)√
3

upun = (−) jp− jnηnp,

ζpn = (p||σ ||n)√
3

vpvn = (−) jp− jnζnp. (2.12)

(4) Finally, we diagonalize the proton-neutron interaction
within the pn-dQRPA framework by using the phonon

�
†
1μ(ω) =

∑
pn

[
X ω

pnA†
1μ(pn) − Y ω

pn(−)1−μA1−μ(pn)
]
, (2.13)

given in terms of the creation pair operator (2.11) with ω the
eigenvalue index. Using the boson commutation rule∫

d�[�1μ(ω), �†
1μ(ω′)] = δω,ω′ , (2.14)

one obtains the standard orthonormality condition for ampli-
tudes, ∑

pn

(
X ω

pnX ω′
pn − Y ω

pnY
ω′
pn

) = δω,ω′ . (2.15)

The equations of motion are derived from a projection proce-
dure over Euler angles, i.e.,∫

d�
[
A1μ,

[
H, �

†
1μ(ω)

]] = ω

∫
d�

[
A1μ, �

†
1μ(ω)

]
, (2.16)

and a similar relation with A†
1−μ. The pn-dQRPA equations of

motion,( Apn,p′n′ Bpn,p′n′

−Bpn,p′n′ −Apn,p′n′

)(
X ω

p′n′

Y ω
p′n′

)
= ω

(
X ω

pn

Y ω
pn

)
, (2.17)

are formally given by the usual spherical relations

Apn,p′n′ = δpp′δnn′ (Ep + En) + 2gph(ξpnξp′n′ + ξ pnξ p′n′ )

− 2gpp(ηpnηp′n′ + ζpnζp′n′ ),

Bpn,p′n′ = 2gph(ξpnξ p′n′ + ξ pnξp′n′ )

+ 2gpp(ηpnζp′n′ + ζpnηp′n′ ), (2.18)

but in terms of deformed quasiparticle spectra Ep, En and re-
duced matrix elements multiplied by BCS amplitudes (2.12).
Thus, in the present approach the QRPA vacuum is spherical,
in contrast to the approximations adopted earlier where the
spherical symmetry of the phonon was restored after deriv-
ing the equations of motion, still leaving the vacuum itself
deformed.

We define the GT β-decay transition matrix elements as
follows [35]:

β−
ω0 = β+

0ω ≡ (ω||β−||0) =
√

3
∑

pn

(
ξpnX ω

pn + ξ pnY
ω
pn

)
,

β+
ω0 = β−

0ω ≡ (ω||β+||0) =
√

3
∑

pn

(
ξ pnX ω

pn + ξpnY
ω
pn

)
.

(2.19)

These transitions are described within the pn-dQRPA formal-
ism and they are schematically shown in Fig. 1. We find
the eigenvalues ω and amplitudes X,Y by using a standard
diagonalization procedure, but let us mention that one can also
derive the following analytic expressions for the amplitudes:(

X ω
pn

Y ω
pn

)
= ξpnx1 + ξ pnx2 + ηpnx3 + ζpnx4

Ep + En ∓ ω
, (2.20)
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(Z,N)

(Z-1,N+1) (Z+1,N-1)
β+

β-

β-

β+

FIG. 1. Weak processes described by the pn-dQRPA.

where the xk coefficients satisfy a 4 × 4 homogeneous system
of linear equations.

The 2νββ double GT matrix element is written as
follows [17]:

MGT =
∑
mn

(
0
∥∥β−∥∥ω

f
m
)〈
ω

f
m

∣∣ωi
n

〉(
ωi

n

∥∥β−∥∥0
)

Dm
, (2.21)

where the energy denominator is given by

Dm =
1
2

(
�exp + ω̃i

m + ω̃
f
m
) + Eex(1+

1 ) + �Mexp
i

mec2
. (2.22)

Here, ω̃m = ωm − ω1, �exp is the nuclear mass difference
between the initial and final states, Eex(1+

1 ) is the experimental
energy of the first 1+ state in the intermediate odd-odd nu-
cleus, �Mexp

i is the measured difference of the mass energies
of the intermediate and initial nuclei, and mec2 the electron
rest mass.

