Investigation of the potential ultralow *Q*-value β -decay candidates ⁸⁹Sr and ¹³⁹Ba using Penning trap mass spectrometry

R. Sandler^(a),^{1,2,*} G. Bollen,^{3,4} N. D. Gamage,¹ A. Hamaker,^{2,4} C. Izzo,^{2,4} D. Puentes,^{2,4} M. Redshaw,^{1,2} R. Ringle,² and I. Yandow^{2,4}

¹Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA

²National Superconducting Cyclotron Laboratory, East Lansing, Michigan 48824, USA

³Facility for Rare Isotope Beams, East Lansing, Michigan 48824, USA

⁴Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

(Received 11 June 2019; published 7 August 2019)

Background: Ultralow *Q*-value β decays are interesting processes to study with potential applications to nuclear β -decay theory and neutrino physics. While a number of potential ultralow *Q*-value β -decay candidates exist, improved mass measurements are necessary to determine which of these are energetically allowed.

Purpose: To perform precise atomic mass measurements of ⁸⁹Y and ¹³⁹La. Use these new measurements along with the precisely known atomic masses of ⁸⁹Sr and ¹³⁹Ba and nuclear energy level data for ⁸⁹Y and ¹³⁹La to determine if there could be an ultralow *Q*-value decay branch in the β decay of ⁸⁹Sr \rightarrow ⁸⁹Y or ¹³⁹Ba \rightarrow ¹³⁹La. **Method:** High-precision Penning trap mass spectrometry was used to determine the atomic mass of ⁸⁹Y and ¹³⁹La, from which β -decay *Q* values for ⁸⁹Sr and ¹³⁹Ba were obtained.

Results: The ⁸⁹Sr \rightarrow ⁸⁹Y and ¹³⁹Ba \rightarrow ¹³⁹La β -decay Q values were measured to be $Q_{Sr} = 1502.20(0.35)$ keV and $Q_{Ba} = 2308.37(0.68)$ keV. These results were compared to energies of excited states in ⁸⁹Y at 1507.4(0.1) keV, and in ¹³⁹La at 2310(19) keV and 2313(1) keV to determine Q values of -5.20(0.37) keV for the potential ultralow β -decay branch of ⁸⁹Sr and -1.6(19.0) keV and -4.6(1.2) keV for those of ¹³⁹Ba.

Conclusion: The potential ultralow *Q*-value decay branch of ⁸⁹Sr to the ⁸⁹Y (3/2⁻, 1507.4 keV) state is energetically forbidden and has been ruled out. The potential ultralow *Q*-value decay branch of ¹³⁹Ba to the 2313 keV state in ¹³⁹La with unknown J^{π} has also been ruled out at the 4σ level, while more precise energy level data is needed for the ¹³⁹La (1/2⁺, 2310 keV) state to determine if an ultralow *Q*-value β -decay branch to this state is energetically allowed.

DOI: 10.1103/PhysRevC.100.024309

I. INTRODUCTION

Ultralow Q-value β decays, in which the parent nucleus decays to an excited state in the daughter with a Q value of less than 1 keV, provide a powerful tool to test the role of atomic interference effects in nuclear β decay [1,2]. They can also potentially be used as new candidates for direct neutrino mass determination experiments [3–6]. In order for a potential ultralow Q-value decay to be identified or ruled out, precise measurements of the ground-state to ground-state Q value as well as the excited-state energy levels of the daughter nucleus are necessary.

