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Examination of the solution to the hyperfine structure “puzzle” in H-like and Li-like 209Bi ions
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Some aspects of description of the Bohr-Weisskopf effect in hyperfine splitting (HFS) of the H- and Li-like
ions of 209Bi are considered by application of the surface and volume models of the nuclear currents. Extension of
these models, used in internal conversion theory, as a description of the HFS allows one to successfully describe
the effect, without resorting to the specific difference. This is shown not to be needed at all. Moreover, it turns
out to depend even more strongly on the nuclear model than the HFS values themselves. A comparison of the
calculated HFS values to the experiment shows a satisfactory agreement. Both models provide an equally good
description of the effect. However, they result in different values of the retrieved rms radius of the magnetization
distribution over the nuclear volume. Prospects of future research are discussed.
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I. INTRODUCTION

Considerable progress during the past decades was
achieved in the investigation of few-electron heavy ions at
storage rings. Specifically, this concerns the study of their
electronic structure and its influence on nuclear processes. On
one hand, the possibility of accelerating the decay of nuclear
isomers, or searching for the effect of the electron shell on
alpha decay can serve as such examples (e.g., Ref. [1] and
references cited therein). On the other, the understanding of
atomic processes needs insight into the physics of the nuclei.
Considerable attention has recently been paid to the study of
the hyperfine structure of heavy ions, which is the subject of
this paper. As compared to neutral atoms, a few-electron wave
function can be calculated with high accuracy in heavy ions.
However, QED effects give a significant contribution. This
provides the basis to suggest that the hyperfine splitting (HFS)
can be used to test QED (e.g., Ref. [2] and references cited
therein). However, it was noted [2] that there is a stumbling
stone on the way represented by the Bohr-Weisskopf effect
[3]. The Bohr-Weisskopf effect is the correction to HFS
caused by finite spatial distribution of magnetization over the
nuclear volume as distinct from the interaction with a hypo-
thetical point-like nucleus with the same magnetic moment.
It has been known for decades that the Bohr-Weisskopf effect
generates hyperfine magnetic anomalies in optical spectra of
atoms. In the case of the 1s level in H-like ions of 209Bi, the
contribution of the Bohr-Weisskopf effect to the HFS value
constitutes approximately 2%. It slightly increases to 2.2%
in the case of the 2s level in Li-like ions. On a higher level
of accuracy, the Bohr-Weisskopf effect depends on the nu-
clear model. Some attempts were undertaken to calculate the
Bohr-Weisskopf effect (Ref. [2] and references cited therein).
They showed that there remains a contradiction with theory

at the level of 20–30%. Such a result should be expected
because nuclear calculations still cannot be performed ab
initio in principle, in view of the absence of a small parameter
[4]. At the same time, the Bohr-Weisskopf effect becomes
essential for the description of experimental data, which gives
rise to the statement of the bismuth hyperfine puzzle [5]. In
view of this problem, another roundabout way was proposed
in Ref. [2]. It runs that, instead of the calculation of the
Bohr-Weisskopf effect, one can cancel its contribution in
the specially constructed linear combination (difference) �′E
[see Eq. (20) in Sec. III] of the HFS values of the H- and
Li-like ions, being in the 1s and 2s states, respectively. The
cancellation takes place if the parameter ζ in the combination
[see Eq. (21) in Sec. III] is calculated in such a way that the
Bohr-Weisskopf contribution is subtracted in the difference.
This combination was called specific difference (SD). In the
case of 209Bi ions, the calculated value of ζ = 0.16886 was
then listed to the fifth decimal [5–7].

We note, however, that, on the other hand, such a sub-
traction, aimed at mutual cancellation of small contributions
from the Bohr-Weisskopf effect, also yields a considerable
subtraction of the main terms. The errors add rather than
subtract in the difference. This makes the result of subtraction,
that is SD in our case, less accurate than the 1s and 2s
HFS values themselves. We will see this in Sec. IV and
Table I.

