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Background: β-decay rates play a decisive role in understanding the nucleosynthesis of heavy elements and
are governed by microscopic nuclear-structure information. A sudden shortening of the half-lives of Ni isotopes
beyond N = 50 was observed at the RIKEN-RIBF. This is considered due to the persistence of the neutron magic
number N = 50 in the very neutron-rich Ni isotopes.
Purpose: By systematically studying the β-decay rates and strength distributions in the neutron-rich Ni isotopes
around N = 50, I try to understand the microscopic mechanism for the observed sudden shortening of the half-
lives.
Methods: The β-strength distributions in the neutron-rich nuclei are described in the framework of nu-
clear density-functional theory. I employ the Skyrme energy-density functionals (EDF) in the Hartree-Fock-
Bogoliubov calculation for the ground states and in the proton-neutron quasiparticle random-phase approxima-
tion (pnQRPA) for the transitions. Not only the allowed but the first-forbidden (FF) transitions are considered.
Results: The experimentally observed sudden shortening of the half-lives beyond N = 50 is reproduced well
by the calculations employing the Skyrme SkM* and SLy4 functionals in contrast to the monotonic shortening
predicted in the preceding calculation using the SkO’ functional.
Conclusions: The sudden shortening of the half-lives beyond N = 50 in the neutron-rich Ni isotopes is due to the
shell gap at N = 50 and cooperatively with the high-energy transitions to the low-lying 0− and 1− states in the
daughter nuclei. The onset of FF transitions pointed out around N = 82 and 126 is preserved in the lower-mass
nuclei around N = 50. This study suggests that a microscopic calculation is needed, where the shell structure
in neutron-rich nuclei and its associated effects on the FF transitions are self-consistenly taken into account for
predicting β-decay rates of exotic nuclei in unknown region.
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I. INTRODUCTION

Magic numbers are a key quantity to understand the quan-
tum many-body systems such as atomic nuclei. This is be-
cause the single-particle motion in a mean-field potential and
the associated shell structure are important concepts in nuclear
structure. The local stability with the specific combinations
of neutrons and protons is naturally understood with the help
of the magic numbers. The canonical values were established
in the systematic studies of nuclei along the β stability line.
In the recent studies of neutron-rich nuclei, however, it was
found that some of the magic numbers disappear and new
ones show up instead [1]. Exploring the evolution of the
shell structures and elucidating the underlying mechanism as
functions of the neutron and proton numbers have been a
fundamental research topic in the field of nuclear physics [2].

The neutron magic number N = 50 around the very
neutron-rich nucleus 78Ni (N/Z ∼ 1.8) has attracted a consid-
erable interest, not only in a view of nuclear structure, but in
a point of the r-process nucleosynthesis: 78Ni can be a doubly
magic nucleus and an important waiting point serving as a
bottleneck in the synthesis of heavy elements [3]. Therefore,
there have been numerous numbers of experimental efforts on
if the N = 50 magic number survives in 78Ni [4–16].

Though single-particle energies in a spherical mean field
are not a direct observable, two-nucleon and one-nucleon
separation energies are often considered as a correspond-
ing signature. A high-precision nuclear mass measurement
at the Ion Guide Isotope Separation On-Line (IGISOL) on
the Z = 30–33 nuclei with a mass number around 80–90
revealed a reduction of the N = 50 shell gap energy towards
Ge (Z = 32) and an increase at Ga (Z = 31) [4], where the
experimental shell-gap energy was defined by the difference
of the two-neutron separation energies as �n(N ) = S2n(N ) −
S2n(N + 2). By comparing some mean-field calculations and
mass models, Hakala et al. in Ref. [4] obtained an indication
of the persistent N = 50 shell gap in 78Ni. The recent mea-
surement on 79Cu at the CERN-ISOLDE revealed a reduction
of the N = 48 shell gap, suggesting indirectly the enhanced
N = 50 shell gap [5]. Another mass measurement on the Zn
(Z = 30) isotopes including 81Zn confirmed that the N = 50
shell gap is maintained for the Zn isotopes by looking at the
one-neutron separation energies, and supports the indication
above [6]. Porquet and Sorlin pointed out that the linear fits
to the one-neutron separation energies lead to a diminished
N = 50 shell gap energy in 78Ni, where the collective effect
at Z = 32 was carefully examined [7]. On the other hand, the
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large-scale shell-model calculation explaining these observa-
tions predicted a persistent shell closure in 78Ni [17].