Currently, the only known ultralow *Q*-value β decay is that of ¹¹⁵In to the $3/2^+$ first excited state in ¹¹⁵Sn. This decay branch was discovered by Cattadori *et al.* in 2005 via the observation of a 497.48 keV line in a γ -ray spectroscopy measurement on an \approx 1 kg metallic indium sample at Gran Sasso underground laboratory [3]. Cattadori *et al.* inferred that ¹¹⁵In must undergo a weak β -decay branch to the $3/2^+$ level in ¹¹⁵Sn at 497.334(22) keV¹ [8]. Using the atomic mass data available at the time [9], the Q value was determined to be 2(4) keV. Later, Penning trap measurements of the ¹¹⁵In-¹¹⁵Sn mass difference performed with JYFLTRAP at Jyväskylä and with the MIT/FSU trap at Florida State University, combined with the daughter-state energy, confirmed that this decay is energetically allowed. The JYFLTRAP and FSU groups determined the Q value of the ultralow decay branch to be 0.35(0.17) keV [10] and 0.155(24) keV [11], respectively, making this the lowest known Q-value β decay. The observation of the ¹¹⁵In \rightarrow ¹¹⁵Sn (3/2⁺) decay was later confirmed in measurements with an ≈ 2.5 kg indium sample at the HADES underground laboratory [10,12]. However, theoretical calculations of the partial half-life for the ¹¹⁵In ultralow Q-value decay that used the Penning trap Q values showed a significant discrepancy with the experimental results [1,2]. Hence, experimental data for additional ultralow Qvalue decays are called for.

^{*}sandler@nscl.msu.edu

¹The energy of the ¹¹⁵Sn $(3/2^+)$ state was recently measured more precisely to be 497.342(3) keV [7].

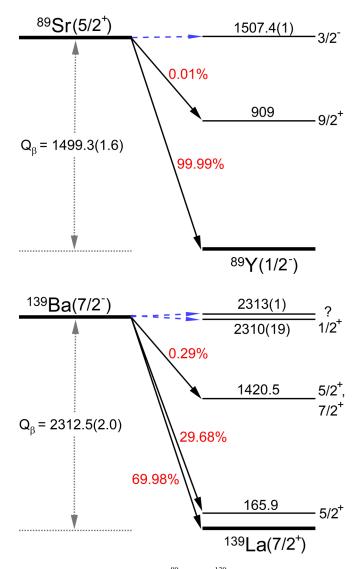


FIG. 1. Decay schemes for ⁸⁹Sr and ¹³⁹Ba showing the main β decay branches (solid black arrows) and the potential ultralow *Q*value decay branches (dashed blue arrows) investigated in this work. The ground-state to ground-state *Q* values are obtained using data from the AME2016 [17]. All values are given in units of keV.

Since the discovery of the ultralow *Q*-value β decay of ¹¹⁵In, other potential ultralow *Q*-value decay branches were identified in ¹¹⁵Cd [13], ¹³⁵Cs [14], and a number of other isotopes [5,6,15,16]. However, in all of the identified cases, more precise atomic mass data is required for the parent and/or daughter isotope. In Ref. [16], four cases were identified for which the daughter is a stable isotope whose mass is known less precisely than that of the parent. In this work, we investigate two of those systems: the decay of ⁸⁹Sr \rightarrow ⁸⁹Y and ¹³⁹Ba \rightarrow ¹³⁹La.

In Fig. 1, decay schemes are shown for ⁸⁹Sr and ¹³⁹Ba, with the main β -decay transitions indicated by solid black arrows and the potential ultralow *Q*-value decays indicated by dashed blue arrows. In the case of ⁸⁹Sr, the potential ultralow *Q*-value decay is to the $3/2^-$ state in ⁸⁹Y at 1507.4 keV. For ¹³⁹Ba, there are two potential ultralow *Q*-value decay branches: to the $1/2^{-}$ state in ¹³⁹La at 2310 keV and to the state of unknown spin and parity at 2313 keV. The ground-state to ground-state Q values given in Fig. 1 are calculated using data from the most recent atomic mass evaluation, AME2016 [17], and are limited by the 1.6 keV/ c^2 and 2.0 keV/ c^2 uncertainties in the masses of ⁸⁹Y and ¹³⁹La, respectively. The mass of the parent isotopes, ⁸⁹Sr and ¹³⁹Ba, are known to 0.09 keV/ c^2 and 0.32 keV/ c^2 , respectively. Hence, precise and accurate atomic masses for ⁸⁹Y and ¹³⁹La with uncertainties < 1 keV/ c^2 are called for to determine if these potential ultralow Q-value decay branches are energetically allowed. In this paper we present the first direct mass measurements of ⁸⁹Y and ¹³⁹La using Penning trap mass spectrometry. We calculate new Qvalues for these decays and discuss implications for potential ultralow Q-value β decays in ⁸⁹Sr and ¹³⁹Ba.