More specifically: For the method to work, it is necessary
that parameter ζ be model independent. This idea seems to
be incorrect, judging by the experience of the application of
the theory of internal conversion (IC). It was subject to a
critical check in Refs. [8,9]. At first sight, the application of IC
theory may seem unusual for the HFS estimation. However,
this idea is not new. For the first time, IC theory was applied in
Ref. [10]. Then estimations of the HFS values and the related
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TABLE I. HFS values Wi for the 1s and 2s states (in eV), calculated with various representative model radii (in fm). The results are
presented for the two values of the nuclear magnetic moment μ = 4.1106 and 4.092 nuclear magnetons (see text). Each of the HFS values,
listed in the table, may be equally well reproduced by either of the models: surface (SC) or volume (VC) magnetization currents, but with
different model radii RSC

c [Eq. (18)] and RVC
c [Eq. (19)], respectively. Note that the related rms radii of the models RSC

2 and RVC
2 , respectively,

turn out to be very similar, within 1%.

RVC
c RVC

2 RSC
2 ≡ RSC

c μ = 4.1106 μ = 4.092

W1s W2s W1s W2s

9.1214 7.4476 7.3703 5.06970 0.794952 5.04663 0.791378
8.6214 7.0393 6.9728 5.08041 0.796738 5.05729 0.793156
8.1214 6.6311 6.5745 5.09087 0.798484 5.06770 0.794894
7.6214 6.2228 6.1753 5.10106 0.800184 5.07784 0.796586
7.1214 5.8146 5.7754 5.11092 0.801830 5.08766 0.798224
6.6214 5.4063 5.3744 5.12042 0.803414 5.09711 0.799801
6.1214 4.9981 4.9726 5.12949 0.804927 5.10614 0.801308
5.6214 4.5898 4.5698 5.13809 0.806363 5.11470 0.802737

dynamic effect were performed in Refs. [11–13]. In the next
section, we will show the relationship of these two phenomena
in more detail. Meanwhile, based on the IC theory, the method
of moments of the magnetization distribution was developed
in Ref. [8] for the interpretation of the penetration effects.
The method was applied in Ref. [9], where it was shown that
the conclusion of the “hyperfine puzzle” was mostly due to
underestimation of the model dependence of the SD. Indeed,
it was anticipated in our paper [8] that such a puzzle could
arise. Herein, we approach the problem in a different way as
compared to that of Ref. [9]. We study the penetration effect
on the HFS and SD values by means of comparison of the two
conventional models, which are known to work well in the IC
theory: surface (SC) [14] and volume (VC) [11,15] nuclear
currents. In view of the fact that these models are, in some
sense, opposite to each other in their characteristic features,
one can say that the true result is somewhere in the middle.

In Sec. II, we briefly derive the formulas. In Sec. III,
the relationship between IC and HFS is traced. The results
of the calculations are reported in Sec. IV. Unexpectedly,
we arrive at the conclusion that both of the models work
equally well in the description of the data at the present
level of precision. Although with different parameters the
models result in the same values of the HFS for the 1s and
2s levels up to six decimals. However, the HFS values are
quite sensitive to the only parameters of the models — their
radii of the magnetization currents. The ζ and �′E values
turn out to be more sensitive than the HFS values themselves,
as expected. The results are discussed in more detail in the
Conclusion.

When the paper was ready, Ref. [16] was issued. The
authors showed that the value of the magnetic moment of
the nucleus μ = 4.092 nuclear magnetons may be more cor-
rect than 4.1106 [17] used previously. Such a value would
essentially keep the present results, merely rescaling them
by ∼0.5%. For the sake of completeness, the rescaled values
are also presented. They demonstrate the absence of any
“hyperfine puzzle” within the present scope of the 209Bi issue:
The data can be fairly explained with either of the magnetic
moment values.

II. DERIVATION OF THE FORMULAS

A Feynman graph of HFS is presented in Fig. 1. In the
Furry’s representation, the amplitude of the process can be
expressed as

AF = 〈FM|H ′
c|FM〉, (1)

H ′
c = jμ(r)Jν (R)Dμν (|r − R|), (2)

where jμ(r), Jν (R) are the electronic and nuclear four-
currents, respectively. We will designate F , M the total angu-
lar momentum of the atom and its projection, as well as I , M, j
and m — the nuclear spin and its projection, electronic angular
momentum with its projection onto the quantization axis,
respectively. Therefore, it is only the space three-component
vector Jν (R) which gives a contribution. Equation (1) is
expressed in terms of the atomic wave functions with a certain
total angular momentum F and its projection M:

|FM〉 =
∑

m

C(I M − m jm|FM ) |I M − m〉| jm〉, (3)

with C(I M − m jm|FM ) being the Clebsch-Gordan coeffi-
cients. By means of Eq. (3) one can go over from the |FM〉 to
the |IM〉| jm〉 representation. The photon propagator

