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Nuclear dipole response in the finite-temperature relativistic time-blocking approximation
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Background: The radiative neutron capture reaction rates of the r-process nucleosynthesis are immensely
affected by the microscopic structure of the low-energy spectra of compound nuclei. The relativistic (quasi-
particle) time-blocking approximation has successfully provided a good description of the low-energy strength,
in particular, the strength associated with pygmy dipole resonance, describing transitions from and to the nuclear
ground state. The finite-temperature generalization of this method is designed for thermally excited compound
nuclei and has the potential to enrich the fine structure of the dipole strength, especially in the low-energy region.
Purpose: To formulate the thermal extension of RTBA, i.e., finite-temperature relativistic time-blocking
approximation (FT-RTBA) for the nuclear response, and to implement it numerically for calculations of the
dipole strength in medium-light and medium-heavy nuclei.
Methods: The FT-RTBA equations are derived using the Matsubara Green’s function formalism. We show
that with the help of a temperature-dependent projection operator on the subspace of the imaginary time it is
possible to reduce the Bethe-Salpeter equation for the nuclear response function to a single frequency variable
equation also at finite temperatures. The approach is implemented self-consistently in the framework of quantum
hadrodynamics and keeps the ability of connecting the high-energy scale of heavy mesons and the low-energy
domain of nuclear medium polarization effects in a parameter-free way.
Results: The method was applied to the medium-light 48Ca, 68Ni, and to the medium-heavy 100,120,132Sn nuclei.
The excitation energies E∗ of the considered compound nuclei were calculated and found to increase quickly
starting from temperatures 0.5 � T � 1.0 MeV. The nucleonic single-particle energies and occupancies change
accordingly because of the increasing diffuseness of the Fermi-Dirac distribution with the temperature increase.
The dipole response of these nuclei was computed in the FT-RTBA and compared to the finite-temperature
relativistic random-phase approximation (RPA). It was found that the giant dipole resonance (GDR) undergoes
additional fragmentation (i) due to the thermal unblocking of the transitions between single-particle states located
on the same side of the Fermi surface and (ii) because of the general reinforcement of the particle-vibration
coupling with the temperature growth. The low-energy part of the dipole strength distribution is moderately
enhanced at temperatures T � 4.0 MeV and increases dramatically above this temperature range. The width
of the strength distribution grows rapidly with temperature at T � 1.0 MeV. The energy-weighted sum rule
in a wide finite-energy interval remains nearly flat as the temperature increases. The traditional view of the
pygmy dipole resonance (PDR) as an oscillation of the weakly bound neutron excess against the isospin-saturated
core is nearly maintained up to the temperature T = 5.0 MeV and changes to the GDR-like pattern above this
temperature. The collective behavior of the PDR disappears in the range of temperatures 1.0 � T � 5.0 MeV
and restores beyond this range which might be, however, already beyond the limit of existence of the nuclei.
Conclusions: We present a consistent microscopic theory and a numerically stable and executable calculation
scheme for computing the nuclear response at finite temperature taking into account the PVC spreading
mechanism, in addition to the Landau damping. The presented calculations of the dipole response within a
self-consistent relativistic framework reveal that, although the Landau damping plays the leading role in the
temperature evolution of the strength distribution, (i) at moderate temperatures the PVC effects remain almost as
strong as at T = 0 and (ii) at high temperatures they are tremendously reinforced because of the formation of the
new collective low-energy modes. In the dipole channel, the latter effect is responsible for the “disappearance”
of the high-frequency GDR or, in other words, brings the GDR to the low-energy domain.
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I. INTRODUCTION

The isovector giant dipole resonance (IV GDR) in highly
excited nuclei is mainly observed in heavy-ion fusion
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reactions [1,2]. In the reactions induced by heavy-ion
collisions, the fusion between a target of heavy atomic nuclei
and a heavy-ion projectile takes place for a long time and a
compound nucleus is formed as an intermediate state. During
the formation of the compound nucleus, the mean field of the
system is established in a very short time and the excitation
energy is distributed uniformly among all the single-particle
degrees of freedom. Since the time required for the system to
achieve the thermal equilibrium is short (∼10−22 s) compared
to the typical time it takes to decay by particle and γ -ray
emission (∼10−19–10−9 s), one can apply the equilibrium sta-
tistical mechanics to describe the hot nucleus in its intermedi-
ate states. The nuclear temperature T hence is assigned using
the definition of microcanonical ensemble and related to the
excitation energy E∗ as E∗ ≈ aT 2, where a ≈ A/k MeV−1 is
the level density parameter, k = 8–12 MeV, and A is the mass
number [2]. In the Steinwedel-Jensen hydrodynamical model,
the IV GDR can be understood as a coherent oscillation of
protons against neutrons in the dipole pattern. The general
features of the IV GDR built on the excited states can be
summarized as follows [1]: (i) The energy-weighted sum rule
(EWSR) is independent of temperature T and spin angular
momentum J; (ii) the centroid energy can be parameterized
as EGDR = 18A−1/3 + 25A−1/6 MeV and is independent of
temperature T and spin angular momentum J; (iii) the width
grows with temperature T and spin angular momentum J .