II. EXPERIMENT DESCRIPTION

The atomic masses of ⁸⁹Y and ¹³⁹La were measured at the Low Energy Beam and Ion Trap (LEBIT) facility, located at the National Superconducting Cyclotron Laboratory (NSCL) [18]. While LEBIT was designed to perform on-line mass measurements of rare isotopes from the NSCL produced via projectile fragmentation, it also houses a Laser Ablation Source (LAS) [19] and a Thermal Ion Source (TIS), which can be used to produce stable and long-lived isotopes for use as reference masses and for off-line measurements with applications in neutrino and nuclear physics [20-28]. For the 139 La measurement, the LAS was fitted with a 25 mm \times $25 \text{ mm} \times 1 \text{ mm}$ thick sheet of lanthanum [29], used to produce ¹³⁹La⁺ (99.9% natural abundance). The TIS was fitted with a canister of xenon gas to produce ¹³⁶Xe⁺ (8.9% natural abundance) via plasma ionization for use as a reference ion. For the ⁸⁹Y measurement, the LAS was fitted with a 25 mm \times 25 mm \times 1 mm thick sheet of yttrium [29], used to produce ⁸⁹Y⁺ (100% natural abundance), and the TIS was set up to produce ${}^{85}\text{Rb}^+$ and ${}^{87}\text{Rb}^+$ (72.2% and 27.8% natural abundances, respectively) via surface ionization for use as reference ions.

The LEBIT Penning trap is a hyperbolic trap housed in a 9.4 T magnetic field. The facility uses the time of flightion cyclotron resonance (TOF-ICR) technique to precisely measure the cyclotron frequency of the ion in question [30]. Ions held within the trap are driven with a quadrupolar radio frequency (rf) pulse near to the cyclotron frequency for a period of time, t_{rf} . They are released towards a microchannel plate (MCP) detector and the time-of-flight between the trap and the detector is measured. The time-of-flight is minimized when the frequency of the rf pulse matches the cyclotron frequency of the ion in question. By varying the frequency of the rf pulses around the cyclotron frequency and taking multiple time-of-flight measurements, a resonance curve can be built and fit to a theoretical line shape (see Fig. 2). The width of the resonance, and hence the precision to which the central frequency can be obtained from a fit to the theoretical line shape, goes as $\approx 1/t_{rf}$. In this work we used $t_{rf} = 1$ s. Before and after each measurement of the ion of interest, a cyclotron frequency measurement is taken with the reference ion. The reference measurements are linearly interpolated to

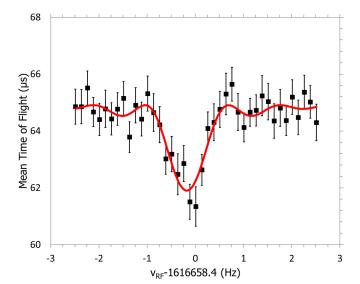


FIG. 2. A $t_{rf} = 1$ s cyclotron frequency resonance curve for ⁸⁹Y (see text for details). The solid red line is a fit to the theoretical line shape [31].

find the cyclotron frequency of the reference ion at the time of the measurement of the ion of interest.