The low-lying quadrupole state is sensitive to the soft-
ness of a spherical nucleus against quadrupole deformation.
Thus, the excitation energy of the first-excited 2+ state
and the transition matrix element are also a possible signature
of the rigidity at magic numbers. A systematic investigation
on the low- and medium-spin states in the N = 50 isotones
with Z = 32–37 suggests a constant N = 50 shell gap by
comparing to the shell-model calculation [8]. The lowering of
transition probability B(E2) in the Ge isotopes up to 82Ge also
indicates that the N = 50 shell closure remains in the neutron-
rich nuclei [9–11]. The higher energy of the 2+

1 state and the
lower B(E2) value measured in 80Zn [12] and the recently
observed 4+

1 state [13] further confirmed the persistent N =
50 shell closure in 78Ni. However, looking at the Ni isotopes,
the E (2+

1 ) value decreases up to N = 48 and the B(E2) value
increases up to N = 46 [14]. Thus, the “direct” measurement
of the E (2+

1 ) and B(E2) in 78Ni is strongly desired [15], while
the recent theoretical calculations predicted the doubly closed
structure in 78Ni [18,19].

Even though the production yields are small and the ex-
periments on the mass or the low-lying quadrupole state
are difficult to perform, the measurement of β-decay half-
lives T1/2 is feasible. Thus, there have been some attempts
to study the structure of very neutron-rich nuclei via half-
lives. The β-decay T1/2 were discussed in terms of the shell
effects, in particular the nuclear deformation effect, in the S
and Cl nuclei with N = 28 [20] and in the N � 40 nuclei
around 64Cr [21]. In these works, the measured T1/2 were
compared to the results of model calculations such as the finite
range droplet model+quasiparticle random-phase approxima-
tion (FRDM+QRPA) [22] or its earlier version. The authors
in Refs. [20,21] discussed how much of the deformation pa-
rameter is reasonable to explain the observation, and pointed
out the shortcoming of the QRPA in which the deformation
parameters for the mother and daughter nuclei are the same.

Xu et al. carried out a systematic measurement of the
β-decay T1/2 of 20 neutron-rich nuclei in the 78Ni region at the
RIKEN-RIBF [16]. They found a sudden shortening of T1/2 in
the Ni isotopes beyond N = 50. When the β-decay Qβ value
is sufficiently high, T1/2 is well approximated by a fifth-power
dependence on Qβ . Experimentally, the monotonic shortening
of log10 T1/2 of the Ni isotopes as a function of the neutron
number was observed below N = 50, indicating that the Qβ

value gradually increases in the isotopic chain below 78Ni. It
was argued that the sudden shortening of T1/2 beyond N = 50
is due to the sudden increase in Qβ because the nuclear defor-
mation is not expected to occur: A large shell gap at N = 50
gives us a dramatic increase in Qβ . As mentioned in Ref. [16],
the neutrons outside the N = 50 gap may have a contribution
to the β-decay via the forbidden transitions. However, Borzov
predicted that the first-forbidden (FF) transitions play only a
minor role in the half-life of 79,80Ni, while it is important for
describing the β-decay properties around N � 82 and 126,
and the β-delayed neutron emission probability around 78Ni
[23,24]. Therefore, not only the shell gap, but also the details
of the nuclear wave functions are needed to investigate for
understanding the origin of the observed sudden shortening of
T1/2 in the Ni isotopes.

In the present article, I study systematically the β-decay
T1/2 in the neutron-rich Ni isotopes around 78Ni. Then, I try
to understand the microscopic mechanism for the observed
sudden shortening of the half-lives. To this end, the β-strength
distributions in the neutron-rich nuclei are described in a
microscopic framework of nuclear density functional theory.
Here, not only the allowed but the FF transitions are consid-
ered on the same footing.

