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The expressions for the energy-weighted sum rule of the isoscalar and isovector coordinate operators are
derived based on the second-order fluctuation of the local densities. Conventional derivation of the Thouless
theorem for the energy-weighted sum rule is based on the double commutator of the Hamiltonian, while
the present derivation does not assume a Hamiltonian operator and is applicable to nuclear energy density
functionals. The expressions include the contribution of the local gauge symmetry breaking of the energy
density functional. It is shown that the local gauge invariance of the kinetic and current densities and kinetic
pair density is important, while all the other local densities do not contribute to the energy-weighted sum rule
of the coordinate operators. The finite-amplitude method calculations are performed and the expressions for the
energy-weighted sum rule are numerically examined for the isoscalar and isovector multipole operators up to
L = 3 for selected spherical and axially deformed nuclei.
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I. INTRODUCTION

In atomic nuclei there are numerous excited states that
originate from the single-particle and collective motion of
the constituent nucleons. Thus it is useful to have a few
representative quantities of the excited states. The sum rule
[1,2] is a quantity which involves all the excited states, and
contains important collective information on the properties of
the excited states, such as the giant resonances [3] and the
Nambu-Goldstone modes [4,5].

The energy-weighted sum rule is the most commonly
used one among various energy moments of the sum rules.
Although it is a summation over all the excited states, the
Thouless theorem [6] allows one to evaluate a sum-rule
value that is the summation over all the excited states
computed through the random-phase approximation (RPA),
using the expectation value of the double commutator of
the Hamiltonian at the ground state computed within the
self-consistent Hartree-Fock (HF) theory. The theorem
has been proved also for the Hartree-Fock-Bogoliubov
(HFB) + quasiparticle RPA (QRPA) [7] and the
second RPA [8,9]. The double commutator of the
Hamiltonian becomes simple for the isoscalar and isovector
coordinate operators. In the zero-range Skyrme force, only
the kinetic-energy term in the Hamiltonian contributes to the
energy-weighed sum for an isoscalar coordinate operator, and
the kinetic-energy term and momentum-dependent terms in
the interaction contribute to the energy-weighted sum rule
of an isovector coordinate operator. Therefore, the Thouless
theorem significantly reduces the computational costs of the
energy-weighted sum rule, and is also useful for verifying the
accuracy of the QRPA calculation.

Nuclear density functional theory (DFT) can be regarded
as a starting point of the mean-field models [10,11]. In nuclear
DFT, the form of the energy density functional (EDF) is not

given a priori. Several EDFs based on the nonrelativistic
Skyrme and Gogny forces and on relativistic theory are widely
used. The EDF of these types can be derived from the corre-
sponding effective interaction. In that case one can go back to
the Hamiltonian (effective interaction) starting from the EDF.
However, in general, there is no direct correspondence to the
effective interaction in the nuclear DFT, if the EDF and its
coupling constants are constructed directly by reproducing
a representative set of the experimental observables. The
existence of the Hamiltonian operator is not guaranteed.

Although the Thouless theorem has been applied widely
within the framework of the nuclear DFT, to the best of my
knowledge it has not been proved for the nuclear DFT where
the EDF does not correspond to a Hamiltonian operator, and
thus the double-commutator expression cannot be justified.
This includes the case when the EDF is constructed inde-
pendently of the interactions (such as UNEDF functionals
[12–15]). Even the standard Skyrme HFB calculation is not
carried out within the two-body and three-body Skyrme ef-
fective interaction. Prescriptions used in the spin-orbit and
tensor functional may break the correspondence with the
Hamiltonian. The Skyrme spin-orbit interaction has a single
interaction strength W0 and it determines the isoscalar and
isovector coupling constants of the spin-orbit functional. In
several Skyrme EDFs, an additional parameter b′

4 is intro-
duced to control the isovector property of the spin-orbit func-
tional [16]. The tensor-density (spin-current density) terms
appear from the momentum-dependent t1 and t2 terms of the
Skyrme effective interaction even without including the tensor
effective interactions (te and to terms). However, because
of the complicated treatment of the tensor-density terms in
deformed nuclei, the contribution from this term is often
neglected except for a few parameter sets such as SLy5 [17]
and SkP [18]. Moreover, the connection to the Hamiltonian
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operator is lost by the existence of the two-body density-
dependent term (however, it has been shown that the density-
dependent force does not contribute in the Thouless theorem
[1]). Another issue is the treatment of the pairing interaction.
Except for the SkP interaction, the pairing interaction used in
the standard Skyrme HFB calculation has a simple form and
density dependence, and is independent of the particle-hole
interaction, while in the mean-field approach starting from an
effective interaction, the same interaction should provide the
Hartree-Fock potential and pairing potential.

In a previous work [19], it was numerically shown that in
the SLy4 EDF the inclusion of the time-odd current terms is
necessary to recover the energy-weighted sum-rule values of
the Thouless theorem, and that other terms in the time-odd
functional do not impact the values of the energy-weighted
sum rule at all. The time-odd current terms are necessary
in order to satisfy the Galilean invariance of the EDF. More
generalized forms of the EDF could be used in the future,
and thus it is desired to understand the applicability of the
Thouless theorem to the nuclear DFT. Note that Kerman-
Onishi condition can be derived for the nuclear EDF from the
transformation of the densities without assuming the Hamil-
tonian operator [20,21], and that the lack of a relation with the
Hamiltonian formalism can cause problems when evaluating
the energy of the quantum-number projected state within the
nuclear DFT [22–24].

The aim of this paper is to derive the expression for the
energy-weighted sum rule within the nuclear DFT without
using the double commutator of the Hamiltonian. By con-
sidering a fluctuation to the HFB state, and comparing the
fluctuation of the energy in two ways, the expression of the
energy-weighted sum rule is derived. This derivation can be
applied to the nuclear EDF which does not have a correspond-
ing Hamiltonian operator.

This paper is organized as follows. In Sec. II, the nuclear
EDF is introduced. Section III recapitulates the conventional
derivation of the Thouless theorem based on the double
commutator of the Hamiltonian, then presents the derivation
for the nuclear EDF. Section IV summarizes the energy-
weighted sum-rule calculation based on the complex-energy
finite-amplitude method. In Sec. V, energy-weighted sum-rule
values of various multipole operators are numerically calcu-
lated using the complex-energy finite-amplitude method, and
are compared with the values of the Thouless theorem derived
for general nuclear EDFs. Conclusions are given in Sec. VI.

II. NUCLEAR EDF

I consider a general form of the nuclear EDF of Skyrme
type that is quadratic in local densities (except for the density-
dependent terms) and can contain up to two spacial derivatives
but without neutron-proton mixing [25,26]. The nuclear EDF
has the following form:

E [ρ, ρ̃] =
∫

drE (r), (1)

E (r) = h̄2

2m
τ0(r) +

1∑
k=0

χk (r) + ECoul(r) +
∑

t=n,p

χ̃t (r), (2)

where the first term in Eq. (2) is the isoscalar kinetic energy,
χk are the isoscalar (k = 0) and isovector (k = 1) particle-hole
EDFs, ECoul is the Coulomb EDF, and χ̃t are the neutron (t =
n = 1/2) and proton (t = p = −1/2) pairing EDFs. Through-
out this paper, I use the index k to specify the isoscalar or
isovector character, and the index t for neutrons or protons.

The particle-hole EDF is given by its time-even and time-
odd parts,

χk (r) = χ even
k (r) + χodd

k (r), (3)

χ even
k (r) = Cρ

k [ρ0]ρ2
k + C�ρ

k ρk�ρk + Cτ
k ρkτk + CJ0

k J2
k

+CJ1
k J2

k + CJ2
k J2

k + C∇J
k ρk∇ · Jk, (4)

χodd
k (r) = Cs

k[ρ0]s2
k + C�s

k sk · �sk + CT
k sk · T k + C j

k j2
k

+C∇ j
k sk · (∇ × jk ) + C∇s

k (∇ · sk )2

+CF
k sk · Fk . (5)

The time-even part is composed of the particle-hole density
ρk , kinetic density τk , and pseudoscalar, pseudovector, and
pseudotensor densities Jk , Jk , and Jk . The time-odd parts
are described with the spin density sk , spin-kinetic density
T k , current density jk , and tensor-kinetic density Fk . Defi-
nitions of these local densities are summarized in Appendix
A. Some of the coupling constants Cρ

k and Cs
k have isoscalar

particle-hole density dependence (Ck[ρ0] = Ck0 + CkDρ
γ

0 ). In
the Skyrme force, all the coupling constants are basically
derived from the effective interactions, while in the UNEDF
optimizations [12–15] only the time-even coupling constants
are optimized using experimental data. For the even-even sys-
tems with time-reversal symmetry, the time-odd functionals
turn on only in the linear response calculation. The Coulomb
functional is composed of direct and exchange terms, which
are functionals of the proton particle-hole density only [ρp =
(ρ0 − ρ1)/2]:

ECoul(r) = Edir (r) + Eex(r), (6)

Edir (r) = 1

2
e2ρp(r)

∫
dr′ ρp(r′)

|r − r′| , (7)

Eex(r) = −e2 3

4

(
3

π

) 1
3

ρp(r)
4
3 . (8)

The general form of the pairing EDF that is quadratic in local
pair densities is given by

χ̃t (r) = C̃ρ
t [ρ0]|ρ̃t |2 + C̃�ρ

t Re(ρ̃∗
t �ρ̃t ) + C̃τ

t Re(ρ̃∗
t τ̃t )

+ C̃J0
t |J̃t |2 + C̃J1

t |J̃t |2 + C̃J2
t |J̃t |2 + C̃∇J

t Re(ρ̃∗
t ∇ · J̃t )

(9)

with the pair density ρ̃t , kinetic pair density τ̃t , and tensor pair
densities J̃t , J̃t , and J̃t . In most of the Skyrme EDFs, only the
first term with an isoscalar particle-hole density dependence
is used in the pairing EDF:

C̃ρ
t [ρ0] = Vt

4

(
1 − ηt

ρ0(r)

ρc

)
, (10)

where Vt is the strength and ηt controls the isoscalar particle-
hole density dependence.
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III. THOULESS THEOREM FOR ENERGY-WEIGHTED
SUM RULE

A. Operator derivation

First I recapitulate the conventional derivation of the Thou-
less theorem [6] based on the discussion in Ref. [1]. I consider
a system described by a Hamiltonian of the Skyrme interac-
tion:

Ĥ = T̂ + V̂ , (11)

T̂ = 1

2m

A∑
i=1

p̂2
i , (12)

V̂ =
∑
i< j

t0(1 + x0P̂σ )δ(r̂i j ) + t1
2

(1 + x1P̂σ )[k̂
′2
δ(r̂i j )

+ δ(r̂i j )k̂
2
] + t2(1 + x2P̂σ )k̂

′ · δ(r̂i j )k̂

+ t3
6

(1 + x3P̂σ )ργ

(
r1 + r2

2

)
δ(r̂i j )

+ te
2

[k̂
′ · Ŝ · k̂

′
δ(r̂i j ) + δ(r̂i j )k̂ · Ŝ · k̂]

+ tok̂
′ · Ŝδ(r̂i j ) · k̂ + iW0(σ̂ i + σ̂ j ) · [k̂

′ × δ(r̂i j )k̂],

(13)

where r̂i j = r̂i − r̂ j , P̂σ = (1 + σ̂ i · σ̂ j )/2 is the spin-
exchange operator, Ŝ = 3(σ̂ i · er )(σ̂ j · er ) − σ̂ i · σ̂ j is the
tensor operator, and

k̂ = 1

2i
(∇i − ∇ j ), (14)

k̂
′ = − 1

2i
(∇i − ∇ j ). (15)

The energy-weighted sum rule of an operator F̂ is expressed
in terms of the double commutator of the Hamiltonian:

m1(F̂ ) =
∑

λ,�λ>0

�λ|〈λ|F̂ |0〉|2

= −1

2
〈
HFB|[[Ĥ, F̂ ], F̂ ]|
HFB〉, (16)

where |
HFB〉 is the HFB state, |0〉 is the QRPA correlated
ground state, and |λ〉 is the QRPA λth excited state with an
excitation energy �λ = Eλ − E0. When the operator F̂ is an
isoscalar-coordinate type,

F̂ IS = α

A∑
i=1

f (r̂i ), (17)

it can be shown that the double commutator of the interaction
term cancels, and the contribution to the energy-weighted sum
rule is from the momentum operator in the kinetic-energy term
in the Skyrme interaction:

m1(F̂ IS) = −1

2
〈[[T̂ , F̂ IS], F̂ IS]〉 = α2 h̄2

2m

A∑
i=1

〈[∇ f (r̂i )]
2〉

= α2 h̄2

2m

∫
dr[∇ f (r)]2ρ0(r). (18)

The momentum-independent terms with t0 and t3 are shown
to commute with the coordinate operator. The t1 and t2 terms
can be written as

V̂t1,t2 = 1

2

A∑
i, j=1

(
t1

8h̄2

{
p̂2

i j, δ(r̂i j )
} + t2

4h̄2 p̂i jδ(r̂i j ) p̂i j

)

= 1

8h̄2

A∑
i, j=1

{
t1
2

[p̂i j, [ p̂i j, δ(r̂i j )]] + (t1 + t2) p̂i jδ(r̂i j ) p̂i j

}
,

(19)

where p̂i j = p̂i − p̂ j . The first term is the second derivative of
the δ function, and it commutes with any coordinate operators.
The commutator with the second term is shown to be

[
V̂t1,t2 , F̂ IS

] = 1

8h̄2 (t1 + t2)
A∑

i, j,k=1

[ p̂i jδ(r̂i j ) p̂i j, f (r̂k )]

= t1 + t2
8h̄2

A∑
i, j,k=1

{ p̂i j, [ p̂i j, f (r̂k )]δ(r̂i j )}

= −i
t1 + t2

4h̄

A∑
i, j=1

{ p̂i j, [∇ f (r̂i )]δ(r̂i j )}

= 0, (20)

as interchanging i and j changes the sign. In the same way,
one can derive that the commutators with the te, to, and W0

terms become zero.
For the isovector operator

F̂ IV =
A∑

i=1

αti f (r̂i )τ
1(ti ), (21)

where τ 1(ti ) = 2ti, generally both the kinetic and interaction
parts of the Hamiltonian contribute to the energy-weighted
sum rule [2],

m1(F̂ IV) = −1

2
〈[[T̂ + V̂ , F̂ IV], F̂ IV]〉

= mkin
1 (F̂ IV)[1 + κ (F̂ IV)], (22)

where mkin
1 (F̂ IV) is the contribution from the kinetic energy,

mkin
1 (F̂ IV) = −1

2
〈[[T̂ , F̂ IV], F̂ IV]〉

= h̄2

2m

A∑
i=1

α2
ti 〈[∇ f (r̂i )]

2〉

= h̄2

2m

∫
dr[∇ f (r)]2

[
α2

nρn(r) + α2
pρp(r)

]
, (23)

and the enhancement factor κ (F̂ IV) shows the relative con-
tribution of the interaction-energy term with respect to the
kinetic part to the energy-weighted sum rule. The potential
contribution is from the second term in Eq. (19). The spin-
exchange parts with x1 and x2 also contribute with factor 1

2
from the P̂σ operator, as the σ i · σ j part produces the spin
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density which is zero for even-even systems:

mkin
1 κ (F̂ IV) = −1

2
〈[[V̂ , F̂ IV], F̂ IV]〉

= t1(2 + x1) + t2(2 + x2)

8

×
A∑

i, j=1

αtiτ
1(ti ){αtiτ

1(ti )〈[∇ f (r̂i )]
2δ(r̂i j )〉

−αt j τ
1(t j )〈∇ f (r̂i ) · ∇ f (r̂ j )δ(r̂i j )〉}

= t1(2 + x1) + t2(2 + x2)

8
(αn + αp)2

×
∫

dr[∇ f (r)]2ρn(r)ρp(r), (24)

where 1
8 [t1(2 + x1) + t2(2 + x2)] = Cτ

0 − Cτ
1 .

These expressions for the energy-weighted sum rule are
based on the operator expressions of the kinetic and inter-
action terms. Strictly speaking, in the case of the nuclear
EDF, in which there is no correspondence between the EDF
and the Hamiltonian operator Ĥ , Eqs. (18), (23), and (24)
cannot be derived in the same manner. In the next subsection
the expressions for the energy-weighted sum rule are derived
without assuming the Hamiltonian operator.

B. Derivation for nuclear EDF

Following the discussion in Sec. 10.2 of Ref. [27], I
show that the energy-weighted sum rule is expressed as
the second-order fluctuation of the total energy. I consider
a small fluctuation starting from a HFB state |
HFB〉. As
the HFB state is a vacuum of quasiparticles, âμ|
HFB〉 =
0, such a fluctuation from the HFB state can be described
by a quasiparticle-quasihole, quasiparticle-quasiparticle, and
quasihole-quasihole densities. The quasihole-quasihole and
quasiparticle-quasihole densities are given by

κμν = 〈�′|âν âμ|�′〉, (25)

ρμν = 〈�′|â†
ν âμ|�′〉, (26)

where the state |�′〉 includes a small fluctuation. The coherent
state representation of the state |�′〉 gives that ρ̄ is higher or-
der in κ̄ , ρ̄ ∼ (κ̄ κ̄†). Therefore the small-amplitude expansion
of the energy from the HFB state is given as an expansion with
respect to κ̄ and κ̄∗:

E ′[κ̄, κ̄∗] = E ′
0 + 1

2
(κ̄∗ κ̄ )

(
A B
B∗ A∗

)(
κ̄

κ̄∗

)
+ O(|κ̄|3),

(27)

where E ′
0 is the HFB value of the EDF (with particle-number

constraint term), and A and B are the QRPA matrices given by

Aρσ,μν = δρμδσν (Eμ + Eν ) + ∂2E ′

∂κ̄∗
ρσ ∂κ̄μν

, (28)

Bρσ,μν = ∂2E ′

∂κ̄∗
ρσ ∂κ̄∗

μν

, (29)

with the quasiparticle energies E .