The detailed description of the 2νββ transition rate (2.21)
is given in Sec. 2.1 of Ref. [17]. In particular, the overlap
between the initial 1+

n and final 1+
m states in this relation,

〈ω f
m|ωi

n〉, is given by similar expressions to Eqs. (2.9)– (2.11)
of Ref. [23], but using our pn-dQRPA amplitudes:〈

ω f
m

∣∣ωi
n

〉 =
∑

pn,p′n′

[
X ω

f
m

pn X ωi
n

p′n′ − Y ω
f
m

pn Y ωi
n

p′n′
]

× (
u f

pui
p′ + v f

pvi
p′
)(

u f
n ui

n′ + v f
n vi

n′
)

×〈p|p′〉〈n|n′〉〈BCS f |BCSi〉. (2.23)

III. NUMERICAL APPLICATION

We analyzed experimental data concerning β− and β+/EC
transitions from (to) 0+ ground states of even nuclei to (from)
1+ ground states of neighboring odd-odd nuclei [36]. We used
as spherical sp states c†

τksν
the eigenstates of the spherical

Woods-Saxon plus proton Coulomb mean field with the uni-
versal parametrization of Ref. [37]. The deformed eigenstates
a†

τ jm, given by Eq. (2.1), are obtained by diagonalizing the
quadrupole-quadrupole interaction in the adiabatic limit, thus
neglecting the Coriolis forces. The quadrupole deformation
parameters were taken from Ref. [38]. The uτ and vτ am-
plitudes were determined by solving the BCS equations for
protons and neutrons with monopole interaction reproducing
the experimental pairing gaps. In order to build the pn-dQRPA
basis we first ordered the pn reduced matrix elements in
decreasing order of their magnitude and then used the first
100 pn pairs.

0

 0.5

1

 1.5

2

 20  40  60  80  100  120  140  160  180  200

100 basis states
<ISR>=1.022, σ=0.048

IS
R

/[3
(N

-Z
)]

A

FIG. 2. Ikeda sum rule (3.1) compared to 3(N − Z ) versus mass
number. σ denotes the rms deviation from the mean.

It is known that the so-called Ikeda sum rule,

ISR =
∑

ω

[(β−
ω0)2 − (β+

ω0)2] = 3(N − Z ), (3.1)

is automatically fulfilled within the spherical pn-QRPA [35].
In order to check the accuracy of the rule in our case, we use
in this relation the transition operators given by the deformed
approach (2.19). In Fig. 2 we plot the ratio ISR/[3(N − Z )]
against the mass number A. One sees that the rule is rea-
sonably fulfilled with a mean value of 1.02 and an overall
deviation of less than 5%. Let us mention that in the standard
pn-QRPA the Ikeda sum rule is saturated by increasing the
number of basis states. In this case the Ikeda sum rule (ISR)
can be analytically derived [35]. In our deformed approach
the situation is different, due to the role of the core in the
deformed matrix element (2.5). Although we still do not
have an analytical form of ISR within pn-dQRPA, it is quite
remarkable that by increasing the pair basis to 200 states one
obtains a small increase of the above mentioned mean ratio
ISR/[3(N − Z )], up to 1.06. Thus, the saturation property is
fulfilled within our approach. Our systematic analysis for all
available deformed nuclei has shown that the Ikeda sum rule
is fulfilled within 10% accuracy. For the sake of consistency in
our calculations we renormalized the operators β± to exactly
satisfy the Ikeda sum rule, i.e., β±

ω0 → β±
ω0/

√
ISR, where by

ISR we understand the summation term in Eq. (3.1).
In Fig. 3 we plot transition strengths as functions of neutron

number by using the extracted log f t values defined by [35]

gAβ±
exp =

√
6147 (2Ji + 1)

10log f t
, (3.2)

where Ji is the spin of the initial nucleus and gA denotes
the effective axial-vector coupling strength. In Fig. 3 we
considered an overall value gA = 1. First of all, let us take
note of the overall decreasing behavior of the strengths, a
feature confirmed by our calculations. On the other hand, we
observe in the right panels shell effects for β+/EC decays,
more pronounced for EC transitions from even-even emitters
above N = 50 and N = 82 magic numbers.
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FIG. 3. Experimental transition strengths (β±
exp)2 versus neutron

number for decays from even-even [panels (a) and (b)] and odd-odd
[panels (c) and (d)] nuclei.

Let us mention an interesting experimental fact, namely
that similar shell effects were found for the α-decay reduced
width (proportional to the spectroscopic factor) in regions
close to these magic numbers [39]. The α-decay reduced
width γ 2

0 used here is given by the leading monopole com-
ponent, defined as

� = 2P0γ
2
0 , (3.3)

in terms of the total α-decay width � and monopole pene-
trability through the Coulomb barrier P0. More details can
be found for example in Ref. [39], Sec. 2.5 and Eq. (2.87)
contained therein.