This article is organized in the following way: The theoreti-
cal frameworks for describing the ground state and the nuclear
matrix elements needed for the β-decay rates are given in
Sec. II. Details of the numerical calculation are also given.
However, part of the details on the matrix elements needed
for the FF transitions are given separately in the Appendix.
Section III is devoted to the numerical results and discussion
based on the microscopic calculation. Then, a summary is
given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. HFB and pnQRPA for the nuclear matrix elements

In a framework of the nuclear energy-density functional
(EDF) method I employed, the ground state of mother (target)
nucleus is described by solving the Hartree-Fock-Bogoliubov
(HFB) equation [25,26]

(
hq(rσ ) − λq h̃q(rσ )

h̃q(rσ ) −(hq(rσ ) − λq)

)(
ϕ

q
1,α (rσ )

ϕ
q
2,α (rσ )

)

= Eα

(
ϕ

q
1,α (rσ )

ϕ
q
2,α (rσ )

)
, (1)

where the mean field and the pair field are given by the
functional derivative of the EDF with respect to the density
and the pair density, respectively. The superscript q denotes ν

(neutron, tz = 1/2) or π (proton, tz = −1/2).
The excited states |i〉 of the daughter nucleus are described

as a one-phonon excitation built on the ground state |0〉 of the
mother (target) nucleus

|i〉 = 
̂
†
i |0〉, (2)
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†
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∑
αβ

{
X i

αβ â†
α,ν â†

β,π − Y i
αβ âβ̄,π âᾱ,ν

}
, (3)

where â†
ν (â†

π ) and âν (âπ ) are the neutron (proton) quasipar-
ticle creation and annihilation operators. The phonon states,
the amplitudes X i,Y i, and the vibrational frequency ωi are
obtained in the proton-neutron QRPA (pnQRPA).

The local one-body operators for the nuclear matrix ele-
ments relevant to the β-decay rates of the axial-vector and
vector-type transitions are written by

AÔ± = 1

2

∑
σ,σ ′

∑
τ,τ ′

∫
dr〈σ |AO(r, σ )|σ ′〉〈τ |τ±|τ ′〉

× ψ̂†(rστ )ψ̂ (rσ ′τ ′), (4)

VÔ± = 1

2

∑
σ,σ ′

∑
τ,τ ′

∫
drVO(r)δσσ ′ 〈τ |τ±|τ ′〉ψ̂†(rστ )ψ̂ (rσ ′τ ′),

(5)
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TABLE I. Summary of AO(r, σ )[VO(r)] in the operators A(V )ÔJLK

needed for the matrix elements of the FF transitions, where mn is the
mass of the nucleon. The factor �K arises from the transformation
from the intrinsic to the laboratory frames of reference [27]: �K = 1
and

√
2 for K = 0 and K �= 0, respectively.

AÔ000 AÔJ1K VÔ10K VÔ11K

σ · ∇
mn

√
4π

3
r[Y1 ⊗ σ]J

K�K
∇K

mn
�K

√
4π

3
rY1K�K

respectively, where σ = (σ−1, σ0, σ+1) denotes the spherical
components of the Pauli spin matrices, and τ± = (τx ± iτy)
are the isospin-ladder operators. The nucleon field operators
ψ̂† and ψ̂ are expressed in terms of the quasiparticle operators
â† and â through the generalized Bogoliubov transformation. I
consider the allowed and FF transitions in the present calcula-
tion. For the allowed transitions, the operators needed are just
for AO(r, σ ) = σ and VO(r) = 1, while for the FF transitions,
one needs the operators for those containing rY1 and those
appearing due to the relativistic correction as summarized in
Table I. Here, the operators AÔJ1K and VÔ11K correspond to
the charge-exchange rank-J spin-dipole and dipole operators,
respectively. The nuclear transition matrix elements 〈i|Ô|0〉
are evaluated in the standard quasi-boson approximation as
〈HFB|[
̂i, Ô]|HFB〉.

B. Numerical calculations

I solved the coordinate-space HFB equations in the cylin-
drical coordinates r = (ρ, z, φ) with a mesh size of �ρ =
�z = 0.6 fm and a box boundary condition at (ρmax, zmax) =
(14.7, 14.4) fm. The qp states were truncated according to
the qp energy cutoff at 60 MeV, and the qp states up to
the magnetic quantum number � = 23/2 with positive and
negative parities were included.

The two-body interactions for the pnQRPA equation were
derived self-consistently from the EDF. I introduced the
truncation for the two-quasiparticle (2qp) configurations in
the QRPA calculation, in terms of the 2qp-energy as 60
MeV. More details of the calculation scheme are given in
Ref. [28].