Suppose that this small fluctuation is given with a Hermi-
tian operator F̂ :

|�′〉 = eiηF̂ |
HFB〉, (30)

where η is a small real parameter. The operator F̂ is written in
the quasiparticle representation as

F̂ = 〈
HFB|F̂ |
HFB〉 +
∑
μ<ν

{
F 20

μν â†
μâ†

ν + F 02
μν âν âμ

}

+
∑
μν

F 11
μν â†

μâν, (31)

where F 02 = F 20∗. From Eqs. (30) and (31) one can express
the quasihole-quasihole densities κ̄ in Eq. (25) in terms of the
matrix element F 20 and F 02 as

κμν = 〈
HFB|e−iηF̂ âν âμeiηF̂ |
HFB〉 = −iηF 20
μν , (32)

κ∗
μν = 〈
HFB|e−iηF̂ â†

μâ†
νeiηF̂ |
HFB〉 = iηF 02

μν . (33)

The energy of this state with the fluctuation |�′〉 is given by

E ′[−iηF 20, iηF 02] = E ′
0 + η2m1(F̂ ) + O(η3), (34)

where

m1(F̂ ) = 1

2
(F 02 − F 20)

(
A B
B∗ A∗

)(
F 20

−F 02

)
. (35)

Equation (35) is derived by applying the QRPA equations(
A B

−B∗ −A∗

)(
X λ

Y λ

)
= �λ

(
X λ

Y λ

)
(36)

and the expression for the transition strength

〈λ|F̂ |0〉 =
∑
μ<ν

(
X λ∗

μν F 20
μν + Y λ∗

μν F 02
μν

)
(37)

to Eq. (16) [27–29]. Equation (34) shows that the energy-
weighted sum rule m1(F̂ ) appears as a second-order fluctu-
ation of the total energy of the system where the fluctuation is
produced by the operator F̂ in the form of Eq. (30).

When a Hamiltonian operator exists (Ĥ ′ = Ĥ −∑
t=n,p λt N̂ t ), the energy of the perturbed state |�′〉 is

given by the expectation value of the Hamiltonian,

〈�′|Ĥ ′|�′〉 = 〈
HFB|e−iηF̂ Ĥ ′eiηF̂ |
HFB〉

= 〈
HFB|Ĥ ′ + iη[Ĥ ′, F̂ ] − η2

2
[[Ĥ ′, F̂ ], F̂ ]

+ O(η3)|
HFB〉. (38)

By comparing the term proportional to η2 with Eq. (34), one
can derive the Thouless theorem in the double commutator
form [27,30]

m1(F̂ ) = 1

2

∂2

∂η2
〈
HFB|e−iηF̂ Ĥ ′eiηF̂ |
HFB〉

∣∣∣∣
η=0

= −1

2
〈
HFB|[[Ĥ ′, F̂ ], F̂ ]|
HFB〉. (39)

In the case of the nuclear EDF, the total energy of the
perturbed state, Eq. (30), is expressed using the densities
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evaluated with the perturbed state instead of the Hamiltonian
operator. Equation (34) can be written as

m1(F̂ ) = 1

2

∂2

∂η2
E ′[ρ ′, ρ̃ ′]

∣∣∣∣
η=0

, (40)

where the particle-hole and particle-particle densities ρ ′ and
ρ̃ ′ are constructed from the perturbed state |�′〉.

C. Isoscalar operator

Equation (30) can be regarded as a transformation of the
wave function. For an isoscalar operator F̂ IS, this is nothing
but a local gauge transformation [21,27,31,32]. The local
gauge transformation changes the particle-hole and particle-
particle density matrices as [26]

ρ̂ ′(rs, r′s′; t ) = eiηα[ f (r)− f (r′ )]ρ̂(rs, r′s′; t ), (41)

ˆ̃ρ ′(rs, r′s′; t ) = eiηα[ f (r)+ f (r′ )] ˆ̃ρ(rs, r′s′; t ), (42)

and the nonlocal densities transform as

ρ ′
t (r, r′) = eiηα[ f (r)− f (r′ )]ρt (r, r′), (43)

s′
t (r, r′) = eiηα[ f (r)− f (r′ )]st (r, r′), (44)

ρ̃ ′
t (r, r′) = eiηα[ f (r)+ f (r′ )]ρ̃t (r, r′), (45)

s̃′
t (r, r′) = eiηα[ f (r)+ f (r′ )]s̃t (r, r′). (46)

In analogy with the Galilean transformation, a local momen-
tum field can be defined as

p(r) = ηα∇ f (r). (47)

The local densities in the EDF transform as

ρ ′
k = ρk, (48)

τ ′
k = τk + 2p · jk + p2ρk, (49)

s′
k = sk, (50)

T ′
k = T k + 2p · Jk + p2sk, (51)

j′k = jk + pρk, (52)

F ′
k = Fk + pJk + Jk · p + p(p · sk ), (53)

J′
k = Jk + p ⊗ sk, (54)

ρ̃ ′
t = e2iηα f ρ̃t , (55)

τ̃ ′
t = e2iηα f (τ̃t + ip · ∇ρ̃t − p2ρ̃t ), (56)

J̃′
t = e2iηα f J̃t . (57)

For the local gauge invariant EDF, the transformation above
does not change the EDF in Eq. (2), except for the kinetic-
energy term. From Eq. (49), the kinetic-energy term trans-
forms as

E ′
kin = h̄2

2m

∫
drτ ′

0

= h̄2

2m

∫
dr[τ0 + 2ηα(∇ f ) · j0 + η2α2(∇ f )2ρ0]. (58)

From Eq. (40), the term proportional to η2 contributes to the
energy-weighted sum rule of the isoscalar operator. Then one

has

m1(F̂ IS) = h̄2

2m
α2

∫
dr[∇ f (r)]2ρ0(r) (59)

for the local gauge invariant EDF.
This is the derivation of the Thouless theorem without

using the Hamiltonian operator and double commutator. Only
the local gauge invariance property of the EDF is imposed in
the derivation, and thus the existence or absence of the spin,
spin-orbit, and density-dependent terms both in the particle-
hole and pairing channels does not contribute to the energy-
weighted sum rule as long as the EDF is local gauge invariant.
As for the pairing channel, local gauge invariant pairing EDF
does not contribute to the energy-weighted sum rule. Such
local gauge invariant EDFs are not limited to the ones with the
isoscalar density dependence considered in Eq. (10), but in-
clude isovector density dependence [33] and the Fayans func-
tional with particle-hole density-gradient dependence [34].

One can consider a general EDF that does not hold the
local gauge invariance. Without the local gauge invariance,
the transformation introduces additional terms; but when com-
puting the energy of the transformed state, the densities of an
even-even nucleus are used. Therefore any time-odd densities
included in the transformed EDF vanish. The contribution
from the spin-orbit and tensor terms produce terms propor-
tional to the spin density s, and thus they do not contribute to
the energy-weighted sum as well. The Coulomb functionals
are written with the proton local particle-hole densities only,
and they are local gauge invariant. Thus the possible contri-
butions are from the ρkτk and j2

k terms in the particle-hole
EDF, and Reρ̃∗

t τ̃t and Reρ̃∗
t �ρ̃t terms in the pairing EDF. The

particle-hole part and pairing part of the EDF transform as∫
drχk[ρ ′

k, τ
′
k, . . . ]

=
∫

dr
{
χk[ρk, τk, . . . ] + (

Cτ
k + C j

k

)
p2ρ2

k

}
, (60)∫

drχ̃t [ρ̃
′
t , ρ̃

′∗
t , τ̃ ′

t , . . . , ρ
′
0]

=
∫

dr
{
χ̃t [ρ̃t , ρ̃

∗
t , τ̃t , . . . , ρ0] − (

4C̃�ρ
t + C̃τ

t

)
p2|ρ̃t |2

}
,

(61)

where terms which are nonzero in time-reversal-symmetric
even-even systems are kept.