The similar behavior of the experimental α-decay reduced
width and EC transition probabilities [see panel (b) of Fig. 3]
is presented in Fig. 4, where we notice the obvious linear
correlations between the two mentioned quantities for transi-
tions from even-even emitters. Large α-decay reduced widths
above magic nuclei, with 100γ 2

0 � 1, are explained by an
enhanced α clustering in this region. For EC processes, an

 0

 0.5

 1

 1.5

 2

 0.2  0.4  0.6  0.8  1  1.2

10
0γ

2 0

β2
EC

FIG. 4. The α-decay reduced width defined by Eq. (3.3) versus
EC transition probability from even-even nuclei.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  50  100  150  200

g p
p(

cr
it)

A

FIG. 5. Critical value of the particle-particle strength gpp versus
mass number. The fitting curve is gpp(crit) = 3.3A−0.7.

explanation of large peaks above magic number in Fig. 3(b),
with (β+

exp)2 � 0.5, is under our further investigations, being
probably connected to the fact that the few protons and
neutrons above closed shells have properties similar to free
nucleons.

Our schematic approach depends on two Hamiltonian
dipole parameters, namely gph and gpp. It is well known
that the energy of the giant Gamow-Teller resonance is very
sensitive to the particle-hole strength gph. Therefore, we ad-
justed this parameter in order to fulfill the semiempirical rule
describing the centroid of the Gamow-Teller resonance as a
function of the charge and neutron numbers [35]:

ωGT = 1.444
Z + 0.5

A1/3
− 30

N − Z − 2

A
+ 5.57. (3.4)

The fitting line describing the above law is given by the
following relation:

gph = 0.00072A + 0.09504, σ = 0.047. (3.5)

Here σ is the rms deviation from the mean. It is worthwhile to
note here that gph has very little influence on the values of the
deduced effective axial-vector strengths.

Furthermore, the position of the lowest pn excitation de-
scribed within the pn-dQRPA is sensitive to the particle-
particle strength gpp. In Fig. 5 we show the critical values of
this strength (where the first eigenvalue vanishes) versus the
mass number. The fitting curve is given by

gpp(crit) = 3.3A−0.7, σ = 0.080. (3.6)

Let us mention that the parameters of this curve are similar to
those of Ref. [20].

Before proceeding to the comparison of the calculated
and experimental β-decay rates, it is interesting to study
the structure of the transition amplitudes β± (2.19) provided
by the pn-dQRPA calculations. In Fig. 6 we present the
cumulative sum for the β− [panel (a)] and β+ [panel (b)]
type of transition amplitudes corresponding to the transitions
from the 0+ ground state of 78Ge to the lowest eigenstate
obtained from the pn-dQRPA diagonalization. This running
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FIG. 6. Cumulative values of the β− (a) and β+ (b) transition
matrix elements versus the quasiparticle pair energy for transitions
from the 0+ ground state of 78Ge. The value gpp = 0.3gpp(crit) was
adopted in the calculations.

sum is constructed by summing over pn quasiparticle pairs
in Eqs. (2.19) in the sequence of increasing quasiparticle pair
energy Eqp = Ep + En. It should be noticed that the maximum
value of the amplitudes corresponds to the lowest quasiparti-
cle pair energy, i.e., to the proton and neutron single-particle
states lying at the corresponding Fermi levels. The sum then
decreases with increasing quasiparticle pair energy, with sat-
uration being achieved at about half of the initial value. The
explanation for this behaviour is obtained by analyzing the
structure of the amplitudes given by Eq. (2.20):

It turns out that for the pn pair at the Fermi level (the first
pn pair in the running sum) the first pn-dQRPA eigenvalue
satisfies the condition ω1 > Ep + En, while for all the other
pn pairs one has ω1 < Ep + En and therefore the sign of the
X amplitudes corresponding to these pairs is different from
that of the first pair. Thus, the final value of the total collective
transition amplitude β± is less (in this case about half) than
its maximal value β±

Fermi, given by the pn pair of quasiparticles
corresponding to the single-particle states lying closest to the
respective Fermi levels. In this analysis we used a value gpp =
0.3gpp(crit). As can be seen later from Fig. 8, the final value
of the ratio β±/β±

Fermi decreases from around 1 to about 0.1,
by increasing the mass number.