For the normal (particle-hole) part of the EDF, I employed
mainly the SkM* functional [29] and secondarily the SLy4
functional [30]. For the pairing energy, I adopted the one in
Ref. [31] that depends on both the isoscalar and isovector
densities, in addition to the pairing density, with the pa-
rameters given in Table III of Ref. [31]. The same pairing
EDF was employed for the T = 1 pn-pairing interaction
in the pnQRPA calculation, while the linear term in the
isovector density was dropped. The T = 0 pairing interaction
was also included in the present pnQRPA calculation, with
the same strength as the T = 1 pairing interaction. Though
I did not optimize the pairing strengths, the characteristic
isotopic dependence was reproduced well by the present
work.

C. Calculation of the β-decay rates

The β-decay rate λβ and the partial half-life t1/2 including
the allowed and FF transitions can be calculated as [32,33]

1

t1/2
= λβ

ln 2
= f

D
, (6)

f =
∫ W0

1
C(W )F (Z,W )pW (W0 − W )2dW, (7)

where I used D = 6147 s for the constant, and C(W ) is
the shape factor containing the nuclear matrix elements as
described below. The Fermi function F (Z,W ) in Eq. (7)
including the effect of the Coulomb distortion on the electron
wave function is given by

F (Z,W ) = 2(1 + γ )(2pR)−2(1−γ )eπν

∣∣∣∣ 
(γ + iν)


(2γ + 1)

∣∣∣∣
2

, (8)

where γ =
√

1 − (αZ )2, ν = αZW/p, α is the fine-structure
constant, and R is the nuclear radius calculated as 1.2 ×
A1/3 fm. W is the total energy of the electron, W0 is the total
energy available;

W0 = mec2 + λν − λπ + �Mn−H − ωi (9)

= mec2 − ET,i + �Mn−H , (10)

and p = √
W 2 − 1 is the momentum. �Mn−H = 0.782 MeV

is a mass difference between a neutron and a hydrogen atom,
and ET,i the excitation energy with respect to the ground state
of the mother (target) nucleus, and λπ (ν) the chemical potential
of protons (neutrons). In the followings, I use natural units
h̄ = c = me = 1. The unit of length is the reduced electron
Compton wavelength λ̄e = 386.16 fm.

The shape factor for the allowed transitions is given as

C0 = |〈1〉|2 + λ2|〈σ〉|2, (11)

where 〈·〉 denotes the nuclear transition matrix element be-
tween the ground and excited states |i〉 for the isospin low-
ering operator, and λ = −(gA/gV ) = 1.2701(25) is the ratio
of weak axial and vector coupling constants. I used the
quenching factor for the allowed Gamow-Teller transitions
as q = geff

A /gA = 0.79 or equivalently λeff = 1, as commonly
used in the pnQRPA framework [22,34–37]. Since the shape
factor C0 is independent of the energy W , it is convenient to
define the phase-space factor, or the so-called integrated Fermi
function f0 as

f t1/2 = C0 f0t1/2 = D, (12)

f0 =
∫ W0

1
F (Z,W )pW (W0 − W )2dW. (13)

When the FF transitions take part in the β-decay process,
one needs to consider the explicit dependence of the shape
factors on the electron energy as the details are given in the
Appendix. To discuss the FF transition strengths distribution
and compare to the allowed transitions relevant to the β-decay,
it is useful to define the averaged shape factor as [32]

C(W ) = f

f0
, (14)
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FIG. 1. Calculated β-decay half-lives of the neutron-rich Ni
isotopes with use of the SkM* functional. Shown together with the
results in the preceding pnQRPA calculations [22,24,35,36] and the
half-lives measured at the RIKEN-RIBF [16].

so that the partial half-life is related to C(W ) as D/ f0t1/2

similarly to the allowed transitions. The total half-life T1/2 is
calculated by summing all the energetically possible transi-
tions; W0 > 1.

III. RESULTS AND DISCUSSION

Figure 1 shows the calculated β-decay half-lives of the
neutron-rich even-N Ni isotopes by using the SkM* func-
tional. A sudden shortening of the half-lives beyond N = 50 is
clearly seen. Up to N = 50 and above N = 52, the calculation
shows a monotonic decrease in the half-lives. One can thus
expect something singular to have happened between N = 50
and 52. In what follows, I am going to discuss the mechanism
for this sudden shortening of the half-lives beyond N = 50.
It is noted that the Ni isotopes under investigation are all
calculated to be spherical in the present framework. So the
acceleration is not due to the nuclear shape effect.