The combinations of the coefficients (Cτ
k + C j

k ) and
(4C̃�ρ

t + C̃τ
t ) show that these additional terms exist only when

the local gauge symmetry of ρkτk − j2
k and/or Re(4ρ̃∗

t �ρ̃t −
ρ̃∗

t τ̃t ) is broken. By taking the terms that are second order in η

and performing the integration, the Thouless theorem for the
isoscalar operator in the nuclear EDF is derived:

m1(F̂ IS) = α2
∫

dr[∇ f (r)]2

{
h̄2

2m
ρ0(r) +

1∑
k=0

(
Cτ

k +C j
k

)
ρk (r)2

−
∑

t=n,p

(
4C̃�ρ

t + C̃τ
t

)|ρ̃t (r)|2
}

. (62)
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Note that in Ref. [2] it is discussed that the sum rule is
obtained by the exact cancellation of the potential contribution
to the effective mass (ρτ term) and the isoscalar current-
current interaction in the RPA level for the system with N =
Z and without spin-orbit interaction. The present derivation
based on the local gauge transformation gives a unified view
that includes the contribution from the local gauge symmetry
breaking of the isovector current terms and pairing EDF,
and it shows that the local gauge symmetry breakings in
the spin-orbit and tensor functionals do not play any roles
in the energy-weighted sum rule of the isoscalar coordinate
operators.

D. Isovector operator

The energy-weighted sum rule of the isovector operator for
the nuclear EDF can be derived by generating the fluctuation
using the isovector operator given in Eq. (21). Consider a
corresponding transformation with the isovector operator

|�′
IV〉 = exp

[
iη

A∑
i=1

αti f (r̂i )τ
1(ti)

]
|
HFB〉. (63)

Because this is not a local gauge transformation, even the local
gauge invariant EDF is not invariant under this transformation.

The density matrices transform with Eq. (63) as

ρ̂ ′(rs, r′s′; t ) = ei(2t )ηαt [ f (r)− f (r′ )]ρ̂(rs, r′s′; t ), (64)

ˆ̃ρ ′(rs, r′s′; t ) = ei(2t )ηαt [ f (r)+ f (r′ )] ˆ̃ρ(rs, r′s′; t ). (65)

Then nonlocal densities of neutrons and protons transform as

ρ ′
t (r, r′) = ei(2t )ηαt [ f (r)− f (r′ )]ρt (r, r′), (66)

s′
t (r, r′) = ei(2t )ηαt [ f (r)− f (r′ )]st (r, r′), (67)

ρ̃ ′
t (r, r′) = ei(2t )ηαt [ f (r)+ f (r′ )]ρ̃t (r, r′), (68)

s̃′
t (r, r′) = ei(2t )ηαt [ f (r)+ f (r′ )]s̃t (r, r′). (69)

Note that the indices in Eqs. (66) and (67) are t . One defines
local momentum fields of the neutron and proton,

pt (r) = (2t )ηαt∇ f (r). (70)

The transformation in Eq. (63) does not mix the neutron and
proton phases. Therefore the isoscalar and isovector local
densities transform as

ρ ′
k = ρk, (71)

τ ′
0 = τ0 + (pn + pp) · j0 + 1

2

(
p2

n + p2
p

)
ρ0

+ (pn − pp) · j1 + 1
2

(
p2

n − p2
p

)
ρ1, (72)

τ ′
1 = τ1 + (pn + pp) · j1 + 1

2

(
p2

n + p2
p

)
ρ1

+ (pn − pp) · j0 + 1
2

(
p2

n − p2
p

)
ρ0, (73)

s′
k = sk, (74)

T ′
0 = T 0 + (pn + pp) · J0 + 1

2

(
p2

n + p2
p

)
s0

+ (pn − pp) · J1 + 1
2

(
p2

n − p2
p

)
s1, (75)

T ′
1 = T 1 + (pn + pp) · J1 + 1

2 (p2
n + p2

p)s1

+ (pn − pp) · J0 + 1
2

(
p2

n − p2
p

)
s0, (76)

j′0 = j0 + 1
2 (pn + pp)ρ0 + 1

2 (pn − pp)ρ1, (77)

j′1 = j1 + 1
2 (pn + pp)ρ1 + 1

2 (pn − pp)ρ0, (78)

F ′
0 = F0 + 1

2 (pn + pp)J0 + 1
2 (pn − pp)J1

+ 1
2 J0 · (pn + pp) + 1

2 J1 · (pn − pp)

+ 1
2 [(pn · s0)pn + (pp · s0)pp

+ (pn · s1)pn − (pp · s1)pp], (79)

F ′
1 = F1 + 1

2 (pn + pp)J1 + 1
2 (pn − pp)J0

+ 1
2 J1 · (pn + pp) + 1

2 J0 · (pn − pp)

+ 1
2 [(pn · s1)pn + (pp · s1)pp

+ (pn · s0)pn − (pp · s0)pp], (80)

J′
0 = J0 + 1

2 (pn + pp) ⊗ s0 + 1
2 (pn − pp) ⊗ s1, (81)

J′
1 = J1 + 1

2 (pn + pp) ⊗ s1 + 1
2 (pn − pp) ⊗ s0, (82)

ρ̃ ′
t = e2i(2t )ηαt f ρ̃t , (83)

τ̃ ′
t = e2i(2t )ηαt f (τ̃t + ipt · ∇ρ̃t − p2

t ρ̃t ), (84)

J̃′
t = e2i(2t )ηαt f J̃t . (85)

Then consider an EDF transformed with Eq. (63):

E ′[−iηF 20, iηF 02] =
∫

dr

{
h̄2

2m
τ ′

0 +
1∑

k=0

χk[ρ ′
k, τ

′
k, . . . ]

+
∑

t=n,p

χ̃t [ρ̃
′
t , ρ̃

′∗
t , τ̃ ′

t , . . . , ρ
′
0]

}
+ O(η3).

(86)

The kinetic-energy term transforms as

h̄2

2m
τ ′

0 = h̄2

2m

[
τ0 + (pn + pp) · j0 + 1

2

(
p2

n + p2
p

)
ρ0

+ (pn − pp) · j1 + 1

2

(
p2

n − p2
p

)
ρ1

]
. (87)

Again in the particle-hole part, as the time-reversal symmetry
cancels most of the terms, only the terms from ρkτk and j2

k
generate time-even contribution to the transformed EDF:

∫
dr

1∑
k=0

χk[ρ ′
k, τ

′
k, . . . ] =

∫
dr

1∑
k=0

{
χk[ρk, τk, . . . ] + Cτ

k

[(
ρ ′

kτ
′
k − j′2k

) − (
ρkτk − j2

k

)]}
,

=
∫

dr

{
1∑

k=0

χk[ρk, τk, . . . ] + 1

4

(
Cτ

0 − Cτ
1

)
(pn − pp)2

(
ρ2

0 − ρ2
1

)}
. (88)
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The fluctuation of the pairing EDF does not contribute be-
cause the neutron and proton terms are independent in the
pairing EDF. By taking the terms proportional to η2 from
Eqs. (87) and (88),

m1(F̂ IV) =
∫

dr[∇ f (r)]2

{
h̄2

2m

[
α2

nρn(r) + α2
pρp(r)

]

+ (
Cτ

0 − Cτ
1

)
(αn + αp)2ρn(r)ρp(r)

}

= mkin
1 (F̂ IV)[1 + κ (F̂ IV)]. (89)

The first term is the kinetic-energy contribution, and the ratio
to the second term defines the isovector enhancement factor
κ (F̂ IV):

mkin
1 (F̂ IV) = h̄2

2m

∫
dr[∇ f (r)]2

[
α2

nρn(r) + α2
pρp(r)

]
, (90)

κ (F̂ IV) = 2m

h̄2

(
Cτ

0 − Cτ
1

)
(αn + αp)2

×
∫

dr[∇ f (r)]2ρn(r)ρp(r)∫
dr[∇ f (r)]2

[
α2

nρn(r) + α2
pρp(r)

] . (91)

αn = αp = 1 produces Eqs. (6.32) and (6.38) in Ref. [2]:

mkin
1 (F̂ IV) = h̄2

2m

∫
dr[∇ f (r)]2ρ0(r), (92)

κ = 8m

h̄2

(
Cτ

0 − Cτ
1

)∫
dr[∇ f (r)]2ρn(r)ρp(r)∫

dr[∇ f (r)]2ρ0(r)
. (93)

αn = Z/A and αp = N/A are often used, especially for the
dipole operator, to remove the contribution of the center-of-
mass motion. In the case of the isovector dipole operators
f (r) = f IV

1K (r)(K = 0, 1), one has a model-independent
kinetic contribution (Thomas-Reiche-Kuhn sum rule
[35–37]):

mkin
1

(
F̂ IV

1K

) = h̄2

2m

3

4π

NZ

A
, (94)

κ IV
1K = 2m

h̄2

A

NZ

(
Cτ

0 − Cτ
1

) ∫
drρn(r)ρp(r). (95)