In order to make evident the impact of the value of gpp

on the results presented in Fig. 6, we analyze the effects
of collectivity by plotting in Fig. 7 the ratios β±/β±

Fermi as
functions of gpp for transitions from 78Ge. Here, as before, the
quantity β±

Fermi refers to the Fermi-surface pn pair term of the
sums of Eq. (2.19), while β± refers to the total sum. When
approaching the critical value of gpp, one sees an increase
(decrease) of this ratio for the β− (β+) transitions. These
changes are related to the increase in the collectivity of the
lowest pn-dQRPA eigenstates.

In Fig. 8 we plot the ratios β±/β±
Fermi for β− and β+ transi-

tions as functions of mass number using gpp = 0.3gpp(crit).
The collectivity of the transition amplitudes increases with
increasing mass number, revealed by a strong and approxi-
mately linear decrease for both β− and β+ decays versus the
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FIG. 7. Ratios β−/β−
Fermi (filled circles) and β+/β+

Fermi (open
circles) versus gpp for transitions from the 0+ ground state of 78Ge.

mass number A. As can be seen in the figure, the pn pair
at the Fermi surface contributes from roughly 80% to ap-
proximatively 10% in the structure of the collective transition
amplitude. Thus, one can conclude that the structure of ground
states in light odd-odd nuclei is mainly given by the the pn pair
having the smallest quasiparticle energy, and corresponding to
proton and neutron orbitals closest to the proton and neutron
Fermi levels.

Next, we extract the effective axial-vector strength repro-
ducing the experimental value of the transition matrix element
(3.2). First of all, let us stress that its value is sensitive to the
value of the particle-particle strength. This is demonstrated in
Fig. 9, where we plot the dependence of gA as function of
gpp for β− (filled circles) and β+ transitions (open circles)
in the case of transitions from 78Ge. We notice an interesting
correlation of these plots to the dependencies in Fig. 7, defin-
ing the collectivity of the corresponding transition amplitudes
β±/β±

Fermi.
After these preparatory studies we perform a systematic

analysis of the effective value of gA versus the mass num-
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FIG. 8. Ratios β−/β−
Fermi (filled circles) and β+/β+

Fermi (open cir-
cles) versus mass number for gpp = 0.3gpp(crit). The corresponding
dashed (solid) fitting lines are drawn to guide the eye.

024331-6



EFFECTIVE AXIAL-VECTOR STRENGTH WITHIN … PHYSICAL REVIEW C 100, 024331 (2019)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-0.01  0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08

g A

gpp

β+

β-

FIG. 9. Effective axial-vector strength versus the particle-
particle strength in the case of 78Ge for β− (filled circles) and β+

transitions (open circles). The gph values obtained from Eq. (3.5)
were used.

ber for β− and β+/EC transitions from (to) 0+ ground
states of even-even nuclei to (from) 1+ ground states of the
corresponding neighboring odd-odd nuclei. We exclude the
emitters close to magic nucleon numbers, which are connected
to anomalously large EC decay rates as discussed in the
context of Fig. 3, panels (b) and (d). In the first approach we
consider a constant value of gpp, while in the second iteration
we fix a given ratio

xg = gpp

gpp(crit)
(3.7)

for all nuclei. It turns out that the former predicts a noticeable
increase in the effective value of gA as a function of the
mass number, while in the latter we obtain a quasiconstant
dependence of gA on mass number, leading to a sensible
overall mean value of this parameter. To get hold of this mean
value we analyzed β± : 0+ → 1+ and β± : 1+ → 0+ transi-
tions by changing the ratio xg. In Fig. 10 we give a typical
example for transitions from even-even nuclei [panels (a) and
(b)] and odd-odd nuclei [panels (c) and (d)], corresponding
to xg = 0.3. One notices that the transitions from even-even
nuclei provide less scattered values of gA (σ ≈ 0.3) than from
odd-odd emitters (σ ≈ 0.6).

The averaged values 〈gA〉 versus xg for all four cases
(a)–(d) in Fig. 10 are plotted in Fig. 11, panel (a), with
different symbols. This dependence reveals a clear increase of
the averaged axial-vector strength from 〈gA〉 ≈ 0.4 for xg = 0
up to 〈gA〉 ≈ 1.5 for xg = 0.5. In order to decide which is
the best value of the ratio xg we studied also the available
experimental data on 2νββ-decay half-lives, namely the data
of Refs. [30,40]. Our calculations show that the overall mean
ratio between theoretical predictions and experimental data
on the 2νββ-decay half-lives is rather close to unity, but
the minimum of the standard rms deviation describing such
transitions is achieved for xg = 0.3, as can be deduced from
Fig. 11, panel (b). This approach then provides a mean value
of the effective axial-vector coupling 〈gA〉 = 0.68.
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FIG. 10. Effective axial-vector strength versus the mass number
A for even-even [panels (a) and (b)] and odd-odd emitters [panels
(c) and (d)] for gpp = 0.3gpp(crit). The averaged values with their
rms deviations are given in each panel.