Before discussing the isotopic dependence of the calcu-
lated half-lives, I briefly mention the results obtained in the
preceding pnQRPA calculations, which are also shown in
Fig. 1. The calculation employing the relativistic functional
D3C* [36] gives the similar result to that using the SkM*
functional, while the other microscopic calculations shown
here [24,35] produce the monotonic decrease. Taking a closer
look at the result of the FRDM [22], where the FF transi-
tions are taken into account by the gross theory, one sees
that the model predicts a sudden shortening beyond N = 54
although the previous version of the model based on the
allowed approximation already predicted this behavior [38].
The calculations except that using DF3 [24], where the large
quenching factor q2 = 0.81 was used, i.e., less quenching of

FIG. 2. Similar to Fig. 1 but employing the SLy4 functional
besides the SkM* functional. Shown are also the results obtained
in the allowed approximation denoted by the open symbols.

gA, overestimate the observed half-lives. Though it is beyond
the scope of the present work, there is room for further
investigation on the roles of 2p2h configurations, namely the
beyond-RPA effects such as in a particle-vibration coupling
scheme as discussed in Ref. [39].

I show in Fig. 2 the calculated β-decay half-lives obtained
in the allowed (A) approximation and those where the FF
transitions are also taken into account (A + FF). The calcu-
lations in the A approximation only produce the monotonic
shortening, while those in the A + FF approximation give a
sudden shortening at N = 52. Not only the calculation using
SkM* but that using the SLy4 functional produce the sudden
shortening. Thus, the FF transitions are necessary to explain
the observed sudden shortening of the β-decay half-lives. The
calculation scheme in Ref. [35] is analogous to the present
one in the sense that the Skyrme-type EDF was employed for
the HFB + pnQRPA calculation and the FF transitions were
taken into account in a microscopic way. The only difference
to the present calculation is that the SkO′ functional [40]
was used there. I am going to investigate the reason why
the SkM*, SLy4, and D3C* functionals produce the sudden
shortening, while SkO′ only produces the monotonic one for
the β-decay half-lives, then unravel the mechanism for the
sudden shortening beyond N = 50.

Figure 3 displays the FF contribution to the computed total
β-decay rate. The calculations using the SkM*, SLy4, and
D3C* functionals show that the FF transitions largely con-
tribute to the β-decay rate at N = 52 while the FF contribution
is low at N = 50. However, the calculation using SkO′ only
shows the monotonic increase in the FF contribution as the
neutron number increases from 46 to 52, and the much less FF
contribution than the others for N � 54. The similar feature
can be also seen in the calculation employing DF3. Therefore,
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FIG. 3. FF contribution to the total β-decay rate computed using
the Skyrme-type EDFs of SkM* and SLy4 in the present calculation,
and SkO′ in Ref. [35], the relativistic EDF of D3C* in Ref. [36], and
DF3 in Ref. [41].

the onset of the FF transitions beyond N = 50 is a key to the
understanding of the mechanism for the sudden shortening of
the β-decay half-lives in the neutron-rich Ni isotopes.

The onset of the FF transitions beyond N = 50 is sim-
ply understood by the appearance of the low-energy −1h̄ω0

excitation associated with the shell structure in neutron-rich
nuclei [42]. In the light nuclei around A � 40, the similar
mechanism for the onset of the FF transitions beyond N = 28
was also discussed [43]. Figure 4 shows the fraction of the
summed strengths of the dipole (�Jπ = 1−) and the spin
dipole (�Jπ = 0−, 1−, and 2−) transitions in low energy
below ET < 0. The upper figure in Fig. 4 corresponds to
Fig. 3(b) in Ref. [42]. As the neutrons start to occupy the
2d5/2 and 2d3/2 orbitals, the negative-parity νd5/2, d3/2 →
π p3/2, p1/2 excitations are possible to occur. From this figure,
one sees that the 0− and 1− excitations are crucial for the
acceleration in T1/2 between N = 50 and 52. The contribution
of the 2− excitation is anticorrelated with the decrease in T1/2.
Figure 5 displays the shape factors and the averaged shape
factors for the allowed and the FF transitions from 76,82Ni.
As can be seen in Fig. 5(b), several negative-parity states
possessing an appreciable strength show up.