The cyclotron frequency of an ion with a charge-to-mass ratio of q/m is given by the relationship

$$f_c = \frac{qB}{2\pi m}.$$
 (1)

From the cyclotron frequency of the reference ion and the ion of interest, the cyclotron frequency ratio, corresponding to the inverse mass ratio of the ions can be obtained:

$$R = \frac{f_c^{\text{int}}}{f_c^{\text{ref}}} = \frac{m_{\text{ref}}}{m_{\text{int}}}.$$
 (2)

A series of measurements of R are taken to find an average value, \overline{R} . The atomic mass can then be obtained using the known mass of the reference atom and the equation

$$M_{\rm int} = (M_{\rm ref} - m_e)\frac{1}{\bar{R}} + m_e, \qquad (3)$$

where M_{int} is the atomic mass of the atom of interest, M_{ref} is the atomic mass of a well-known reference atom, and m_e is the mass of the electron. We have ignored the binding energy of electrons in singly charged ions as they are $\leq 10 \text{ eV}$, which is much smaller than our statistical uncertainty and therefore negligible. The calculated daughter mass can then be used with the mass of the parent atom to find the Q value of the ground-state to ground-state decay, using the equation

$$Q = (M_p - M_d)c^2, (4)$$

where M_d is the atomic mass of the daughter (corresponding to M_{int} for ⁸⁹Y and ¹³⁹La measured here) and M_p is the atomic mass of the parent (⁸⁹Sr and ¹³⁹Ba taken from the AME2016).

III. RESULTS AND DISCUSSION

The average cyclotron frequency ratios, \bar{R} , can be found in Table I. These ratios have had small corrections applied to

TABLE I. Measured cyclotron frequency ratios for ⁸⁹Y⁺ and ¹³⁹La⁺ ions against their reference ions. *N* is the number of individual ratio measurements contributing to the average, \bar{R} . The uncertainties for \bar{R} , shown in parentheses, have been inflated by the Birge ratio, BR, when BR > 1.

No.	Ion pair	Ν	BR	R
(i)	⁸⁹ Y ⁺ / ⁸⁷ Rb ⁺	66	1.2	0.977 541 739 2(56)
(ii)	⁸⁹ Y ⁺ / ⁸⁵ Rb ⁺	44	1.1	0.955 075 250 9(56)
(iii)	¹³⁹ La ⁺ / ¹³⁶ Xe ⁺	66	1.3	0.978 408 760 7(47)

them to correct for the $\Delta R/\Delta m = 2 \times 10^{-10}$ per u shift to the ratio that occurs in our system when measuring nonmass doublets [24]. The uncertainties have been inflated by the Birge ratio [32] to allow for potential systematic uncertainties that may not have been accounted for.

The ratios in Table I were used to obtain absolute atomic masses for 89 Y and 139 La. The mass excesses were then calculated using the equation

$$ME = (M_{\rm int} - A) \times 931\,494.0954(57)(\rm keV/c^2)/u,$$
 (5)

where A is the mass number of the atom of interest and the conversion factor is from Ref. [33]. The results are listed in Table II and are compared with the values from the AME2016 [17]. The mass differences are also shown in Fig. 3. There is a 2.8 keV/ c^2 reduction in the ⁸⁹Y mass excess obtained in this work compared to the AME2016. In the AME, the ⁸⁹Y mass value was obtained mainly from a neutron capture measurement linking it to ⁹⁰Y, which is then linked to ⁹⁰Zr through a ⁹⁰Y β -decay measurement. The mass of ⁹⁰Zr was measured directly at LEBIT [24].

In the case of ¹³⁹La there is a 4.0 keV/ c^2 increase in the mass excess value from this work compared to the AME2016. The mass value of ¹³⁹La in the AME is not based on a direct measurement, but through a β -decay measurement that links it to the mass of ¹³⁹Ba and through a network of neutron capture, β -decay, and α -decay measurements, which eventually link it to ¹⁶³Dy and ¹⁶³Ho, for which precise Penning trap measurements have been performed [34]. In a previous measurement campaign we performed a direct measurement of the mass of ¹³⁸La and found a +5.8 keV/ c^2 discrepancy compared to the AME2016 [28]. ¹³⁸La was determined in the AME2016 mainly via a ¹³⁸La(d, p)¹³⁹La reaction measurement with an uncertainty of \approx 3 keV. Hence, our results for the two lanthanum isotopes are consistent with the ¹³⁸La(d, p)¹³⁹La

TABLE II. Mass excesses for 89 Y and 139 La obtained in the work along with results from the AME2016 [17] and the difference $\Delta ME = ME_{LEBIT} - ME_{AME}$