The temperature dependence of the high-energy part of the
GDR above the neutron emission threshold was extensively
studied experimentally in the past [3–8], see also a relatively
recent review [9]. In later studies of the dipole response of
both ground and excited states of nuclear systems, a concen-
tration of electric dipole strength has been observed in the
low-energy region [10], being most prominent in neutron-rich
nuclei. The distribution of E1 strength below the GDR region
is usually classified as pygmy dipole resonance (PDR), which,
according to the Steinwedel-Jensen hydrodynamical model,
originates from the coherent oscillation of the neutron excess
against the isospin-saturated core. Some microscopic models
also favor for a collective nature of the PDR which forms
at a sufficient amount of the excess neutrons [11,12]. There
are two important physical aspects related to the study of the
PDR. First, the structure of the PDR can significantly enhance
the neutron-capture reaction rates of rapid neutron-capture
nucleosynthesis (or r-process) [13–17], which is responsible
for the formation of chemical elements heavier than iron [18].
Second, the PDR can be related to the isovector components
of effective nuclear interactions and to the equation of state
(EOS) of nuclear matter [11,12]. The total PDR strength
can provide an experimental constraint on the neutron skin
thickness and, in turn, on the symmetry energy of the EOS,
which is a key ingredient to study dense astrophysical objects,
such as neutron stars [10].

An accurate theoretical description of response of com-
pound nuclei, or nuclei at finite temperature, is an arduous
task. In the past, the multipole response of hot nuclei has
been studied theoretically within several frameworks, such
as finite-temperature random-phase approximation (FT-RPA)
using schematic models [19–24] or FT-RPA with separable
forces for deformed rotating nuclei [25,26]. Approaches be-
yond FT-RPA include spreading mechanisms and are repre-

sented by the finite-temperature nuclear field theory (NFT),
which takes into account the coupling between nucleons and
low-lying vibrational modes [27,28], the collision-integral ap-
proach [29,30], and the quasiparticle-phonon model (QPM),
which operates by the phonon-phonon coupling, formulated
as thermofield dynamics [31]. On the other hand, phenomeno-
logical treatment of thermal shape fluctuations and of the
particle evaporation have enabled a good description of the
overall temperature evolution of the GDR [32–36].

The finite-temperature Hartree-Fock-Bogoliubov
(FTHFB) equations were derived in Ref. [37] and applied
for solving the two-level model in Ref. [19]. The finite-
temperature quasiparticle random-phase approximation
(FT-QRPA) equations were derived based on FTHFB theory
and solved for a schematic model to calculate the GDR
response of hot spherical nuclei [38]. Shortly after that, the
formalism was applied successfully to hot rotating nuclei in
Ref. [39]. The continuum FT-RPA [40] and FT-QRPA [41,42]
were successfully applied to various calculations of dipole
and quadrupole response of medium-mass nuclei. Later it
was realized that thermal continuum effects may play the
major role in explaining the enhancement of the low-energy
dipole strength [43] observed in experiments [44–46]. More
recently, realistic self-consistent approaches in the framework
of the relativistic FT-RPA [47] and nonrelativistic Skyrme
FT-QRPA [48] became available for systematic studies of
atomic nuclei across the nuclear chart.

The approaches like RPA and QRPA are commonly clas-
sified as the one-loop approximation because they sum only
simple ring diagrams. However, correlations beyond this ap-
proximation are known to be very important for accurate
description of the nuclear response. The above-mentioned nu-
merical implementations of the finite-temperature approaches
beyond the relativistic (quasiparticle) time-blocking approx-
imation [27,28,30,31] are rather limited and mainly focused
on the GDR’s width problem while the details of the strength
distribution, especially of the low-energy strength, are barely
addressed. These details, however, become increasingly im-
portant now in the context of astrophysical modeling. Be-
sides that, the results of these approaches are, in some as-
pects, controversial, although the general framework is, in
principle, well established [49,50]. These drawbacks may
be related to limited computational capabilities, the use of
too simplified nucleon-nucleon interactions and lack of self-
consistency. In the present work we aim at building a self-
consistent microscopic approach to the finite-temperature nu-
clear response which (i) is based on the high-quality effective
meson-exchange interaction, (ii) takes into account spreading
mechanisms microscopically, (iii) is numerically stable and
executable, and (iv) allows for systematic studies of both low-
and high-energy excitations and deexcitations of compound
nuclei in a wide range of mass and temperatures. For this
purpose, we generalize the response theory developed since
the late 2000s [51–54] in the relativistic framework of quan-
tum hadrodynamics for the case of zero temperature. This
approach is based on the covariant energy density functional
with the meson-nucleon interaction [55,56] and applies the
Green’s function formalism and the time-blocking approxima-
tion [57] for the time-dependent part of the nucleon-nucleon
interaction in the correlated medium.
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The time-blocking approximation was formulated origi-
nally in Ref. [57] as a nonperturbative approach to the nuclear
response beyond RPA. It is based on the time projection
technique within the Green function formalism, which allows
for decoupling of configurations of the lowest complexity
beyond 1p1h (one-particle-one-hole), such as 1p1h⊗phonon
(particle-hole pair coupled to a phonon), from the higher-order
ones. This approximation has solved a few conceptual
problems at ones: the resulting response function satisfies the
general quantum field theory requirements on its analytical
properties (locality and unitarity), reduces the Bethe-Salpeter
equation to a one-frequency variable equation and ensures a
stable numerical scheme for realistic calculations. The method
was applied systematically in nuclear structure calculations as
an extension of the Landau-Migdal theory for nonsuperfluid
nuclear systems [58] and later generalized for superfluid
ones [59,60]. It has been supplemented by the subtraction
procedure introduced in analogy with those of quantum
electrodynamics, which enables one to avoid double counting
of the particle-vibration coupling (PVC) in the frameworks
based on phenomenological mean fields or effective energy
density functionals [60,61]. Since then the time-blocking
approximation is used consistently in nonrelativistic
[62–66] and relativistic [51–54,67–69] nuclear structure
calculations. The method is systematically improvable and
admits extensions which include time-reversed PVC loops as
complex ground state correlations [58,59,69] and higher-order
configurations [70].