I am going to discuss further the microscopic origin of the
sudden onset of the FF transitions beyond N = 50. I show in
Fig. 6 the contribution of the FF multipoles to the total β-
decay rate obtained by using SkM*. One clearly sees that the
0− and 1− transitions are dominant beyond N = 50. This can
be understood by the location of the Fermi level of neutrons.
Up to N = 50, the g9/2 orbital is the only positive-parity oc-
cupied level. So the νg9/2 → π f5/2 FF transition with �Jπ =
2− is the only possible outcome. When the Fermi level moves
to the d5/2 orbital, the partially occupied neutrons in the d5/2

FIG. 4. Fraction of the summed strengths of the dipole (top) and
the spin dipole (bottom) transitions in low energy below ET < 0
calculated using the SkM* functional.

orbital can participate in the νd5/2 → π f5/2 excitation with
�Jπ = 0− and the νd5/2 → π p3/2 excitation with �Jπ = 1−
besides the νd5/2 → π p1/2 excitation with �Jπ = 2− transi-
tion. One sees these excitations in the averaged shape factors
for the FF transitions displayed in Fig. 5(b). The low-lying
prominent peaks in 80,82Ni correspond to the �Jπ = 0− and
1− excitations. Furthermore, in the relatively higher energy
region ET ∼ −5 MeV, one sees the νg9/2 → π f5/2 excitation.

One more important thing for the sudden onset of the FF
transitions beyond N = 50 is the magnitude of the relative
energy between the FF and allowed transitions. One sees in
Fig. 5(a) a prominent peak in the shape factor around ET ∼
−5 MeV, which is above the FF transition by about 5 MeV.
This is predominantly constructed by the νp1/2 → π p3/2 ex-
citation with the RPA amplitude X 2 − Y 2 being greater than
0.9. The transition strength for this allowed transition is much
larger than that for the FF transitions. Since the phase-space
factor f0 roughly behaves as W 5

0 , the FF transitions are able to
overcome the contribution from the allowed transitions if they
are high enough in energy, and are well apart from the allowed
transitions. In the present case, the FF transitions gain a factor
∼(10/5)5 = 32 from the phase space factor. Therefore, the
contribution from the FF transitions at N = 52 dominates that
from the allowed transitions.

The appearance of the high-energy FF transitions is a key
mechanism for the characteristic isotopic dependence of the
half-lives. However, the β-strength function is hard to observe
experimentally. The β-delayed neutron emission probability
Pn combined with T1/2 may access the distribution indirectly
because the transitions lower than Qβ − Sn in energy con-
tribute to the neutron emission while the transitions up to Qβ

to the half-life, here Qβ and Sn are the ground-state β-decay
Q-value and the neutron separation energy of the daughter
nucleus. If there is an appreciable strength in high energy (in
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FIG. 5. Shape factors and the averaged shape factors for (a) the allowed and (b) the FF transitions from 76−82Ni calculated by using the
SkM* functional.

the low-lying region of the daughter), the Pn value is hindered
while T1/2 is short as discussed in Refs. [24,43].

The low-lying states relevant to the β-decay rate are
weakly collective in the present calculation for the Ni iso-
topes. Thus, I can discuss qualitatively the competitive roles
played by the allowed and FF transitions in terms of the
single-particle levels around the Fermi levels. I show in Fig. 7
the single-particle energies of neutrons and protons relative to
that of the ν2p1/2 and π1 f7/2 orbitals, respectively, calculated
using the SkM*, SLy4, SkO′, and D3C* functionals. As dis-
cussed above, the νg9/2 → π f5/2 excitation is only available
up to N = 50 for the FF transition, and the νp1/2 → π p3/2

excitation dominantly contributes to the allowed transitions.
So the size of N = 40 gap and the relative location between
the π f5/2 and π p3/2 levels govern the β-decay rate for N �
50. As the shell gap at N = 40 is small, the energy difference
between the allowed and FF transitions is small. Thus, the FF
contribution is small. In the calculation using SkM* since the

FIG. 6. Contributions of the different FF multipoles to the total
β-decay rate computed by using the SkM* functional.