If the EDF does not hold the local gauge invariance, again all
the additional terms to the energy-weighted sum rule in the
particle-hole channel come from ρkτk and j2

k terms,

∫
dr

1∑
k=0

(
Cτ

k ρ ′
kτ

′
k + C j

k j′2k
) =

∫
dr

{
1∑

k=0

Cτ
k ρkτk + (

Cτ
0 − Cτ

1

)
(pn − pp)2ρnρp

+ (
Cτ

0 + C j
0 + Cτ

1 + C j
1

)(
p2

nρ
2
n + p2

pρ
2
p

) + 2
(
Cτ

0 + C j
0 − Cτ

1 − C j
1

)
pn · ppρnρp

}
. (96)

The second term in the right-hand side of Eq. (96) is the contribution to the enhancement factor. The third and fourth terms
vanish when the EDF is local gauge invariant for ρkτk and j2

k terms (C j
k = −Cτ

k ).
The pairing EDF transforms as

χ̃t [ρ̃
′
t , ρ̃

′∗
t , τ ′

t , . . . , ρ
′
0] = χ̃t [ρ̃t , ρ̃

∗
t , τt , . . . , ρ0] − (

4C̃�ρ
t + C̃τ

t

)
p2

t |ρ̃t |2, (97)

and produces contributions from the local gauge symmetry breaking. The energy-weighted sum rule of an isovector operator for
the nuclear EDF is then given by

m1(F̂ IV) =
∫

dr[∇ f (r)]2

{
h̄2

2m

[
α2

nρn(r) + α2
pρp(r)

] + (
Cτ

0 − Cτ
1

)
(αn + αp)2ρn(r)ρp(r)

+
1∑

k=0

(
Cτ

k + C j
k

)
[αnρn(r) + (−1)k+1αpρp(r)]2 −

∑
t=n,p

(
4C̃�ρ

t + C̃τ
t

)
α2

t |ρ̃t (r)|2
}

. (98)

IV. FINITE-AMPLITUDE METHOD

To check the expressions for the energy-weighted sum
rules for the nuclear EDF derived in the previous section,
QRPA calculations based on the linear response theory have
been performed. In this section the procedure to calculate the
energy-weighted sum rule from the linear response theory is
summarized.

The finite-amplitude method (FAM) for computing the
linear response is performed [38,39]. The FAM allows one to
perform a linear response within nuclear DFT for a given ex-
ternal field F̂ with a complex frequency ω. By solving the lin-
earized time-dependent Hartree-Fock-Bogoliubov equations,
the strength function S(F̂ , ω) can be numerically evaluated by

an iterative method. The strength function is written in terms
of the QRPA energies and strengths as

S(F̂ , ω) = −
∑

λ(�λ>0)

{ |〈λ|F̂ |0〉|2
�λ − ω

+ |〈0|F̂ |λ〉|2
�λ + ω

}
. (99)

A contour integration is performed in the complex-energy
plane to evaluate the energy-weighted sum rule numerically:

m1(F̂ ) = 1

2π i

∫
A1

ωS(F̂ , ω)dω, (100)

where the integration path is taken to include all the positive-
energy poles in the strength function. The contour consists of a
half counterclockwise arc A1 from ω = −iRA1 to iRA1 centered

024310-7



NOBUO HINOHARA PHYSICAL REVIEW C 100, 024310 (2019)

at the origin and a line on the imaginary axis from ω = iRA1

to ω = −iRA1 , which encircles all the poles in the range of
0 < �λ < RA1. For a Hermitian operator F̂ the integration
along the imaginary axis vanishes, and Eq. (100) is derived.
I refer the reader Ref. [19] for a more detailed discussion on
the complex-energy FAM for the sum rules.

V. COMPARISON OF SUM-RULE VALUES

In the numerical comparison, I use functionals based
on UNEDF1-HFB [15], which contains only the time-even
coupling constants in the particle-hole channel. Thus the
UNEDF1-HFB functional does not correspond to a specific
Hamiltonian operator and breaks the local gauge invariance.
For the comparison of sum-rule values, the following five
UNEDF1-HFB EDFs with the different time-odd terms are
considered

(1) full time-odd terms derived by assuming the relation
between the time-even and time-odd couplings;

(2) only isoscalar and isovector current terms in the local
gauge invariant form (C j

0 = −Cτ
0 and C j

1 = −Cτ
1 );

(3) only the isovector current term (C j
0 = 0, C j

1 = −Cτ
1 );

(4) only the isoscalar current term (C j
0 = −Cτ

0 , C j
1 = 0);

(5) no time-odd terms (C j
0 = C j

1 = 0).

For the time-odd terms of the UNEDF1-HFB functional,
the following relations are assumed:

Cs
0[ρ0] = − 2

3Cρ
0 [ρ0] − Cρ

1 [ρ0], (101)

Cs
1[ρ1] = − 1

3Cρ
0 [ρ0], (102)

C�s
0 = 1

8

[
Cτ

0 + 3Cτ
1 − 4

(
C�ρ

0 + C�ρ
1

)]
, (103)

C�s
1 = 1

24

[
3
(
Cτ

0 − Cτ
1

) − 4
(
C�ρ

0 + C�ρ
1

)]
, (104)

C j
k = −Cτ

k , (105)

C∇ j
k = C∇J

k , (106)

and CT
k = C∇s

k = CF
k = 0.

The energy-weighted sum rule of the monopole (K = 0),
dipole (K = 0 and 1), quadrupole (K = 0, 1, and 2), and oc-
tupole (K = 0, 1, 2, and 3) operators of isoscalar and isovector
type is computed. Expressions for the energy-weighted sum
rule of these operators in the cylindrical coordinate system
are summarized in Appendix B. α = Z/A is used for the
isoscalar operators and αn = Z/A and αp = N/A are used for
the isovector operators.

The calculations are performed with the HFBTHO code
[40–42] and its FAM extension for the nonaxial finite K
modes [43]. This version of the code uses linearized densities
explicitly, and thus parameter η in the FAM is not necessary
in the numerical calculation. Nsh = 20 harmonic-oscillator
shells are used as the single-particle model space, and NGH =
40, NGL = 40, and Nleg = 80 points are used for the Gauss
quadratures. A 60 MeV pairing window is employed. In
the FAM calculation the integration radius is set to RA1 =
200 MeV, and the half arc A1 is discretized with 300 points.

208Pb is chosen as a representative case of the spherical
state without pairing, and 166Dy as a case with prolate de-
formation and pairing (β = 0.33, �n = 0.64 MeV, and �p =
0.58 MeV). Tables I and II compare energy-weighted sum
rule of 208Pb computed from the Thouless theorem using
the HFB state [Eqs. (62) and (98)] with the one using the
complex-energy FAM [Eq. (100)] within six digits, while
Tables III and IV are the same comparison but with 166Dy.

TABLE I. Energy-weighted sum rule of the isoscalar monopole (ISM), dipole (ISD), quadrupole (ISQ), and octupole (ISO) operators
computed from Eq. (62) in the HFB states and the complex-energy FAM for 208Pb. UNEDF1-HFB functional is employed. Five choices for
the time-odd coupling constants are listed. The units are in MeV fmx where x = 4, 2, 4, and 6 for L = 0, 1, 2, and 3 modes, respectively, and
the scales are in parentheses.

ISM(K = 0) ISD(K = 0) ISD(K = 1) ISQ(K = 0) ISQ(K = 1)

HFB FAM HFB FAM HFB FAM HFB FAM HFB FAM
(104) (104) (105) (105) (105) (105) (104) (104) (104) (104)

full T -odd 8.29475 8.31797 2.90910 2.93022 2.90910 2.93023 1.65019 1.65219 1.65019 1.65222

C j
0 = −Cτ

0 C j
1 = −Cτ

1 8.29475 8.31797 2.90910 2.93033 2.90910 2.93034 1.65019 1.65247 1.65019 1.65253

C j
0 = 0 C j

1 = −Cτ
1 8.65237 8.67624 3.01255 3.03436 3.01255 3.03436 1.72133 1.72337 1.72133 1.72332

C j
0 = −Cτ

0 C j
1 = 0 8.25788 8.28147 2.90909 2.91800 2.90909 2.91800 1.64285 1.64518 1.64285 1.64525

C j
0 = 0 C j

1 = 0 8.61551 8.63972 3.01254 3.02201 3.01254 3.02201 1.71400 1.71607 1.71400 1.71607

ISQ(K = 2) ISO(K = 0) ISO(K = 1) ISO(K = 2) ISO(K = 3)

HFB FAM HFB FAM HFB FAM HFB FAM HFB FAM
(104) (104) (106) (106) (106) (106) (106) (106) (106) (106)

full T -odd 1.65019 1.65221 1.36753 1.37042 1.36753 1.37042 1.36753 1.37042 1.36753 1.37042

C j
0 = −Cτ

0 C j
1 = −Cτ

1 1.65019 1.65248 1.36753 1.37053 1.36753 1.37053 1.36753 1.37053 1.36753 1.37053

C j
0 = 0 C j

1 = −Cτ
1 1.72134 1.72336 1.41508 1.41820 1.41508 1.41820 1.41508 1.41820 1.41508 1.41820

C j
0 = −Cτ

0 C j
1 = 0 1.64285 1.64521 1.36204 1.36511 1.36204 1.36512 1.36204 1.36511 1.36204 1.36511

C j
0 = 0 C j

1 = 0 1.71400 1.71607 1.40959 1.41278 1.40959 1.41278 1.40959 1.41278 1.40959 1.41278
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TABLE II. Energy-weighted sum rule of the isovector monopole (IVM), dipole (IVD), quadrupole (IVQ), and octupole (IVO) operators
for 208Pb. The HFB values are evaluated using Eq. (98).