At zero temperature the inclusion of the PVC effects in the
time-blocking approximation leads to a consistent refinement
of the calculated spectra in both neutral [10,16,17,53,54,
71–77] and charge-exchange [67–69,78–80] channels, as
compared to the (Q)RPA approaches, due to the spreading
effects. In this work we adopt the Matsubara Green’s function
formalism for the finite-temperature generalization of the
relativistic time-blocking approximation (RTBA) [51]. The
first results obtained within the finite-temperature RTBA (FT-
RTBA) were presented in Ref. [81] and here we follow up
this article with a more detailed formalism and an extended
discussion.

The article is organized as follows. A brief overview of the
grand-canonical ensemble is given in Sec. II A. In Sec. II B,
we review the zero-temperature relativistic mean-field (RMF)
theory in detail and generalize it for finite temperature.
Section II C is devoted to the general relations defining the
finite-temperature response function, while Sec. II D intro-
duces the finite-temperature time-blocking approximation to
the particle-vibration coupling amplitude. Extraction of the
transition densities is discussed in Sec. II E. In Sec. III,
we describe details of the numerical implementation of the
developed method and discuss the results of the calculations.
The conclusions and outlook are presented in Sec. IV.

II. FORMALISM

A. Grand-canonical ensemble

The grand-canonical ensemble represents possible states of
an open system which can exchange the energy as well as
particles with a reservoir and which is characterized by such

thermodynamical variables as temperature T and chemical
potential μ. For the equilibrium distribution of these states the
grand potential [37,38,82]

� = E − T S − μN (1)

is minimal, i.e., δ� = 0. A positive definite density operator
ρ̂ is introduced as:

ρ̂† = ρ̂ and Trρ̂ = 1, (2)

where the symbol Tr represents a summation of all diagonal
elements of the matrix or matrices under the operation, and
the summation includes all possible numbers of particles of
all kinds and all possible states of these particles. In terms
of the density operator ρ̂, the average energy E , the average
particle number N , and the entropy S of the system can be
determined as

E = 〈Ĥ〉 = Tr(ρ̂Ĥ ), (3)

N = 〈N̂〉 = Tr(ρ̂N̂ ), (4)

S = 〈−k ln ρ̂〉 = −kTr(ρ̂ ln ρ̂ ), (5)

where k is the Boltzmann’s constant. From the last three
equations and the constraint Trρ̂ = 1, the minimization of
grand potential � leads to

Tr{δρ̂[Ĥ − μN̂ + kT (ln ρ̂ + 1)]} = 0. (6)

Since δρ̂ is arbitrary, the last equation and the constraint
Trρ̂ = 1 gives the solution for the density operator ρ̂ of the
form

ρ̂ = Z−1e−(Ĥ−μN̂ )/kT , (7)

Z = Tr[e−(Ĥ−μN̂ )/kT ], (8)

where Z is the grand partition function. The thermal average
of an operator Ô then reads:

〈Ô〉 = Tr(ρ̂Ô ) = Z−1Tr[e−(Ĥ−μN̂ )/kT Ô]. (9)

Given the grand-canonical partition function Z , several ther-
modynamic quantities can be obtained as follows [82]:

� = −kT ln Z = −PV, (10)

E = −∂ ln Z

∂β

∣∣∣∣
z,V

, (11)

N = z
∂ ln Z

∂z

∣∣∣∣
β,V

, (12)

S = 1

T
[E − μN − �], (13)

where z = eμ/kT is the fugacity and β = 1/kT . In the follow-
ing we take the value of k = 1.

B. Relativistic mean-field theory at zero and finite temperatures

We start with the Lagrangian density of quantum hadrody-
namics [55,83,84]:

L = ψ (iγ μ∂μ − M )ψ + 1
2

(
∂μσ∂μσ − m2

σ σ 2)
− 1

2

(
1
2�μν�

μν − m2
ωωμωμ

)− 1
2

(
1
2

�Rμν �Rμν − m2
ρ �ρμ�ρμ

)
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− 1
4 FμνFμν − ψ�σσψ − ψ�μ

ωωμψ − ψ ��μ
ρ �ρμψ

−ψ�μ
e Aμψ − U (σ ), (14)

where M is the mass of the nucleon, ψ is the nucleonic field,
σ is the scalar σ meson, ma (a = σ, ω, ρ) are meson masses,
and the tensors �μν , �Rμν , and Fμν represent the ω meson, ρ

meson, and the electromagnetic field, respectively,

�μν = ∂μων − ∂νωμ, (15)

�Rμν = ∂μ�ρν − ∂ν �ρμ, (16)

Fμν = ∂μAν − ∂νAμ. (17)

We use the arrow to denote isovectors and bold letters to
indicate vectors in three-dimensional space. The Greek in-
dices run over the components in Minkowski space: 0, 1,
2, and 3, where 0 represents the timelike component and
the other denote the spacelike components. We also apply
the Einstein summation convention, i.e., summation over the
repeated indices is implied. The meson-nucleon vertices �σ ,
�μ

ω , ��μ
ρ , and photon-nucleon vertex �μ

e read

�σ = gσ , �μ
ω = gωγ μ, ��μ

ρ = gργ
μ�τ ,

�μ
e = 1

2 (1 + τ3)eγ μ, (18)

where ga (a = σ, ω, ρ) and e are the corresponding coupling
constants. The nonlinear σ self-interaction term U (σ ), follow-
ing Ref. [85], reads:

U (σ ) = 1
3 g2σ

3 + 1
4 g3σ

4. (19)

The corresponding Euler-Lagrange equations are, for the nu-
cleonic fields:[

iγμ∂μ − M −
∑

m

�mφm(r, t )