π f5/2 level is located above the π p3/2 level by 1.5 MeV, the
FF contribution is strongly suppressed. On the other hand,
as seen in the calculations with the SLy4, D3C*, and SkO′

functionals, the FF contribution is larger as the N = 40 gap
increases.

Beyond N = 50, the multiple FF transitions involving the
ν2d5/2 orbital are possible to occur. The larger the sum of
the gap energy of the N = 40 and 50, the larger the FF
contribution is. This is because the energy difference between
the allowed and FF excitations is large. For a sudden onset of
the FF contribution above N = 50, preferable is the situation
in which an N = 50 gap is large and an N = 40 gap is instead
small.

Since the sudden shortening of the half-lives beyond N =
50 was observed only in the Ni isotopes, this is considered
as evidence of the proton shell closure at Z = 28 as well as
the neutron shell closure at N = 50, namely this is due to that
78Ni is a doubly magic nucleus [16]. Before summarizing this
article let me discuss what is happening in the Zn (Z = 30)
isotopes.

FIG. 7. (a) Proton’s single-particle energies relative to that of the
1 f7/2 orbital, and (b) neutron’s ones relative to that of the 2p1/2 orbital
calculated by using several EDFs in 78Ni. The result for D3C* was
obtained in Refs. [36,44], and that for SkO′ was obtained by using
HFBRAD [45]. The filled and open symbols indicate the occupied and
unoccupied levels, respectively.
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FIG. 8. Similar to Fig. 1 except for the Zn isotopes. The results
obtained in the allowed approximation are also shown for the calcu-
lations using the SkM* and SLy4 functionals.

Figure 8 shows the calculated β-decay half-lives of the Zn
isotopes around N = 50. As in the case for the Ni isotopes,
the microscopic EDF calculations overestimate the observed
half-lives for the low-N isotopes. However, one sees that
the calculations except using the SkM* functional give a
monotonic shortening of the half-lives up to N = 54 (SLy4)
and N = 52 (SkO′ and D3C*). Beyond this, the half-lives
decrease gently. Thus no abrupt change is seen in the Zn
isotopes.

The results obtained in the allowed approximation are
also shown for the calculations using the SkM* and SLy4
functionals in Fig. 8. The SkM* gives an onset of the FF
transitions beyond N = 50 as in the Ni isotopes, while the
SLy4 predicts that the FF transitions contribute to the β-
decay almost constantly. This difference can be seen in the
strengths distribution. Shown in Fig. 9 are the shape factors
and the averaged shape factors for the allowed and the FF
transitions from 78−84Zn. Let me discuss the case for SLy4.

Below N = 50, the transition of the νg9/2 → π f5/2 excitation
is located lower than SkM* thus giving a larger FF contribu-
tion. Beyond N = 50, there show up some tiny strengths for
the high-energy allowed transition, which suppresses the FF
contribution. A difference in between the Ni and Zn isotopes
is that the Zn isotopes are deformed, and the magnitude of de-
formation is different depending on the functional employed:
The deformation parameters calculated with SkM* (SLy4) are
0.08 (0.15) and 0.11 (0.16) for N = 52 and 54, respectively.
A strange behavior seen around N = 56 is due to the subshell
closure.

IV. SUMMARY

I carried out a systematic calculation of the β-decay rates
for the neutron-rich Ni isotopes around N = 50 by means
of the fully self-consistent proton-neutron-QRPA with the
Skyrme EDFs. The experimentally observed sudden short-
ening of the half-lives beyond N = 50 was reproduced well
by the calculations employing the Skyrme SkM* and SLy4
functionals. I found that the onset of the first-forbidden (FF)
transitions plays a decisive role for the sudden shortening of
the half-life in 80Ni. This is due to a small subshell gap at
N = 40 and a large shell gap at N = 50; the former suppresses
the contribution from the FF transitions below N = 50 and the
latter enhances it above N = 50. The present study reveals that
a microscopic calculation taking the shell structure in neutron-
rich nuclei and its associated effects on the FF transitions into
account is necessary for predicting the β-decay rates of nuclei
far from stability.
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FIG. 9. Similar to Fig. 5 but for 78–84Zn obtained by using the SkM* and SLy4 functionals.
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APPENDIX: FIRST-FORBIDDEN β-DECAY RATES