Isotope	Ref.	This work (keV/c ²)	AME2016 (keV/c ²)	$\frac{\Delta ME}{(keV/c^2)}$
⁸⁹ Y	⁸⁷ Rb ⁸⁵ Rb	$-87\ 710.67(0.47)$ $-87\ 711.78(0.49)$	-87 708.4(1.6)	-2.3(1.7) -3.4(1.7)
¹³⁹ La	Ave.	$-87\ 711.21(0.34)$ $-87\ 222.15(0.62)$	-87 226.2(2.0)	-2.8(1.6) 4.0(2.1)

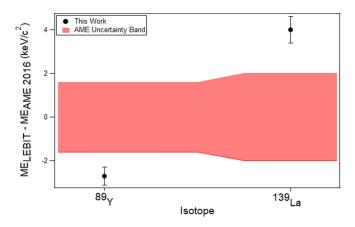


FIG. 3. The mass excesses measured in this work. The red bands show the AME2016 uncertainty and the black dots are the measured values.

measurement being correct, and the ¹³⁹La mass in AME2016 being off by $4 \text{ keV}/c^2$.

Using our new atomic masses for ⁸⁹Y and ¹³⁹La along with masses for ⁸⁹Sr and ¹³⁹Ba from AME2016, we obtain new ground-state to ground-state Q values, Q_{GS} , which are listed in Table III. We also list the energy of the potential ultralow Q-value decay daughter state and the calculated Q value for the ultralow decay branch from

$$Q_{UL} = Q_{GS} - E^*. ag{6}$$

For the decay of ⁸⁹Sr to ⁸⁹Y, the *Q* value was increased by 2.8 keV. The new value of 1502.20 keV is still less than the ⁸⁹Y $3/2^-$ excited state energy of 1507.4 keV. With $Q_{UL} = -5.20(0.37)$ keV, it can now be said definitively that the $3/2^-$ excited state is not a candidate for ultralow *Q*-value decay. We note that the mass of ⁸⁹Sr is known to be 0.09 keV/ c^2 via an (n, γ) measurement that links it to ⁸⁸Sr, which has been measured precisely using Penning trap mass spectrometry [28].

For the decay of ¹³⁹Ba to ¹³⁹La, the Q value was decreased by 4 keV. The new value of 2308.37 keV is now substantially less than the 2313 keV excited state of ¹³⁹La. With $Q_{UL} =$ -4.6(1.2) keV, it can now be said definitively that the 2313 keV excited state is not energetically viable for ultralow Qvalue decay. However, the $1/2^+$ excited state of ¹³⁹La, with an energy of 2310(19) keV and $Q_{UL} = -1.6(19.0)$ keV, still has too large of an uncertainty for any definitive claims to be made. The energy of this excited state will need to be measured to a higher precision to determine if it is a candidate for an ultralow Q-value β decay. The mass of ¹³⁹Ba is known to 0.32 keV/ c^2 via an (n, γ) measurement linking it to ¹³⁸Ba.

TABLE III. Q values based on the absolute mass measurements in Table II and Eq. (4). The column E^* gives the energy of the excited state of the daughter nucleus. The result for the ultralow Q-value decay branch is calculated as $Q_{UL} = Q_{GS} - E^*$.

Parent	Daughter	Q_{GS} keV	E^* keV	Q_{UL} keV
⁸⁹ Sr	⁸⁹ Y	1502.20(0.35)	1507.4(0.1)	$-5.20(0.37) \\ -1.6(19.0) \\ -4.6(1.2)$
¹³⁹ Ba	¹³⁹ La	2308.37(0.68)	2310(19)	
¹³⁹ Ba	¹³⁹ La	2308.37(0.68)	2313(1)	

In Ref. [28] we also performed a direct measurement of the mass of ¹³⁸Ba, which was in excellent agreement with the AME2016 result. The mass of ¹³⁸Ba was derived in the AME2016 from an (n, γ) measurement linking it to ¹³⁷Ba the same series of measurements linking ¹³⁸Ba and ¹³⁹Ba. This chain of measurements is ultimately anchored to ¹³⁶Xe and ¹³³Cs, for which precise atomic mass measurements have been performed. Hence, there is good reason to accept the AME2016 ¹³⁹Ba mass.