Dμν (R) = gμνeiω|r−R|/|r − R| = gμν/|r − R| (4)

reduces to the conventional Coulomb interaction for the
transition energy ω = 0. gμν in Eq. (4) is a metric tensor.
Therefore, Eq. (1) can be written as

AF = 〈FM| j(r)J(R)

|r − R| |FM〉

= 〈FM|j(r)J(R)
∑
LM

rL
<

rL+1
>

Y �
LM (R̂)YLM (r̂)|FM〉. (5)

In Eq. (5), r< (r>) designates the smaller (larger) of the r or
R, and r̂ stands for r/r. Note that there is no need to put down
the arguments of the spherical harmonics as r̂< and r̂>: one
always can put r̂< = R̂ and r̂> = r̂ with no loss of generality.
The electronic current in the | jm〉 Eq. (3) reads

jk (r) = ieψ̄κm2 (r)γkψκm1 (r), (6)
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with γk the Dirac’s matrices, and ψκm1 (r) the Dirac four-
component electronic wave function. κ is the relativistic quan-
tum number, ψ̄κm(r) = ψ+

κm(r)γ0.
The magnetic nuclear current generally can be expressed

in a series over T(0)
LM (R̂) — vector spherical harmonics. These

are defined as follows [18,19]:

T(λ)
LM =

∑
ν

C(1νL + λM − ν|LM )YL+λM−ν (R̂)ξν, (7)

with ξν being three basic unit vectors, L the multipole order
of the transition, and M the corresponding magnetic quantum
number. Electrical nuclear currents can be expanded in a
series over the spherical harmonics T(±1)

LM (R̂). But this is not
our case: the Bohr-Weisskopf effect is related to the M1
interaction and L = 1, λ = 0 in Eq. (7). In the |IM〉| jm〉 rep-
resentation, taking into account the Wigner-Eckart theorem,
the coefficients of expansion dLM can be presented as follows
[18,19]:

dLM =
∫ (

T(0)
LM (R̂), J(R)

)
d2R = C(IM1L0|IM2)√

2I + 1
iJL(R).

(8)
Integration in Eq. (8) is over the angular variables d2R. Below
we keep the name of the transition nuclear current for its radial
component J (R) ≡ J1(R), omitting the multipole order L = 1.

Further derivation is straightforward. Passing to the
|IM〉| jm〉 representation in Eq. (5) and making use of Eq. (8)
allows one to integrate over the angular nuclear variable R̂.
Then integration over the electronic angular variable r̂ can be
performed by means of a formula [20]∫ (

j(r)T(0)
1M (R̂)

)
d2r = C( jm11M| jm2)√

2 j + 1
b, (9)

with the reduced matrix element

b = il−l ′+1

√
3(2 j + 1)

2π j( j + 1)
κg(r) f (r), (10)

where g(r), f (r) are the large and small components of the
radial Dirac wave function. As a result, one arrives at the
expression for the energy shift, containing a double integral
over the radial variables of the nuclear and electronic currents

AF = 8eπκ (2 j + 1)

[
3(2l ′ + 1)

2 j(I + 1)

]1/2

R(2)
κ , (11)

R(2)
κ =

∫ ∞

0
J (R)g(r) f (r)

r<

r2
>

R2dR r2dr. (12)

The expression for the hyperfine splitting W of the states with
F = I + j and F = I − j follows Eq. (11):

W = (−1)(l−l ′+1)/2 2eκ

j + 1

√
2π (2I + 1)

3I (I + 1)
R(2)

κ . (13)

In the first approximation, one can put in Eq. (13) r< = R,
r> = r, neglecting the electron penetration effects into the
nuclear range. In the IC theory, this approximation is known
as the no penetration (NP) model. Then the double integral
(12) factorizes into two separate integrals over the nuclear
and electronic variables. By making use of the normalization

FM FM

j j

I I

FIG. 1. Feynman graph of hyperfine shift. Nuclear propagator is
shown by bold line. Atomic state is defined by the total momentum F
and its projection M, together with I and j — nuclear and electronic
spins, respectively.

condition [3,8]∫ ∞

0
J (R)R3dR =

[
3(2I + 1)(I + 1)

2π I

]1/2 eh̄

2Mpc
μ , (14)

the nuclear integral is reduced to the total magnetic moment
of the nucleus μ. The Bohr-Weisskopf effect is thus neglected
in the NP approximation. For its description one has to take
into account the electronic penetration effects. The SC and
VC models describe well the penetration effects in IC. Their
application is facilitated by the factorization of the double
integral. Let us consider the extension of these models for the
description of HFS’s in more detail.