IVM(K = 0) IVD(K = 0) IVD(K = 1) IVQ(K = 0) IVQ(K = 1)

HFB FAM HFB FAM HFB FAM HFB FAM HFB FAM
(105) (105) (102) (102) (102) (102) (104) (104) (104) (104)

full T -odd 1.46148 1.46576 2.93309 2.92660 2.93309 2.92640 2.90752 2.91122 2.90752 2.91117

C j
0 = −Cτ

0 C j
1 = −Cτ

1 1.46148 1.46576 2.93309 2.92541 2.93309 2.92530 2.90752 2.91123 2.90752 2.91114

C j
0 = 0 C j

1 = −Cτ
1 1.46161 1.46592 2.93328 2.92560 2.93328 2.92547 2.90778 2.91151 2.90778 2.91141

C j
0 = −Cτ

0 C j
1 = 0 1.31977 1.32456 2.60286 2.60392 2.60286 2.60394 2.62559 2.62968 2.62559 2.62968

C j
0 = 0 C j

1 = 0 1.31989 1.32471 2.60305 2.60412 2.60305 2.60413 2.62584 2.62995 2.62584 2.62995

IVQ(K = 2) IVO(K = 0) IVO(K = 1) IVO(K = 2) IVO(K = 3)

HFB FAM HFB FAM HFB FAM HFB FAM HFB FAM
(104) (104) (106) (106) (106) (106) (106) (106) (106) (106)

full T -odd 2.90752 2.91122 2.30407 2.31071 2.30407 2.31070 2.30407 2.31071 2.30407 2.31071

C j
0 = −Cτ

0 C j
1 = −Cτ

1 2.90752 2.91124 2.30407 2.31075 2.30407 2.31074 2.30407 2.31074 2.30407 2.31075

C j
0 = 0 C j

1 = −Cτ
1 2.90778 2.91151 2.30431 2.31104 2.30431 2.31103 2.30431 2.31103 2.30431 2.31104

C j
0 = −Cτ

0 C j
1 = 0 2.62559 2.62968 2.11636 2.12256 2.11636 2.12256 2.11636 2.12256 2.11636 2.12256

C j
0 = 0 C j

1 = 0 2.62585 2.62995 2.11660 2.12285 2.11660 2.12285 2.11661 2.12285 2.11660 2.12285

In 208Pb, the sum rule of different K value for the same
multipole L gives the same value because of the spherical
symmetry, while in 166Dy the sum-rule values depend on K
due to the ground-state deformation. The agreement between
the expressions from the Thouless theorem and the values
from the complex-energy FAM is excellent. In the comparison
of the two calculations with full time-odd terms and with
the isoscalar and isovector current terms only, it is also nu-
merically concluded that other time-odd terms involving the
spin densities and breaking of the local gauge invariance of
the spin-orbit functional do not play any role on the energy-

weighted sum rule of the isoscalar and isovector multipole
operators, as expected in the HFB expressions, Eqs. (62) and
(98). From the ratio of the sum-rule values computed with
the FAM to the one computed from the Thouless theorem,
the maximum discrepancies of the isoscalar and isovector
operators are about 0.7% and 0.4% in 208Pb and 1.2% and
0.5% in 166Dy. The cases with the largest discrepancy in 208Pb
and 166Dy are the K = 1 isoscalar dipole modes. The isoscalar
dipole operators shown in Eqs. (B2) and (B4) easily couple
with the spurious mode. The standard prescription to subtract
the spurious translational component, discussed in Ref. [44],

TABLE III. Energy-weighted sum rule of the isoscalar multipole operators for 166Dy.

ISM(K = 0) ISD(K = 0) ISD(K = 1) ISQ(K = 0) ISQ(K = 1)

HFB FAM HFB FAM HFB FAM HFB FAM HFB FAM
(104) (104) (105) (105) (105) (105) (104) (104) (104) (104)

full T-odd 6.09250 6.11890 3.07815 3.09868 1.52435 1.54264 1.46544 1.46837 1.33875 1.34136

C j
0 = −Cτ

0 C j
1 = −Cτ

1 6.09250 6.11891 3.07815 3.09873 1.52435 1.54273 1.46544 1.46839 1.33875 1.34139

C j
0 = 0 C j

1 = −Cτ
1 6.35181 6.37858 3.19099 3.21158 1.57586 1.59336 1.52926 1.53223 1.39645 1.39910

C j
0 = −Cτ

0 C j
1 = 0 6.06814 6.09444 3.07814 3.08693 1.52435 1.53668 1.45970 1.46265 1.33346 1.33610

C j
0 = 0 C j

1 = 0 6.32745 6.35411 3.19098 3.19960 1.57565 1.58738 1.52351 1.52648 1.39116 1.39380

ISQ(K = 2) ISO(K = 0) ISO(K = 1) ISO(K = 2) ISO(K = 3)

HFB FAM HFB FAM HFB FAM HFB FAM HFB FAM
(103) (103) (106) (106) (106) (106) (105) (105) (105) (105)

full T-odd 9.58688 9.60887 1.18672 1.19139 1.10894 1.11269 8.90831 8.94575 5.78137 5.81095

C j
0 = −Cτ

0 C j
1 = −Cτ

1 9.58688 9.60907 1.18672 1.19141 1.10894 1.11276 8.90831 8.94645 5.78137 5.81155

C j
0 = 0 C j

1 = −Cτ
1 9.98050 10.0028 1.22880 1.23350 1.14778 1.15163 9.20838 9.24757 5.96444 5.99449

C j
0 = −Cτ

0 C j
1 = 0 9.54736 9.56949 1.18218 1.18710 1.10477 1.10883 8.87621 8.91577 5.75952 5.79003

C j
0 = 0 C j

1 = 0 9.94097 9.96316 1.22426 1.22914 1.14361 1.14773 9.17628 9.21599 5.94258 5.97323
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TABLE IV. Energy-weighted sum rule of the isovector multipole operators for 166Dy.

IVM(K = 0) IVD(K = 0) IVD(K = 1) IVQ(K = 0) IVQ(K = 1)

HFB FAM HFB FAM HFB FAM HFB FAM HFB FAM
(104) (104) (102) (102) (102) (102) (104) (104) (104) (104)

full T -odd 10.5723 10.6141 2.34288 2.34783 2.34288 2.34584 2.55819 2.56284 2.33075 2.33496

C j
0 = −Cτ

0 C j
1 = −Cτ

1 10.5723 10.6141 2.34288 2.34797 2.34288 2.34599 2.55819 2.56284 2.33075 2.33496

C j
0 = 0 C j

1 = −Cτ
1 10.5734 10.6154 2.34306 2.34815 2.34306 2.34618 2.55845 2.56312 2.33098 2.33520

C j
0 = −Cτ

0 C j
1 = 0 9.55521 9.59796 2.08108 2.08912 2.08108 2.08758 2.30750 2.31253 2.10422 2.10859

C j
0 = 0 C j

1 = 0 9.55624 9.59918 2.08126 2.08930 2.08126 2.08777 2.30775 2.31280 2.10445 2.10884

IVQ(K = 2) IVO(K = 0) IVO(K = 1) IVO(K = 2) IVO(K = 3)

HFB FAM HFB FAM HFB FAM HFB FAM HFB FAM
(104) (104) (106) (106) (106) (106) (106) (106) (105) (105)

full T -odd 1.64840 1.65188 2.15229 2.16107 1.96199 1.96768 1.47491 1.48066 9.42464 9.46666

C j
0 = −Cτ

0 C j
1 = −Cτ

1 1.64840 1.65188 2.15229 2.16103 1.96199 1.96753 1.47491 1.48065 9.42464 9.46689

C j
0 = 0 C j

1 = −Cτ
1 1.64856 1.65205 2.15254 2.16129 1.96222 1.96778 1.47507 1.48039 9.42578 9.46813

C j
0 = −Cτ

0 C j
1 = 0 1.49440 1.49802 1.97080 1.97992 1.79885 1.80654 1.35767 1.36397 8.71254 8.75830

C j
0 = 0 C j

1 = 0 1.49455 1.49820 1.97105 1.98018 1.79908 1.80570 1.35784 1.36414 8.71368 8.75954

was used, while it is known that it still lacks small corrections
coming from the higher-order terms [45]. Although any one-
body operator can be applied for the sum rule expressions
and the complex-energy FAM calculation, the translational
spurious component can affect the accuracy. The L-odd modes
have to break the reflection symmetry in the FAM calculation,
and this generally causes lower accuracy. Except for the
isoscalar dipole mode, the maximum discrepancy between the
FAM and the HFB expression of the energy-weighted sum
rules is 0.5% in the isoscalar and isovector K = 3 octupole
modes of 166Dy.