]
ψ (r, t ) = 0, (20)

where m = {σ, ω, ρ, e}, �m = {�σ , �μ
ω, ��μ

ρ , �μ
e }, φm =

{σ, ωμ, �ρμ, Aμ}, and for the meson and electromagnetic
fields:(

� + m2
σ

)
σ (r, t ) = −ψ (r, t )�σ ψ (r, t ) − dU (σ )

dσ
, (21)(

� + m2
ω

)
ωμ(r, t ) = ψ (r, t )�μ

ωψ (r, t ), (22)(
� + m2

ρ

)
�ρμ(r, t ) = ψ (r, t )��μ

ρ ψ (r, t ), (23)

�Aμ(r, t ) = ψ (r, t )�μ
e ψ (r, t ), (24)

where

� := ∂μ∂μ = ∂2

∂t2
− ∇2 (25)

is the d’Alembertian operator and we have imposed the
Lorenz gauge condition:

∂μωμ(r, t ) = 0, ∂μ�ρμ(r, t ) = 0, ∂μAμ(r, t ) = 0. (26)

To solve the time-dependent self-consistent field equations,
i.e., Eqs. (20)–(24), directly is a very nontrivial task. The
leading approximation implies that the meson field and the
electromagnetic field operators are replaced by their expecta-
tion values in the nuclear ground state, which constitutes the

relativistic mean-field (RMF) approximation. As a result, the
nucleons move independently in the classical meson fields.
In this work, we will use the RMF as a basis for the nuclear
response calculations by means of the solution of the Bethe-
Salpeter equation, where we approximately restore the time
dependence neglected in the RMF.

The corresponding covariant energy density functional
(CEDF) is given as

ERMF[ρ̂, φ]

= 〈�|ĤRMF|�〉
= Tr[(α · p + βM + β�mφm)ρ̂]

+ 1

2

∫
d3r

[
σ̇ 2 + (∇σ )2 + m2

σ σ 2]
− 1

2

∫
d3r

[
ω̇ jω̇ j + (∇ωμ) · (∇ωμ) + m2

ωωμωμ

]
− 1

2

∫
d3r

[
�̇ρ j �̇ρ j + (∇�ρμ) · (∇�ρμ) + m2

ρ �ρμ�ρμ

]
− 1

2

∫
d3r[Ȧ j Ȧ j + (∇Aμ) · (∇Aμ)]

+
∫

d3rU (σ ), (27)

where β = γ 0, α = βγ , and the latin index j denotes only
the spacelike components. To obtain Eq. (27), we have
considered the zero components of the vector fields, i.e.,
ω0(r), �ρ0(r), A0(r), being static or time independent. This
consideration is valid for the case of heavy mesons and
long-wave photons, for which the one-meson and one-photon
exchange potentials are nearly time independent and take the
forms of static Yukawa and Coulomb potentials, respectively
[83,86]. The trace in Eq. (27) represents a sum over Dirac in-
dices of the density matrix ρ̂ and an integral in the coordinate
space, and we have used the mean-field approximation for the
meson and electromagnetic fields:

〈�|φm|�〉 = φm, 〈�|φmâ†
k′ âk|�〉 = φm〈�|â†

k′ âk|�〉. (28)

The finite-temperature generalization of the RMF theory
can be established using the general prescription given in
Sec. II A. Minimization of the grand potential (1) with the
CEDF of Eq. (27) leads to the single-particle density operator
of the form:

ρ̂ = e−(Ĥ −μ ˆN )/T

Tr[e−(Ĥ −μ ˆN )/T ]
, (29)

where the Hamilton operator Ĥ is given by

Ĥ = α · p + β[M + �mφm(r, t )]. (30)

The expression of operator Ĥ can be simplified further for
the stationary solutions:

ψk (r, t ) = ψk (r)e−iεkt , (31)

where εk is the single-particle energy of the state k. The Dirac
equation (20) now becomes

ĥDψk (r) = εkψk (r), (32)
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where ĥD is the Dirac Hamiltonian:

ĥD = α · p + β[M + �̃(r)], (33)

and �̃(r) is the static RMF self-energy (mass operator):

�̃(r) =
∑

m

�mφm(r). (34)

Further, we assume the time-reversal symmetry of the RMF,
so that the current densities are equal to zero and, therefore,
the spatial components of the meson and electromagnetic
fields vanish. Furthermore, the isospin τ3 is supposed to be a
good quantum number, so that the only nonzero component of
�ρ0 is ρ0

3 . Thus, the static RMF self-energy is decomposed into
the scalar �̃s(r) and the vector timelike �̃0(r) components as
follows:

�̃s(r) = gσ σ (r), (35)

�̃0(r) = β
[
gωω0(r) + 1

2 (1 + τ3)eA0(r) + gρτ3ρ
0
3

]
. (36)

The nonvanishing meson and electromagnetic fields satisfy
the following equations:(−∇2 + m2

σ

)
σ (r) = −gσ ρs(r) − dU (σ )

dσ
, (37)(−∇2 + m2

ω

)
ω0(r) = gωρv (r), (38)(−∇2 + m2

ρ

)
ρ0

3 (r) = gρρ3(r), (39)

−∇2A0(r) = eρc(r), (40)

where ρs, ρv, ρ3, and ρc, respectively, are the scalar, baryon,
isovector, and charge densities:

ρs(r, t ) =
∑

k�

ρ�kψk (r)ψ�(r)ei(εk−ε� )t , (41)

ρv (r, t ) =
∑

k�

ρ�kψ
†
k (r)ψ�(r)ei(εk−ε� )t , (42)