References [15,16] offer a detailed survey of the effective
axial-vector strength in β decay. In particular, Table 1 found in
Ref. [15] gives an overview of effective gA values taken from
the literature, for various approaches. The result obtained
from our calculation is in very good agreement with the listing
contained there. Pairs of single-β-decaying nuclei in the mass
region of A = 100–136 were studied in Ref. [41] in order
to extract information regarding the values of the effective
axial-vector strength. The many body framework was that of
a spherical pn-QRPA in sp valence bases with Woods-Saxon-
calculated single-particle energies. To a reasonable approxi-
mation, gA was found to be a linear function of A with slightly
different parametrizations around A = 121. It was also shown
that, to a large extent, a mean value of 〈gA〉 = 0.6 gives
very similar results. A complex Markov chain Monte Carlo
statistical analysis was performed on measured β transitions
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FIG. 11. (a) Averaged values of the effective axial-vector
strength for the four cases in Fig. (10) versus the ratio (3.7). (b) Stan-
dard rms deviation in the 2νββ-decay calculations versus the same
ratio.
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for the mass range A = 62–142, in Ref. [42]. The corre-
sponding log f t values were compared with the theoretical
ones obtained from the spherical pn-QRPA with a realistic
force. The results suggested an apparent quenching of gA in
an extended analysis and also provided a realistic estimate
of the parametric uncertainty inherent in the nuclear model.
The average values of gA which can be deduced from [42]
are commensurate with those put forward in [41] and in this
work.

We also note that the average value of gA obtained in the
present work is about twice the average computed in Ref. [31].
There, the spherical pn-QRPA was employed together with a
schematic dipole interaction containing particle-particle and
particle-hole parts with mass-dependent strengths. Let us also
mention that this averaged value was obtained by simulta-
neously analyzing β− and β+/EC data from nine isobaric
triplets, while in this paper we determined 〈gA〉 by using a
much larger sample of data.

IV. CONCLUSIONS

We analyzed the experimental Gamow-Teller β− and
β+/EC decay rates between 0+ ground states of even-even nu-
clei and 1+ ground states in neighboring odd-odd nuclei, com-
bined with the experimentally known 2νββ half-lives in order
to derive an average effective value of the weak axial-vector
strength gA. The necessary pn-QRPA equations of motion
were derived in terms of a single-particle basis with projected
angular momentum provided by the diagonalization of a de-
formed mean field plus a schematic quadrupole-quadrupole
residual interaction. The parameters involved are mass depen-
dent particle-hole (ph) and particle-particle (pp) strengths.

Let us mention that the comparison between the pn-dQRPA
in the laboratory system and the standard intrinsic approach is
an important issue. For particle-hole excitations described by

dQRPA [29] we already obtained some preliminary results by
analyzing quadrupole electromagnetic transitions [43]. Thus,
the gross features of amplitudes are very similar, but the the
intrinsic B(E2) values are underestimated with respect to their
laboratory counterparts, due to the lack of symmetry restora-
tion for the QRPA ground state within the intrinsic approach.
We expect a similar behavior in the case of pn-dQRPA.

It turned out that the collectivity of transition amplitudes
increases linearly with the increasing mass number. This
behavior has an important consequence, namely that the struc-
ture of ground states in light odd-odd nuclei is mainly given
by the pn pair occupying single-particle states closest to the
Fermi level.

We also evidenced an important experimental fact: the
available EC transition matrix elements are proportional to
the α-decay reduced widths from even-even emitters. Our
simultaneous analyses of beta decay and double-beta decay
data led to a quenched average effective value 〈gA〉 ≈ 0.7,
with a root-mean-square deviation of σ ≈ 0.3 for transitions
from even-even emitters and σ ≈ 0.6 for transitions from
odd-odd emitters.

Let us finally mention that the effective value of gA is also
important in spin-multipole excitations [44], astrophysical
applications [45,46], isoscalar pairing investigations [47], the
relativistic approach [48], and the charge-exchange strength
function [49].
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