Because the current-density terms do not change the HFB
state, the difference in the energy-weighted sum-rule value
between the calculations with/without the current-density
terms shows the actual contribution of the local gauge sym-
metry breaking. The effect of the isoscalar (isovector) current
density is much larger than the other in the sum rule of the
isoscalar (isovector) multipole operator. This is because the
contribution of the isoscalar (isovector) current-density term
to the energy-weighted sum rule of the isoscalar operator is
proportional to the isoscalar (isovector) particle-hole local
density squared in Eq. (62), and the isoscalar particle-hole
local density is generally much larger than the isovector
density. For the isovector multipole operator, as seen in
Eq. (98), the contribution of the isovector current-density term
is from an isoscalar-type density squared (in phase with αn

and αp weight factors), while that of the isoscalar current-
density term is from an isovector-type (out of phase) density
squared.

VI. CONCLUSIONS

The expressions for the energy-weighted sum rule of the
isoscalar and isovector coordinate operators are derived for

the case of the nuclear DFT where the EDF does not corre-
spond to a Hamiltonian.

The importance of the local gauge invariance of the nuclear
EDF for evaluating the energy-weighted sum rule of these
operators is discussed. For time-reversal symmetric even-even
systems, the local gauge invariance of the ρkτk − j2

k term
in the particle-hole channel and Re(4ρ̃∗

t �ρ̃t − ρ̃∗
t τ̃t ) in the

pairing channel is responsible for the energy-weighted sum-
rule value of the conventional Thouless theorem, while the
local gauge invariance of the other terms such as spin-orbit
and tensor does not play any role in the energy-weighted
sum rule of the multipole operators. The expressions for
the energy-weighted sum-rule values are compared with
the QRPA calculations with the complex-energy FAM, and
expressions derived are both analytically and numerically
justified.

The ratio of energy-weighted and inverse-energy-weighted
sum rule is useful for estimating the giant resonance energy.
The present derivation establishes the efficient evaluation of
the sum-rule ratio for the nuclear EDF that does not corre-
spond to a Hamiltonian, as the dielectric theorem is available
for the nuclear EDF to evaluate the inverse-energy-weighted
sum rule [29].

The local gauge invariance of ρkτk − j2
k is related to

the Galilean invariance, and thus almost all the practical
nuclear EDFs should hold it. However, the present deriva-
tion of the Thouless theorem is also applicable to other
kinds of operators such as spin and isospin. The energy-
weighted sum rule of the spin operators is related to the
spin-orbit and tensor energy terms [46,47]. It will be very
useful to derive the expression for the energy-weighted sum
rule of the spin and spin-multipole operators for better un-
derstanding of the spin-orbit and tensor terms in nuclear
EDFs.
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Extensions to non-Hermitian operators such as charge-
exchange and pair transfer excitation, and the derivation of
the cubic energy-weighted sum rule within the nuclear DFT,
are other challenging future subjects.
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APPENDIX A: DENSITIES

The particle-hole and particle-particle density matrices are
given by

ρ̂(rs, r′s′; t ) = 〈ĉ†
r′s′t ĉrst 〉, (A1)

ˆ̃ρ(rs, r′s′; t ) = −2s′〈ĉr′−s′t ĉrst 〉, (A2)

where ĉ† and ĉ are nucleon creation and annihilation oper-
ators. The nonlocal densities are expressed in terms of the
density matrices as

ρk (r, r′) =
∑

st

ρ̂(rs, r′s; t )τ k (t ), (A3)

sk (r, r′) =
∑
ss′t

ρ̂(rs, r′s′; t )σs′sτ
k (t ), (A4)

ρ̃t (r, r′) =
∑

s

ˆ̃ρ(rs, r′s; t ), (A5)

s̃t (r, r′) =
∑
ss′

ˆ̃ρ(rs, r′s′; t )σs′s, (A6)

where τ k (t ) = 1 for k = 0, and 2t for k = 1.
All the local densities appear in the nuclear EDF are

derived from nonlocal densities as

ρk (r) = ρk (r, r), (A7)

τk (r) = [(∇ · ∇′)ρk (r, r′)]r=r′ , (A8)

Jk (r) = 1

2i
[(∇ − ∇′) ⊗ sk (r, r′)]r=r′ , (A9)

sk (r) = sk (r, r), (A10)

T k (r) = [(∇ · ∇′)sk (r, r′)]r=r′ , (A11)

jk (r) = 1

2i
[(∇ − ∇′)ρk (r, r′)]r=r′ , (A12)

Fk (r) = 1

2
[(∇ ⊗ ∇′ + ∇′ ⊗ ∇) · sk (r, r′)]r=r′ , (A13)

ρ̃t (r) = ρ̃t (r, r), (A14)

τ̃t (r) = [(∇ · ∇′)ρ̃t (r, r′)]r=r′ , (A15)

J̃t (r) = 1

2i
[(∇ − ∇′) ⊗ s̃t (r, r′)]r=r′ , (A16)

and tensor densities can be decomposed into

Jk (r) =
∑

a

Jkaa(r), (A17)

Jka(r) =
∑

bc

εabcJkbc(r), (A18)

Jkab(r) = 1

2
Jkab(r) + 1

2
Jkba(r) − 1

3
Jk (r)δab, (A19)

J̃k (r) =
∑

a

J̃kaa(r), (A20)

J̃ka(r) =
∑

bc

εabcJ̃kbc(r), (A21)

J̃kab(r) = 1

2
J̃kab(r) + 1

2
J̃kba(r) − 1

3
J̃k (r)δab. (A22)

APPENDIX B: ENERGY-WEIGHTED SUM RULE
EXPRESSIONS FOR MULTIPOLE OPERATORS

The expressions for the energy-weighted sum rule of the
multipole operators up to L = 3 in cylindrical coordinates are
summarized in this section. The multipole operators fLK (r)
are expressed using x = ρ cos φ, y = ρ sin φ as

f00(r) = r2 = ρ2 + z2, (B1)

f IS
10 (r) = r3Y10 − η10rY10 =

√
3

4π
(z3 + ρ2z − η10z), (B2)

f IV
10 (r) = rY10 =

√
3

4π
z, (B3)

f IS
11 (r) = (r3 − η11r)

Y11 − Y1−1√
2

= −
√

3

16π
ρ(ρ2 + z2 − η11)(eiφ + e−iφ ), (B4)

f IV
11 (r) = r(Y11 − Y1−1)√

2
= −

√
3

16π
ρ(eiφ + e−iφ ), (B5)

f20(r) = r2Y20 =
√

5

16π
(2z2 − ρ2), (B6)

f21(r) = − r2(Y21 − Y2−1)√
2

=
√

15

16π
zρ(eiφ + e−iφ ), (B7)

f22(r) = r2(Y22 + Y2−2)√
2

=
√

15

64π
ρ2(e2iφ + e−2iφ ), (B8)

f IS
30 (r) = r3Y30 − η30rY10

=
√

7

16π
(2z3 − 3ρ2z − η′

30z), (B9)

f IV
30 (r) = r3Y30 =

√
7

16π
z(2z2 − 3ρ2), (B10)

f IS
31 (r) = r3(Y31 − Y3−1)√

2
− η31

r(Y11 − Y1−1)√
2

=
√

21

128π
[−4z2ρ + ρ3 + η′

31ρ](eiφ + e−iφ ), (B11)
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f IV
31 (r) = r3(Y31 − Y−31)√

2

= −
√

21

128π
(4z2 − ρ2)ρ(eiφ + e−iφ ), (B12)

f32(r) = r3(Y32 + Y3−2)√
2

=
√

105

64π
zρ2(e2iφ + e−2iφ ), (B13)

f33(r) = r3(Y33 − Y3−3)√
2

= −
√

35

128π
ρ3(e3iφ + e−3iφ ).