IV. CONCLUSION

Using Penning trap mass spectrometry, the mass excess of 89 Y was measured to be -87711.21(0.34) keV/ c^2 and the mass excess of 139 La was measured to be -87222.15(0.62) keV/c^2 . These are the first Penning trap mass spectrometry measurements of either isotope. The new masses were used to calculate the β -decay Q values for ⁸⁹Sr \rightarrow ⁸⁹Y and ¹³⁹Ba \rightarrow ¹³⁹La. The O value for ⁸⁹Sr was found to be 1502.20(0.35) keV and the Q value for ¹³⁹Ba was found to be 2308.37(0.68) keV. Both have had their uncertainties reduced by more than a factor of two. For the decay of ⁸⁹Sr, the potential ultralow Q-value decay channel to the $3/2^-$ state in ⁸⁹Y at 1507.4 keV has been refuted. For the decay of ¹³⁹Ba, one potential ultralow *O*-value decay channel to the 2313 keV level in ¹³⁹La with unknown J^{π} has been refuted. However, the $1/2^+$ excited state in¹³⁹La, currently measured to be 2310(19)keV, is still a candidate. More precise measurements of the excitation energy of ¹³⁹La will be necessary to determine whether or not the β decay of ¹³⁹Ba to this state is an ultralow Q-value decay candidate.

ACKNOWLEDGMENTS

This research was supported by Michigan State University and the Facility for Rare Isotope Beams and the National Science Foundation under Contracts No. PHY-1102511 and No. PHY1307233. This material is based upon work supported by the US Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC0015927.

- M. T. Mustonen and J. Suhonen, J. Phys. G: Nucl. Part. Phys. 37, 064008 (2010).
- [3] C. M. Cattadori, M. D. Deo, M. Laubenstein, L. Pandola, and V. I. Tretyak, Nucl. Phys. A 748, 333 (2004).
- [2] J. Suhonen and M. Mustonen, Prog. Part. Nucl. Phys. 64, 235 (2010).
- [4] C. M. Cattadori, M. De Deo, M. Laubenstein, L. Pandola, and V. I. Tretyak, Phys. At. Nucl. 70, 127 (2007).

- [5] J. Suhonen, Phys. Scr. 89, 054032 (2014).
- [6] J. Kopp and A. Merle, Phys. Rev. C 81, 045501 (2010).
- [7] V. A. Zheltonozhsky, A. M. Savrasov, N. V. Strilchuk, and V. I. Tretyak, Europhys. Lett. 121, 12001 (2018).
- [8] J. Blachot, Nucl. Data Sheets 104, 967 (2005).
- [9] G. Audi, A. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003).
- [10] J. S. E. Wieslander, J. Suhonen, T. Eronen, M. Hult, V.-V. Elomaa, A. Jokinen, G. Marissens, M. Misiaszek, M. T. Mustonen, S. Rahaman, C. Weber, and J. Äystö, Phys. Rev. Lett. 103, 122501 (2009).
- [11] B. J. Mount, M. Redshaw, and E. G. Myers, Phys. Rev. Lett. 103, 122502 (2009).
- [12] E. Andreotti, M. Hult, R. González de Orduña, G. Marissens, J. S. Elisabeth Wieslander, and M. Misiaszek, Phys. Rev. C 84, 044605 (2011).
- [13] M. Haaranen and J. Suhonen, Eur. Phys. J. A 49, 93 (2013).
- [14] M. Mustonen and J. Suhonen, Phys. Lett. B 703, 370 (2011).
- [15] M. T. Mustonen and J. Suhonen, AIP Conf. Proc. 1304, 401 (2010).
- [16] N. D. Gamage, R. Bhandari, M. H. Gamage, R. Sandler, and M. Redshaw, Hyp. Int. 240, 43 (2019).
- [17] M. Wang, G. Audi, F. Kondev, W. Huang, S. Naimi, and X. Xu, Chin. Phys. C 41, 030003 (2017).
- [18] R. Ringle, S. Schwarz, and G. Bollen, Int. J. Mass Spec. 349-350, 87 (2013).
- [19] C. Izzo, G. Bollen, S. Bustabad, M. Eibach, K. Gulyuz, D. J. Morrissey, M. Redshaw, R. Ringle, R. Sandler, S. Schwarz, and A. A. Valverde, Nucl. Instrum. Meth. Phys. Res. B 376, 60 (2016).
- [20] M. Redshaw., G. Bollen, M. Brodeur, S. Bustabad, D. L. Lincoln, S. J. Novario, R. Ringle, and S. Schwarz, Phys. Rev. C 86, 041306(R) (2012).
- [21] S. Bustabad, G. Bollen, M. Brodeur, D. L. Lincoln, S. J. Novario, M. Redshaw, R. Ringle, and S. Schwarz, Phys. Rev. C 88, 035502 (2013).