ρ3(r, t ) =
∑

k�

ρ�kψ
†
k (r)τ3ψ�(r)ei(εk−ε� )t , (43)

ρc(r, t ) =
∑

k�

ρ�kψ
†
k (r)

1

2
(1 + τ3)ψ�(r)ei(εk−ε� )t . (44)

At zero temperature, the single-particle density matrix ρ�k =
δ�k for states |h〉 below the Fermi level and zero otherwise.
Therefore, the densities (41)–(44) reduce to:

ρs(r) =
A∑

k=1

ψk (r)ψk (r), (45)

ρv (r) =
A∑

k=1

ψ
†
k (r)ψk (r), (46)

ρ3(r) =
A∑

k=1

ψ
†
k (r)τ3ψk (r), (47)

ρc(r) =
A∑

k=1

ψ
†
k (r)

1

2
(1 + τ3)ψk (r). (48)

Under the above-mentioned assumptions the operator Ĥ
becomes the Dirac Hamiltonian ĥD which, in the basis of
Eq. (32), can be written as

ĥD =
∑

k

εkâ†
k âk, (49)

while the total particle number operator ˆN can be expressed
as follows:

ˆN =
∑

k

â†
k âk . (50)

From the last two equations, we obtain the grand partition
function Z :

Z =
∏

k

[1 + ze−εk/T ] (51)

and the mean value of the operator ˆN :

N = 〈 ˆN 〉 =
∑

k

nk, (52)

while the Fermi-Dirac occupation number nk of the state k
reads:

nk (T ) = n(εk, T ) = 1

1 + e(εk−μ)/T
, (53)

where
∑

k nk = A with A being the total number of nucleons.
From Eqs. (50) and (52) we can obtain that

〈â†
k âk〉 = nk . (54)

At finite temperature, the single-particle density matrix ρk�

becomes [37,87]

ρk� = Tr[ρ̂â†
� âk] = 〈â†

� âk〉 = δ�knk (55)

and the densities (41)–(44) reduce to the following set:

ρs(r) =
∑

k

nkψk (r)ψk (r), (56)

ρv (r) =
∑

k

nkψ
†
k (r)ψk (r), (57)

ρ3(r) =
∑

k

nkψ
†
k (r)τ3ψk (r), (58)

ρc(r) =
∑

k

nkψ
†
k (r)

1

2
(1 + τ3)ψk (r). (59)

In the present work we will deal with spherical nuclei,
which implies spherical symmetry, so that the spinor ψk (r) is
specified by the set of quantum numbers k = {(k), mk}, where
(k) = {nk, jk, πk, τk}. Here nk is the radial quantum number,
jk, mk are the angular momentum quantum number and its z
component, respectively, πk is the parity, and τk is the isospin.
Taking into account the spin s and isospin t variables, the
Dirac spinor ψk (r, s, t ) takes the form [51]:

ψk (r, s, t ) =
[

f(k)(r)�lk jkmk (ϑ, ϕ, s)
ig(k)(r)�l̃k jkmk

(ϑ, ϕ, s)

]
χτk (t ), (60)

where the orbital angular momenta of the large and small
components, i.e., lk and l̃k , respectively, are related to the
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parity πk as follows:

lk = jk + 1
2 , l̃k = jk − 1

2 for πk = (−1) jk+ 1
2

lk = jk − 1
2 , l̃k = jk + 1

2 for πk = (−1) jk− 1
2 (61)

f(k)(r) and g(k)(r) are radial wave functions, and �l jm(ϑ, ϕ, s)
is the spin-angular part:

�l jm(ϑ, ϕ, s) =
∑
msml

〈
1
2 mslml | jm

〉
Ylml (ϑ, ϕ)χms (s). (62)

C. Finite-temperature response function

The main observable under consideration will be the
strength function which describes the probability distribution
of nuclear transitions under a weak perturbation induced by
an external field V̂ 0. At zero temperature, it is defined as [58]:

S(ω) =
∑
n>0

[|〈n|V̂ 0†|0〉|2δ(ω − ωn)

−|〈n|V̂ 0|0〉|2δ(ω + ωn)], (63)

where ωn = En − E0 is the excitation energy with respect to
the ground state energy E0. The states |n〉 and the energies En

are the exact eigenstates and eigenvalues of the many-body
Hamiltonian Ĥ characterized by a set of quantum numbers n.
As possible external fields V̂ 0 we will consider operators of
the one-body character:

V̂ 0 =
∑
k1k2

V 0
k1k2

â†
k1

âk2 . (64)

The transition density between the ground state and the ex-
cited state n is given by:

ρn0
k1k2

= 〈n|â†
k1

âk2 |0〉, (65)

which differs by the complex conjugation from that of
Ref. [51]. At zero temperature, the response function R(ω),
defined as [58]

Rk1k2,k3k4 (ω) =
∫ ∞

−∞

dε

2π i
Rk1k2,k3k4 (ω, ε)

=
∑
n>0

(
ρn0∗

k2k1
ρn0

k4k3

ω + ωn + iδ
− ρn0

k1k2
ρn0∗

k3k4

ω − ωn + iδ

)
,

δ → +0, (66)

completely determines the strength function S(ω) via:

S(ω) = 1

π
lim

�→+0
Im�pp(ω + i�), (67)

where the polarizability �pp(ω) is defined as the double con-
volution of the full response function R(ω) with the external
field V̂ 0:

�pp(ω) =
∑

k1k2k3k4

V 0∗
k2k1

Rk1k2,k3k4 (ω)V 0
k4k3

. (68)

The quantity � in Eq. (67) is a finite imaginary part of
the energy variable, which is commonly used as a smearing
parameter related to the finite experimental resolution and
missing microscopic effects.