III. RELATIONSHIP BETWEEN THE PHENOMENA OF
INTERNAL CONVERSION AND HYPERFINE SPLITTING

The Feynman graph of IC is presented in Fig. 2. Actually,
both graphs in Figs. 1 and 2 describe the same amplitude,
though defined on different areas of the external kinematical
variables of the transition energy and angular momenta. In
quantum mechanics and theory of field, such values can be
related to each other by making use of the analytical properties
of the amplitudes, and the processes themselves are spoken
about as crossing channels. The method of complex transi-
tion trajectories by Landau (e.g., Refs. [21,22]), or complex
angular momenta by Regge [23] may set examples. In the

I M1 1 I M2 2

p
j m1 1

FIG. 2. Feynman graph of internal conversion. I1, M1, I2, M2

— nuclear quantum numbers (spins and their projections on the
quantization axes) in the initial and final states, respectively. j1, m1 —
electronic quantum numbers in the initial state. Conversion electron
is characterized with the four-vector of its momentum p.
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case of HFS, the analyticity of the amplitudes in Figs. 1 and 2
allows one to apply the methods, developed in the IC theory, to
calculate the HFS values, considered as the diagonal IC matrix
elements in the limit of the transition energy ω → 0.

The diagram in Fig. 2 hints that the amplitude of conver-
sion transition factorizes into the amplitudes of virtual photon
emission and its subsequent absorption by an atomic electron.
There is exact factorization in the NP model, as well as in
the SC and VC models. Internal conversion coefficients (ICC)
are defined as the ratio of the probabilities of the conversion
c(τ, L) and radiative γ (τ, L) transitions

α(τ, L) = c(τ, L)/γ (τ, L) , (15)

where τ, L stand for the type and multipole order of the
transition.

In the general case, calculations within the framework of
various nuclear models need a two-dimensional integration
over the electronic and nuclear variables within the nuclear
volume (e.g., Ref. [8]). As a result, the factorization becomes
approximate in the general case, as well as in R(2)

κ , Eq. (12).
This makes ICC α(τ, L) model dependent, as well as HFS.
In the IC theory, manifestations of the nuclear structure
are classified into two kinds: static and dynamical effects
(Refs. [14,24–29] and references cited therein). To the first
kind belong the effects that arise because of change in the
electronic wave functions as compared to the Dirac wave
functions for the point-like nucleus. Coulomb wave functions
are singular at the origin. Accounting for the finite charge
distribution over the nuclear volume makes the functions
regular, and brings about a correction to the ICC values up
to 30% in the case of the M1 transitions in heavy nuclei
[24,26]. Regarding Ref. [2], we note that it is directly pointed
out therein that the authors realized the robustness of the
ζ and �′E values as against variations of the parameters
of Fermi charge distribution over the nuclear volume. This
just comprises the static effect. Therefore, the conclusion of
the model independence of SD [2] is only drawn from an
investigation of the static effect, which is known not to be
essential after the main shortcoming — the divergence of the
Coulomb wave function — is, indeed, resolved.

The influence of a model for the transition nuclear currents
on the ICC values is called the dynamical effect of the
nuclear structure. This effect is responsible for the differences
between the experimental ICC and their table values, which
are observed in some cases of forbidden nuclear transitions.
Note that these differences are also called anomalies in IC,
similar to magnetic anomalies in the hyperfine spectra (e.g.,
Ref. [30]). The dynamical effect constitutes up to ∼10% in
heavy nuclei in the case of the M1 transitions. The SC nuclear
model was employed as the basis for a number of tables of
ICC (e.g., Refs. [24,25]), in high demand for research and
application purposes. The VC model is expected to work even
better in the case of the valence h9/2 proton orbital in 209Bi.
Furthermore, the VC model was applied for the description of
muonic conversion [11,15,31].

Turning now to HFS, we note that there are no transitions
here. It is the distribution of the magnetization over the nuclear
volume instead, which brings about the dynamical effect. To
a certain extent, the dynamical effect on the HFS values in the

Li-like ions was tested in Refs. [32,33], using two very close
to one another nuclear models (see below). But not on the
SD’s, which was a concept that was proposed later. Actually, it
was only in Ref. [8] that the SD values, calculated in different
nuclear models, were compared to one another for the first
time. There was a difference of 3% for the SD value, obtained
by the authors of Ref. [8], which was a crucial divergence with
the prediction of Refs. [2,6].