- [22] S. Bustabad, G. Bollen, M. Brodeur, D. L. Lincoln, S. J. Novario, M. Redshaw, R. Ringle, S. Schwarz, and A. A. Valverde, Phys. Rev. C 88, 022501(R) (2013).
- [23] D. L. Lincoln, J. D. Holt, G. Bollen, M. Brodeur, S. Bustabad, J. Engel, S. J. Novario, M. Redshaw, R. Ringle, and S. Schwarz, Phys. Rev. Lett **110**, 012501 (2013).
- [24] K. Gulyuz, J. Ariche, G. Bollen, S. Bustabad, M. Eibach, C. Izzo, S. J. Novario, M. Redshaw, R. Ringle, R. Sandler, S. Schwarz, and A. A. Valverde, Phys. Rev. C 91, 055501 (2015).
- [25] M. Eibach, G. Bollen, K. Gulyuz, C. Izzo, M. Redshaw, R. Ringle, R. Sandler, and A. A. Valverde, Phys. Rev. C 94, 015502 (2016).
- [26] N. D. Gamage, G. Bollen, M. Eibach, K. Gulyuz, C. Izzo, R. M. E. B. Kandegedara, M. Redshaw, R. Ringle, R. Sandler, and A. A. Valverde, Phys. Rev. C 94, 025505 (2016).
- [27] R. M. E. B. Kandegedara, G. Bollen, M. Eibach, N. D. Gamage, K. Gulyuz, C. Izzo, M. Redshaw, R. Ringle, R. Sandler, and A. A. Valverde, Phys. Rev. C 96, 044321 (2017).
- [28] R. Sandler, G. Bollen, J. Dissanayake, M. Eibach, K. Gulyuz, A. Hamaker, C. Izzo, X. Mougeot, D. Puentes, F. G. A. Quarati, M. Redshaw, R. Ringle, and I. Yandow, Phys. Rev. C 100, 014308 (2019).
- [29] Espi metals, http://www.espimetals.com
- [30] G. Gräff, H. Kalinowsky, and J. Traut, Zeit. Phy. A 297, 35 (1980).
- [31] M. König, G. Bollen, H.-J. Kluge, T. Otto, and J. Szerypo, Int. J. Mass. Spectrom. Ion Process 142, 95 (1995).
- [32] R. T. Birge, Phys. Rev. 40, 207 (1932).
- [33] P. J. Mohr, D. B. Newell, and B. N. Taylor, J. Phys. Chem. Ref. Data 45, 043102 (2016).
- [34] S. Eliseev, K. Blaum, M. Block, S. Chenmarev, H. Dorrer, C. E. Düllmann, C. Enss, P. E. Filianin, L. Gastaldo, M. Goncharov, U. Köster, F. Lautenschläger, Y. N. Novikov, A. Rischka, R. X. Schüssler, L. Schweikhard, and A. Türler, Phys. Rev. Lett. 115, 062501 (2015).