The strength function at finite temperature is defined
as [39]

S̃(E ) =
∑

i f

pi|〈 f |V̂ 0†|i〉|2δ(E − E f + Ei ) ≡ S+(E ), (69)

where f denotes the set of final states and i stands for possible
initial states distributed with the probabilities pi:

pi = e−Ei/T∑
j e−Ej/T

. (70)

Using the principle of detailed balance, for the emission
strength function we have:

S−(E ) =
∑

i f

pi|〈 f |V̂ 0|i〉|2δ(E + E f − Ei ) = e−E/T S+(E ),

(71)
so that the strength function S̃(E ) becomes

S̃(E ) = 1

1 − e−E/T
[S+(E ) − S−(E )]

= lim
�→+0

1

π

1

1 − e−E/T
Im

⎡⎣∑
i f

pi

⎧⎨⎩ |〈 f |V̂ 0|i〉|2
E + E f − Ei + i�

− |〈 f |V̂ 0†|i〉|2
E − E f + Ei + i�

⎫⎬⎭
⎤⎦. (72)

In terms of the finite-temperature response function (δ →
+0):

Rk1k2,k3k4 (E ) =
∑

i f

pi

{ 〈 f |â†
k4

âk3 |i〉〈i|â†
k1

âk2 | f 〉
E + E f − Ei + iδ

− 〈 f |â†
k1

âk2 |i〉〈i|â†
k4

âk3 | f 〉
E − E f + Ei + iδ

}
, (73)

the strength function S̃(E ) can be expressed as

S̃(E ) = 1

1 − e−E/T
S(E ), (74)

S(E ) = lim
�→+0

1

π
Im

∑
k1k2k3k4

V 0∗
k2k1

Rk1k2,k3k4 (E + i�)V 0
k4k3

.

(75)

The factor [1 − exp(−E/T )]−1 is, thereby, the new feature
which is inherent for the finite-temperature strength function.
In particular, it influences the low-energy behavior of S̃(E ),
in addition to the appearance of new poles in the response
function, and makes the zero-energy limit of S̃(E ) finite at
T > 0, in contrast to that of the spectral density S(E ), whose
zero-energy limit is zero at all temperatures.

In analogy to the case of zero temperature [58], the spectral
representation of the finite-temperature response function can
be defined as

Rk1k2,k3k4 (ωn) := T
∑

�

Rk1k2,k3k4 (ωn, ε�), (76)
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via the solution of the Bethe-Salpeter equation (BSE) in the
particle-hole (ph) channel:

Rk1k2,k3k4 (ωn, ε�)

= R0
k1k2,k3k4

(ωn, ε�) −
∑

k5k6k7k8

R0
k1k2,k5k6

(ωn, ε�)

× T
∑
�′

Uk5k6,k7k8 (ωn, ε�, ε�′ )Rk7k8,k3k4 (ωn, ε�′ ), (77)

where R0
k1k2,k3k4

(ωn, ε�) = −Gk3k1 (ωn + ε�)Gk2k4 (ε�) is the un-
correlated particle-hole response, G is the exact one-body
Matsubara Green’s function, and U is the nucleon-nucleon
interaction amplitude. In this work we will consider nuclear
response in the particle-hole channel, so that, accordingly,
U will be the particle-hole (direct-channel) interaction. In
the following, where there is no need of specifying the basis
indices and energy arguments, we will use relations in the
operator form. In particular, the BSE (77) reads:

R = R0 − R0U R, (78)

with R0 = −G G . The Matsubara frequencies ωn, ε�, and
ε�′ are discrete variables defined as ωn = 2nπT , ε� = (2� +
1)πT , and ε�′ = (2�′ + 1)πT , where n, �, and �′ are integer
numbers. The Green’s function G satisfies the Dyson equation

Gk1k2 (ε�) = G 0
k1k2

(ε�) +
∑
k3k4

G 0
k1k3

(ε�)�k3k4 (ε�)Gk4k2 (ε�), (79)

where G 0 is the unperturbed one-body Matsubara Green’s
function and � is the self-energy (mass operator). In the gen-
eral equation of motion (EOM) approach [49,50,88], the self-
energy � decomposes into the static and the time-dependent
parts, and the latter translates to the energy-dependent term in
the energy domain:

�(ε) = �̃ + �e(ε), (80)

where �e represents the energy-dependent, in general, nonlo-
cal self-energy. It is convenient to introduce the temperature
mean-field Green’s function G̃ , such as

G̃ = G 0 + G 0�̃G̃ , G = G̃ + G̃ �eG . (81)

In the imaginary-time τ (0 < τ < 1/T ) representation, the
temperature mean-field Green’s function G̃ reads [87]:

G̃ (2, 1) =
∑

σ

G̃ σ (2, 1), (82)

G̃ σ (2, 1) = −σδk1k2 n[−σεk1 , T ]e−(εk1 −μ)τ21θ (στ21), (83)

where τ21 = τ2 − τ1 (−1/T < τ21 < 1/T ), θ (τ ) is the Heav-
iside step-function, and each number index represents all
single-particle quantum numbers and imaginary-time vari-
able: 1 = {k1, τ1}. The index σ = +1(−1) denotes the re-
tarded (advanced) component of G̃ and n(εk1 , T ) is the Fermi-
Dirac occupation number (53). The Fourier transformation
with respect to the imaginary time [87] gives the mean-field
Matsubara Green’s function in the domain of the discrete
imaginary energy variable:

G̃k2k1 (ε�) = 1

2

∫ 1/T

−1/T
dτ21eiε�τ21 G̃ (2, 1) = δk1k2

iε� − εk1 + μ

= δk1k2 G̃k1 (ε�). (84)

g g†
2 3 1

(a)

g†2

3

1g

(b)

FIG. 1. Diagrammatic representation of �e for (a) σ = +1 and
(b) σ = −1. Straight lines represent one-fermion propagators, circles
denote the particle-phonon coupling vertices, and the wiggly lines
correspond to the phonon propagators.