Assuming in Eq. (12) either surface δ-like magnetization
current J (R), or a constant one within the nuclear volume, one
arrives at the following expressions for HFS, allowing for the
Bohr-Weisskopf effect:

W = Nw,

w =
∫ ∞

0
g(r) f (r)dr + tν ≡ w0 + tν,

N = −2(2I + 1)

I ( j + 1)
eκμ

eh̄

2Mpc
. (16)

Here j, I are the electronic and nuclear spins, respectively,
e is the elementary charge, μ the magnetic moment of the
nucleus, and eh̄

2Mpc the nuclear magneton. w0 gives the NP
value. tν , which we shall call the penetration matrix element,
bears information on the nuclear structure

tν =
∫ Rc

0
g(r) f (r)Y ν (r) r2dr, (17)

with

Y ν (r) =
{

r
R3

c
− 1

r2 for ν = SC,
1

R3
c

(
4r − 3 r2

Rc

) − 1
r2 for ν = VC

(18)

(19)

In the NP model Y ν (r) ≡ 0. Rc is the model radius of the
transition currents. We refer upper index ν to the model, and
lower index i to the electronic level.

It is thus tν that only bears information about the Bohr-
Weisskopf effect. It was proposed to get rid of it in the linear
combination, called the specific difference [2,6]:

�′E = W2s − ζW1s . (20)

In terms of the penetration matrix elements (16), Eq. (20) has
an evident solution

ζ = tν
2s/tν

1s . (21)

By making use of the last equation, SD (20) can be also
expressed in equivalent form as follows:

�′E = N
(
w2s

0 − ζw1s
0

)
(22)

= Nw2s p1s − p2s

p1s
, (23)

where pν
i = tν

i /wν
i is the relative contribution of the Bohr-

Weisskopf effect to the HFS. In view of that p2s > p1s, it
follows from Eq. (23) that �′E < 0.

Note that Eq. (18) for the SC model was used in
Refs. [32,33] under the name of “homogeneous distribution.”
In terms of Eq. (18), model [32,33] is obtained by the
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FIG. 3. Schematic picture explaining seeming contradiction of
the terms of “homogeneous” and “surface-current” for the same nu-
clear model. Homogeneously distributed inside the nucleus magnetic
dipoles are shown by elementary circular currents. In the bulk, the
adjacent currents mutually cancel one another. As a result, only the
encircling effective current survives, resulting in the surface-current
model. It is this surface current which is responsible for the Bohr—
Weisskopf effect.

replacement of Y (r) with

Ỹ n(r) = rn+1

Rc
n+3 − 1

r2
, (24)

with the parameter n = 0 and 2. In a particular case of n = 0,
Eq. (24) coincides with Eq. (18) in the case of the SC model.
This seeming paradox of the names has a simple explanation
on the physical ground. In fact, it is not the transition density,
but rather the transition current that determines the HFS [see
Eq. (2)]. On the other hand, such a classical picture of the
“homogeneous” density distribution of elementary point-like
magnetic dipoles gives rise to the effective current along
the circle surrounding the locus, as inside the locus all the
elementary currents mutually cancel one another. This directly
generates the δ-form nuclear current, as illustrated in Fig. 3.
It is worth noting that another such paradox was found in
Ref. [31]. It was found that muonic conversion from the
collective nuclear states of giant dipole resonance is better
described by the VC than the SC nuclear model, in spite of
that, the transition nuclear density has a sharp maximum on
the nuclear surface.

It is also worth noting some relations concerning the phys-
ical sense of the model parameters. In the VC model, Rc, like
the equivalent electromagnetic radius, equals the radius of the
sphere with the homogeneous sharp edge distribution of the
magnetization currents. It is related to the rms radius R2 by
means of the following expression:

RVC
2 =

√
2

3
RVC

c . (25)

In the SC model, all the multipole moments equal RSC
i ≡ RSC

c .