1. Shape factors

The shape factor for the FF transitions is energy dependent
and given as [33]

C(W ) = k + kaW + kb/W + kcW 2, (A1)

where the coefficients k, ka, kb, and kc depend on the nuclear
matrix elements and the maximum electron energy W0. The
nonvanishing coefficients are

k = ζ 2
0 + 1

9w2,
(A2)

kb = − 2
3μ1γ1ζ0W,

for rank 0,

k =ζ 2
1 + 1

9 (x + u)2 − 4
9μ1γ1u(x + u)

+ 1
18W 2

0 (2x + u)2 − 1
18λ2(2x − u)2,

ka = − 4
3 uY − 1

9W0(4x2 + 5u2),

kb = 2
3μ1γ1ζ1(x + u),

kc = 1
18 [8u2 + (2x + u)2 + λ2(2x − u)2], (A3)

for rank 1, and

k = 1
12 z2(W0 − λ2),

ka = − 1
6 z2W0, (A4)

kc = 1
12 z2(1 + λ2),

for rank 2, respectively, with V,Y, ζ0, and ζ1 being defined by

V = ξ ′v + ξw′,

ζ0 = V + 1
3wW0, (A5)

Y = ξ ′y − ξ (u′ + x′),

ζ1 = Y + 1
3 (u − x)W0. (A6)

Here the dimensionless parameter ξ is defined as ξ = αZ/2R.
The Coulomb functions μ1 and λ2 are defined in terms of
electron wave functions and depend on the electron mo-
mentum [33]. These values are close to unity, so I use the
approximations μ1 = 1 and λ2 = 1 as usually adopted [46].

The matrix elements are related to the form factors A(V )FJls

as [32]

w = −R AF011 =
√

3λ〈AÔ01K
− 〉, (A7a)

x = − 1√
3

R V F110 = −〈V Ô11K
− 〉, (A7b)

u = −
√

2

3
R AF111 =

√
2λ〈AÔ11K

− 〉, (A7c)

z = 2√
3

R AF211 = −2λ〈AÔ21K
− 〉, (A7d)

ξ ′v = AF000 = −
√

3λ〈AÔ000
− 〉, (A7e)

ξ ′y = V F101 = −〈V Ô10K
− 〉, (A7f)

where λ = −(gA/gV ) = 1.27. For the FF transitions, no
quenching factors are introduced for simplicity in the present

FIG. 10. Similar to Fig. 2 but the mesonic enhancement and the
quenching effects are included. A scaling factor 1.5 is multiplied for
the matrix element ξ ′v (mec). Further, the same quenching factor
q = 0.79 is used for the FF transition as for the allowed transition
(q + mec).

calculation as in Ref. [35]. The primed matrix elements w′, x′,
and u′ are calculated with the operator multiplied by

1 − 1

5

( r

R

)2
, 0 < r < R,

R

r
− 1

5

( r

R

)3
, r > R,

(A8)

where r =
√

ρ2 + z2 in the cylindrical coordinates.

2. Effects of the (anti)quenching of the FF transitions

Since the present article discusses an important role of
the nonunique FF transitions for a sudden shortening of the
β-decay half-lives in the Ni isotopes above N = 50, it should
be noted that an enhancement effect of the rank-zero FF
transition due to the meson exchange current [46–48] occurs.
To consider this effect in a practical calculation, a scaling
factor is introduced for the matrix element ξ ′v of Eq. (A7e)
as an effective operator [46].

Figure 10 shows the computed β-decay half-lives by us-
ing the SkM* and SLy4 functionals including the scaling
factor. One sees that the enhancement in the matrix element
leads to a further shortening of the half-lives irrespective
of the EDF employed. The mesonic enhancement in the
FF transition fortifies the mechanism for the sudden short-
ening of the β-decay half-lives beyond the N = 50 magic
number.

The quenching for the FF transitions is also discussed [49],
and one needs to consider not only the enhancement but the
quenching simultaneously. Here the same quenching factor
is employed for the FF transitions as used for the allowed
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transition: geff
A = q × gA. It is found that the calculated β-

decay half-lives come closer to the results obtained in the
simple prescription where the quenching is considered only

for the allowed transitions. Therefore, the discussions made
in the present article are robust against the details of the
enhancement and quenching of the FF transitions.
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