As it is shown in the EOM approach [88], the Dyson
equation for the single-particle Green’s function with the
exact self-energy cannot be reduced to the closed form. The
time-dependent part of the self-energy involves the knowledge
about the three-body Green function, whose EOM can be
further generated, but includes higher-order fermionic prop-
agators. A factorization of the three-body Green function
into the one-body and two-body propagators allows for a
truncation of the problem at the two-body level [88,89].
Thus, the energy-dependent mass operator �e(ε) includes,
in the leading approximation, the single-particle propagator
contracted with the particle-hole and particle-particle (pp)
response (correlation) functions, as shown diagrammatically
in Fig. 1. These correlated ph and pp pairs are identified with
phonons propagating in the nuclear medium. The poles of the
phonon propagators ωm, together with the particle-phonon,
or particle-vibration, coupling vertices gm are, in general,
extracted from the self-consistent solutions of the particle-
hole and particle-particle response equations of the type (77).
In the leading approximation we can neglect the retardation
effects in these internal correlation functions, i.e., take the
solutions of the RPA type. This approximation will be con-
sidered in the present work. Further approximation neglects
the contributions of pairing, charge-exchange and spin-flip
vibrations, which are proven to be minor. The procedure of
including higher-order effects was outlined in Ref. [70] and
will be considered numerically elsewhere.

The finite-temperature phonon propagator is defined as
[87]:

Dm(ωn) =
∑

σ

σ

iωn − σωm
, (85)

where m labels the complete set of the phonon quantum
numbers, in particular, ωm is the real phonon frequency. The
analytical form of the mass operator �e shown in Fig. 1 reads:

�e
k1k2

(ε�) = −T
∑
k3,m

∑
�′

G̃k3 (ε�′ )
∑

σ

σgm(σ )∗
k1k3

gm(σ )
k2k3

iε� − iε�′ − σωm
,

(86)

where we define the vertices gm(σ ) as [51,57]:

gm(σ )
k1k2

= δσ,+1gm
k1k2

+ δσ,−1gm∗
k2k1

. (87)
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The phonon vertices gm
k1k2

are, in the leading approximation,

gm
k1k2

=
∑
k3k4

Ũk1k2,k3k4ρ
m
k3k4

, (88)

where

Ũk�,k′�′ = δ�̃k′�′

δρk�

(89)

is the effective meson-exchange interaction in the static
approximation and ρm are the transition densities of the
phonons. The summation over �′ in Eq. (86) can be trans-
formed into a contour integral following the technique of
Ref. [90]. Thus, the final expression for the mass operator �e

reads:

�e
k1k2

(ε�) =
∑
k3,m

{
gm∗

k1k3
gm

k2k3

N (ωm, T ) + 1 − n(εk3 , T )

iε� − εk3 + μ − ωm

+ gm
k3k1

gm∗
k3k2

n(εk3 , T ) + N (ωm, T )

iε� − εk3 + μ + ωm

}
, (90)

where N (ωm, T ) is the occupation number of mth phonon with
frequency ωm:

N (ωm, T ) = 1

eωm/T − 1
. (91)

Similarly to the mass operator �, the interaction amplitude U
has two terms, i.e., the static relativistic mean-field part Ũ and
energy-dependent part U e. The energy-dependent interaction
amplitude U e, which satisfies the finite-temperature dynami-
cal consistency condition, analogously to the T = 0 case [58],

�e
k1k2

(ε� + ωn) − �e
k1k2

(ε�)

= T
∑
k3k4

∑
�′

U e
k2k1,k4k3

(ωn, ε�, ε�′ )

×[G̃k3k4 (ε�′ + ωn) − G̃k3k4 (ε�′ )
]
, (92)

takes the form

U e
k1k2,k3k4

(ωn, ε�, ε�′ )

=
∑

m

gm
k4k2

gm∗
k3k1

iε� − iε�′ + ωm
−
∑

m

gm∗
k2k4

gm
k1k3

iε� − iε�′ − ωm
. (93)

Similarly to our treatment of the Dyson equation (79), we
can solve the BSE (77) in two steps. First, we calculate the

correlated propagator Re from the BSE,

Re = −G G + G G U eRe. (94)

Second, we solve the remaining equation,

R = Re − ReŨ R, (95)

to obtain the full response R. In the approaches based on the
well-defined mean field, such as the RMF, it is convenient to
use the mean-field basis which diagonalizes the mean-field
one-fermion Green’s function G̃ defined by Eq. (81). Then,
the equation for Re can be formulated in terms of G̃ :

Re = R̃0 − R̃0W eRe, (96)

where

R̃0 = −G̃ G̃ , (97)

W e = W e − �e�e, (98)

W e = U e + G̃ −1�e + �eG̃ −1. (99)

The diagrammatic representation of Eq. (96) is shown in
Fig. 2.