IV. RESULTS OF CALCULATIONS

As was pointed out in the original paper by Bohr and
Weisskopf, the effects of the nuclear structure can be studied
by using a series expansion of the electronic wave functions
within the nucleus [3]. Independently, the same series was
also used in studies of the penetration effects in the cases
of anomalous conversion [14,26]. In this way, the series
expansion over the moments R2, R4, . . . , of the nuclear mag-
netization distribution was developed for HFS in Ref. [8]. The
leading term is proportional to the square of the rms radius
R2

2, or the second moment of the distribution of magneti-
zation. Therefore, if two nuclear models have the same R2,
they will result in the same HFS in this approximation. This
justifies the common procedure of studies of variations of R2

by means of the hyperfine anomalies along isotopic chains
(e.g., Refs. [34,35]).

Herein we systematize the result in such a way, which
keeps minimum the difference between the results, obtained
in the different models. For this purpose, we will fit the SC
radius to the value that results in the same values of w1s and
w2s, as far as possible, to those obtained in the VC model,
respectively. For this purpose, we note that both models only
differ by the penetration matrix elements tν

i . Given an RVC
c

radius, the fit of the RSC
c radius was fulfilled by minimization

of the following form:

χ =
∣∣∣∣ tSC

1s − tVC
1s

tVC
1s

∣∣∣∣ +
∣∣∣∣ tSC

2s − tVC
2s

tVC
2s

∣∣∣∣ . (26)

Even in such different models as the ones we use, the coinci-
dence of the HFS values is achieved up to six decimals. For the
purpose of better comparison to the experiment, we added the
latest values of QED corrections to the calculated HFS values
[6]: �E1s

QED = −0.0268 eV, �E2s
QED = −0.005 eV, and em-

ployed the contribution from the electron-electron interactions
for the Li-like configuration from Ref. [6], where they were
calculated up to the third order of 1/Z: �E2s

e−e = −0.030 eV.
The results are presented in Table I for various representative
values of the radii of the models. In the first and third columns,
RVC

c and related RSC
c radii are listed, respectively. The resulting

rms radii turn out to be different in both models. To show this,
we list the rms RVC

2 in the second column. In the SC model,
RSC

2 ≡ RSC
c . For the sake of clarity, the values obtained with

μ = 4.092, are also presented in columns 6 and 7. In both
cases, either with μ = 4.1106, or μ = 4.092, the results can be
adequately fitted to the last experimental values [16] of W exp

1s= 5.08503(11) eV, and W exp
2s = 0.797645(18) eV, although

with different rms radii (also see below for more detail). The
difference in radii compensates the variation of the magnetic
moment of the nucleus.

Proceeding the discussion of the ζ and �′E properties,
one can see from Eq. (26) that the condition of model inde-
pendence of the ζ value is equivalent to the condition that
both of the tν values, and therefore both of the W1s and W2s

HFS’s, might be fitted simultaneously by different models.
This condition is looser than the mere proportionality of
the 1s and 2s wave functions [2], not to mention that the
proportionality is affected by the e–e interactions in the case of
Li-like configuration, QED effects, and so on. Naturally, if the

024326-5



F. F. KARPESHIN AND M. B. TRZHASKOVSKAYA PHYSICAL REVIEW C 100, 024326 (2019)

TABLE II. Parameters ζ and the SD values �′E (20), calculated
in the VC and SC models, for the same representative values of the
model radii as in Table I (for the sake of brevity, only the first column
with the RVC

c radius is kept). The SD values are presented in meV. As
opposite to the Wi values in Table I, model dependence of the ζ and
SD values can be noted.

RVC
c ζ VC ζ SC �′E , VC �′E , SC

9.1214 0.16688 0.16688 −61.11 −61.12
8.6214 0.16688 0.16689 −61.12 −61.14
8.1214 0.16689 0.16689 −61.14 −61.15
7.6214 0.16689 0.16689 −61.16 −61.17
7.1214 0.16689 0.16690 −61.18 −61.19
6.6214 0.16690 0.16690 −61.20 −61.21
6.1214 0.16690 0.16690 −61.22 −61.24
5.6214 0.16691 0.16691 −61.25 −61.26

equivalence of the models were complete, the ζ value would
coincide in both models. Minor differences in the calculated
Wi values (of the order of 10−6 and less, beyond the accuracy
of the numbers given in Table I), repeatedly increase, resulting
in much greater differences in the ζ and �′E values, as
illustrated in Table II for the same representative model radii
as in Table I. In accordance with what was said previously,
the difference of the ζ and �′E values as calculated in various
models turns out to be much more than the difference of the
HFS values themselves.