(B14)

The parameters ηLK in the isoscalar dipole and octupole
operators are given by [44,45,48,49]

η10 = 1

A

∫
dr(3z2 + ρ2)ρ0(r), (B15)

η11 = 1

A

∫
dr(z2 + 2ρ2)ρ0(r), (B16)

η′
30 =

√
12

7
η30 = 1

A

∫
dr(6z2 − 3ρ2)ρ0(r), (B17)

η′
31 =

√
8

7
η31 = 1

A

∫
dr(4z2 − 2ρ2)ρ0(r). (B18)

The sum rules are written using the root-mean-square radius
and deformation parameters

〈
r2

t

〉 =
∫

dr(ρ2 + z2)ρt (r)∫
drρt (r)

= 1

Nt

∫
dr(ρ2 + z2)ρt (r),

(B19)

〈
r2

tot

〉 =
∫

dr(ρ2 + z2)ρ0(r)∫
drρ0(r)

= N
〈
r2

n

〉 + Z
〈
r2

p

〉
A

, (B20)

β2t =
√

π

5

∫
dr(2z2 − ρ2)ρt (r)∫
dr(ρ2 + z2)ρt (r)

= 1

Nt
〈
r2

t

〉√π

5

∫
dr(2z2 − ρ2)ρt (r), (B21)

β2 =
√

π

5

∫
dr(2z2 − ρ2)ρ0(r)∫
dr(ρ2 + z2)ρ0(r)

= 1

A〈r2
tot〉

√
π

5

∫
dr(2z2 − ρ2)ρ0(r). (B22)

The energy-weighted sum rules of isoscalar multipole opera-
tors are written as

m1(F̂ IS) = mkin
1 (F̂ IS) + mLGSB

1 (F̂ IS), (B23)

where the first term is from the kinetic-energy term, and the
second term is from the local gauge symmetry breaking of

the particle-hole and pairing EDF. The expressions for the
multipole operators are

mkin
1

(
F̂ IS

00

) = 4

(
Z

A

)2 h̄2

2m
A
〈
r2

tot

〉
, (B24)

mLGSB
1

(
F̂ IS

00

) = 4

(
Z

A

)2 ∫
dr(ρ2 + z2)GLGSB

IS (r), (B25)

mkin
1 (F̂ IS

10 ) = 3

4π

(
Z

A

)2 h̄2

2m

[ ∫
dr(ρ4 + 10ρ2z2

+ 9z4)ρ0(r) − η2
10A

]
, (B26)

mLGSB
1

(
F̂ IS

10

) = 3

4π

(
Z

A

)2 ∫
dr[ρ4 + 10ρ2z2 + 9z4

+ η2
10 − 2η10(ρ2 + 3z2)]GLGSB

IS (r), (B27)

mkin
1

(
F̂ IS

11

) = 3

4π

(
Z

A

)2 h̄2

2m

[ ∫
dr(5ρ4 + 6ρ2z2

+ z4)ρ0(r) − η2
11A

]
, (B28)

mLGSB
1

(
F̂ IS

11

) = 3

4π

(
Z

A

)2 ∫
dr[5ρ4 + 6ρ2z2 + z4

+ η2
11 − 2η11(2ρ2 + z2)]GLGSB

IS (r), (B29)

mkin
1

(
F̂ IS

20

) = 5

2π

(
Z

A

)2 h̄2

2m
A
〈
r2

tot

〉(
1 +

√
5

4π
β2

)
,

(B30)

mLGSB
1

(
F̂ IS

20

) = 5

4π

(
Z

A

)2 ∫
dr(ρ2 + 4z2)GLGSB

IS (r),

(B31)

mkin
1

(
F̂ IS

21

) = 5

2π

(
Z

A

)2 h̄2

2m
A
〈
r2

tot

〉(
1 +

√
5

16π
β2

)
,

(B32)

mLGSB
1

(
F̂ IS

21

) = 15

8π

(
Z

A

)2 ∫
dr(ρ2 + 2z2)GLGSB

IS (r),

(B33)

mkin
1

(
F̂ IS

22

) = 5

2π

(
Z

A

)2 h̄2

2m
A
〈
r2

tot

〉(
1 −

√
5

4π
β2

)
,

(B34)

mLGSB
1

(
F̂ IS

22

) = 15

4π

(
Z

A

)2 ∫
dr ρ2GLGSB

IS (r), (B35)

mkin
1

(
F̂ IS

30

) = 7

16π

(
Z

A

)2 h̄2

2m

×
[

9
∫

dr(ρ4 + 4z4)ρ0(r) − η′2
30A

]
, (B36)
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mLGSB
1

(
F̂ IS

30

) = 7

16π

(
Z

A

)2 ∫
dr[9ρ4 + 36z4 + η′2

30

− 2η′
30(−3ρ2 + 6z2)]GLGSB

IS (r), (B37)

mkin
1

(
F̂ IS

31

) = 21

32π

(
Z

A

)2 h̄2

2m

[∫
dr(5ρ4

+ 16z2ρ2 + 16z4)ρ0(r) − η′2
31A

]
, (B38)

mLGSB
1

(
F̂ IS

31

) = 21

32π

(
Z

A

)2 ∫
dr

[
5ρ4 + 16z2ρ2 + 16z4

+ η′2
31 − 2η′

31(−2ρ2 + 4z2)
]
GLGSB

IS (r),

(B39)

mkin
1

(
F̂ IS

32

) = 105

32π

(
Z

A

)2 h̄2

2m

∫
dr(8z2ρ2 + ρ4)ρ0(r),

(B40)

mLGSB
1

(
F̂ IS

32

) = 105

32π

(
Z

A

)2 ∫
dr(8z2ρ2 + ρ4)GLGSB

IS (r),

(B41)

mkin
1

(
F̂ IS

33

) = 315

32π

(
Z

A

)2 h̄2

2m

∫
dr ρ4ρ0(r), (B42)

mLGSB
1

(
F̂ IS

33

) = 315

32π

(
Z

A

)2 ∫
dr ρ4GLGSB

IS (r), (B43)

where

GLGSB
IS (r) ≡

1∑
k=0

(
Cτ

k +C j
k

)
ρ2

k (r) −
∑

t=n,p

(
4C̃�ρ

t + C̃τ
t

)|ρ̃t (r)|2.

(B44)

The isovector sum rules are expressed as the sum of the kinetic
term, enhancement factor, and the contribution from the local
gauge symmetry breaking of the EDF:

m1(F̂ IV) = mkin
1 (F̂ IV)[1 + κ (F̂ IV)] + mLGSB

1 (F̂ IV). (B45)

The terms for the multipole operators are given by

mkin
1

(
F̂ IV

00

) = 4
h̄2

2m

NZ

A2

(
Z
〈
r2

n

〉 + N
〈
r2

p

〉)
, (B46)

mkin
1 κ

(
F̂ IV

00

) = 4
(
Cτ

0 − Cτ
1

) ∫
dr(ρ2 + z2)ρn(r)ρp(r),

(B47)

mLGSB
1

(
F̂ IV

00

) = 4
1

A2

∫
dr(ρ2 + z2)GLGSB

IV (r), (B48)

mkin
1

(
F̂ IV

10

) = 3

4π

h̄2

2m

NZ

A
, (B49)

mkin
1 κ

(
F̂ IV

10

) = 3

4π

(
Cτ

0 − Cτ
1

) ∫
dr ρn(r)ρp(r), (B50)

mLGSB
1

(
F̂ IV

10

) = 3

4π

1

A2

∫
dr GLGSB

IV (r), (B51)

mkin
1

(
F̂ IV

11

) = 3

4π

h̄2

2m

NZ

A
, (B52)

mkin
1 κ

(
F̂ IV

11

) = 3

4π

(
Cτ

0 − Cτ
1

) ∫
dr ρn(r)ρp(r), (B53)

mLGSB
1

(
F̂ IV

11

) = 3

4π

1

A2

∫
drGLGSB

IV (r), (B54)

mkin
1

(
F̂ IV

20

) = 5

2π

h̄2

2m

NZ

A2

[
Z
〈
r2

n

〉(
1 +

√
5

4π
β2n

)

+ N
〈
r2

p

〉(
1 +

√
5

4π
β2p

)]
, (B55)

mkin
1 κ

(
F̂ IV

20

) = 5

4π

(
Cτ

0 − Cτ
1

) ∫
dr(ρ2 + 4z2)ρn(r)ρp(r),

(B56)

mLGSB
1

(
F̂ IV

20

) = 5

4π

1

A2

∫
dr(ρ2 + 4z2)GLGSB

IV (r), (B57)

mkin
1

(
F̂ IV

21

) = 5

2π

h̄2

2m

NZ

A2

[
Z
〈
r2

n

〉(
1 +

√
5

16π
β2n

)

+ N
〈
r2

p

〉(
1 +

√
5

16π
β2p

)]
, (B58)

mkin
1 κ

(
F̂ IV

21

) = 15

8π

(
Cτ

0 − Cτ
1

) ∫
dr(ρ2 + 2z2)ρn(r)ρp(r),

(B59)

mLGSB
1

(
F̂ IV

21

) = 15

8π

1

A2
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mkin
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where
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