In the same rows, the ζ values hold up to five decimals, and
�′E values only up to four decimals. The latter uncertainty is
about the same as the experimental uncertainty [16] (which
does not include the dynamical effect). Throughout Table II,
the ζ values only coincide up to the fourth decimal, varying
around 0.1669. And the �′E values differ already in the third
decimal, varying between −61.3 and −61.1 meV. In both
models, ζ and �′E values are sensitive to the only model
parameter Rν

c .
In more detail, the results of the fit of the Wi values within

the framework of the VC model are presented in Table III,
together with the experimental data. As one can see, the
change in the μ value from 4.1106 to 4.092 is not crucial in the
sense that a decrease in the nuclear magnetic moment can be
compensated for by a decrease in the radius of magnetization
currents without degrading the fit. Our present fit, reproduced
in Table III, corresponds to the following values of the RVC

2
moment of the magnetization distribution: RVC

2 = 6.829 fm
in the case of μ = 4.1106, and RVC

2 = 5.960 fm in the case of
μ = 4.092. A similar fit can be performed using the SC model.
The results obtained in Ref. [8] within the framework of the
two-parameter magnetic moment method are also presented.

They are in good agreement with the present calculations. For
comparison, the results of Refs. [6,16] are also listed. One can
see that the results of Ref. [6] are in worse agreement with the
experiment. In contrast, the authors of Ref. [16] were quite
satisfied by their fit. This is the key point to understanding
the 209Bi hyperfine puzzle. As a matter of fact, the authors
of Ref. [16] compare to the experiment, not the Wi values
themselves, but the SD values instead, which they designed
for this purpose. No puzzle arises if the problem is approached
in a more straightforward way, fitting the Wi values.

V. CONCLUSION

Usage of the hyperfine structure in few-electron ions for
testing QED is a challenging task. The main uncertainty on
this way looks to be the Bohr-Weisskopf effect. It makes a
contribution at the level of 2% to the HFS of the 1s and
2s levels. At the same time, its correct ab initio calculation
currently appears not to be a feasible task. The previous con-
sideration is devoted to search for alternate ways of resolving
this task. As expected, the above results dispute the concept
of the specific difference as a significant model-independent
value. This exhibits even stronger sensitivity to the models
used than the HFS’s themselves. On the other hand, they show
that there is no fundamental problem in the interpretation of
the Bohr-Weisskopf effect: by mere fitting the parameters,
the effect can be equally well reproduced by either of the
models within six decimals due to the appropriate choice of
the model radius Rc. Such accuracy is quite enough for the
present purposes. Naturally, the resulting Rc radius turns out
to be specific for the model. What various models have in
common is the rms radius. Its retrieved value turns out to
be similar within 1% accuracy. Such a level of description of
the Bohr-Weiskopf effect shows a good prospect for the QED
testing. A comparison of the obtained results to experimental
data shows that the estimation of the QED effects [6] forms
a good basis in this way, together with the contribution of the
e–e correlations, as calculated in Ref. [6] to the third order of
the perturbation series.

Such features of the Bohr-Wesskopf effect, as established
above, are in agreement with an alternative way, based on the
two-parameter model, which was proposed in Ref. [8]. This
way allows one to unambiguously retrieve objective character-
istics of the distribution of magnetization inside the nucleus,
such as the second and fourth moments. Model independence
of the values thus obtained were demonstrated in Ref. [8].
Within this method, the difference obtained above in the rms
values, calculated within the SC and VC models, can be
attributed as a manifestation of the truncated terms, containing
R4 and higher moments. An analysis of the results presented

TABLE III. Comparison of various theoretical results for the HFS values Wi, eV, to the experiment.

Electronic Experiment [8] μ = 4.1106 [6] μ = 4.092

state i [16] present present [16]

1s 5.08503(11) 5.0863 5.08584 5.16138 5.08420 5.089
2s 0.797645(18) 0.7975 0.797645 0.810230 0.797646 0.7983
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in Table III suggests that it might be impossible to describe
the HFS values for the both levels simultaneously within
the framework of a one-parameter model. The two-parameter
method of moments [8] can be used in this case. Further
research, both experimental and theoretical, is needed to better
understand the above peculiarities. Specifically, measuring
the 2p1/2 HFS value may be critical to this end [8]. Adding
information about one more state to the database will show
whether the description within the one- or two-parameter

model is sufficient, or the contribution and consideration of
higher multipole moments will be essential.
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