D. Finite-temperature time-blocking approximation:
“Soft” blocking

As the equation (96) has the singular kernel, it cannot be
solved directly in its present form. The time-blocking approx-
imation proposed originally in Ref. [57] for the case of T = 0
and adopted for the relativistic framework in Refs. [51,52]
allows for a reduction of the BSE to one energy variable
equation with the interaction kernel where the internal energy
variables can be integrated out separately. The main idea of
the method is to introduce a time projection operator into the
integral part of the BSE for the correlated propagator Re. This
operator acting on the uncorrelated mean-field propagator in
the second term on the right-hand side of Eq. (96) brings it to
a separable form with respect to its two energy variables, see
Ref. [58] for details. The analogous imaginary-time projection
operator for the finite temperature case would look as follows:

�(12, 34) = δσk1 ,−σk2
θ (σk1τ41)θ (σk1τ32); (100)

however, it turns out that at T > 0 it does not lead to a similar
separable function in the kernel of Eq. (96).

Re = − + Re

1

2

3

4

+

G

G

G

G

U e Re

G

G

Σe

G−1

+ Re

G

G Σe

G−1

− Re

G

G Σe

Σe

FIG. 2. Bethe-Salpeter equation for the correlated propagator Re in the diagrammatic representation.
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In order to reach the desired separable form, we found that
the imaginary-time projection operator has to be modified as
follows:

�(12, 34; T )

= δσk1 ,−σk2
θ
(
σk1τ41

)
θ
(
σk1τ32

)[
n
(
σk1εk2 , T

)
θ
(
σk1τ12

)
+ n

(
σk2εk1 , T

)
θ
(
σk2τ12

)]
, (101)

i.e., it should contain an additional multiplier with the depen-
dence on the diffuse Fermi-Dirac distribution function, which
turns to unity in the T = 0 limit at the condition σk1 = −σk2 .

Acting by the projection operator �(12, 34; T ) on the
components of R̃0(12, 34) = −G̃ (3, 1)G̃ (2, 4), we construct
an operator D̃ of the form

D̃ (12, 34)

= �(12, 34; T )R̃0(σk1 σk2 )(12, 34)

= −δσk1 ,−σk2
G̃ σk1 (3, 1)G̃ σk2 (2, 4)θ

(
σk1τ41

)
θ
(
σk1τ32

)
×[n(σk1εk2 , T

)
θ
(
σk1τ12

)+n
(
σk2εk1 , T

)
θ
(
σk2τ12

)]
(102)

and make a substitution

R̃0 → D̃ (103)

in the second term of Eq. (96). In Eq. (102), σk = +1(−1) for
particle (hole). The Kronecker δ δσk1 ,−σk2

constraints the pos-
sible combinations of (σk1 , σk2 ) to be (+1,−1) and (−1,+1).
A pair of state {k1, k2} is considered as a ph (hp) pair if the
energy difference εk1 − εk2 is larger (smaller) than zero. The
replacement of R̃0 by D̃ corresponds to the elimination of the
processes with configuration more complex than ph⊗phonon
ones, in analogy to the case of T = 0 [58]. Thus, in the leading
approximation, we keep the terms with ph and ph⊗phonon
configurations and neglect terms with higher configurations
including −�e�e in Eq. (96). As a result, the equation for the

correlated propagator Re takes the form

Re(12, 34) = R̃0(12, 34) +
τ∑

5678

D̃ (12, 56)[U e(56, 78)

+ G̃ −1(7, 5)�e(6, 8)

+�e(7, 5)G̃ −1(6, 8)]Re(78, 34), (104)

in the imaginary-time representation, where the summations
imply integrations over the time arguments:

τ∑
12..

=
∑

k1k2...

∫ 1/T

0
dτ1dτ2 · · · . (105)

After the 3-Fourier transformation with respect to the
imaginary time,

Re
k1k2,k3k4

(ωn, ε�, ε�′ )

= 1

8

∫ 1/T

−1/T
dτ31dτ21dτ34ei(ωnτ31+ε�τ21+ε�′ τ34 )Re(12, 34),

(106)

the summation over the fermionic discrete variables � and �′,

Re
k1k2,k3k4

(ωn) = T 2
∑

�

∑
�′

Re
k1k2,k3k4

(ωn, ε�, ε�′ ), (107)

and the analytical continuation to the real frequencies, we
obtain

Re
k1k2,k3k4

(ω) = R̃0
k1k2,k3k4

(ω) −
∑

k5k6,k7k8

R̃0
k1k2,k5k6

× (ω)�k5k6,k7k8 (ω)Re
k7k8,k3k4

(ω), (108)

where the spectral representation of the uncorrelated propaga-
tor is

R̃0
k1k2,k3k4

(ω) = −δk1k3δk2k4

n
(
εk2 , T

)− n
(
εk1 , T

)
ω − εk1 + εk2

(109)

and the particle-vibration coupling amplitude is

�k1k2,k3k4 (ω) = δσk1 ,−σk2
σk1

n
(
εk4 , T

)− n
(
εk3 , T

) ×
∑
k5k6m

∑
ηm=±1

ηmζ
mηm

k1k2,k5k6
ζ

mηm∗
k3k4,k5k6

×
[
N (ηmωm, T ) + n

(
εk6 , T

)][
n
(
εk6 − ηmωm, T

)− n
(
εk5 , T

)]
ω − εk5 + εk6 − ηmωm

, (110)

where we have defined the phonon vertex matrices ζ mηm as

ζ
mηm

k1k2,k5k6
= δk1k5 gm(ηm )

k6k2
− gm(ηm )

k1k5
δk6k2 . (111)

It can be verified that the hp components of particle-vibration
coupling amplitude, i.e., �hp,h′ p′ (ω), are connected to the ph
components, i.e., �ph,p′h′ (ω), via

�hp,h′p′ (ω) = �∗
ph,p′h′ (−ω). (112)

Using the shorthand notation, Eq. (108) can be rewritten as

Re = R̃0 − R̃0�Re (113)

and the BSE for the full response function becomes

R = R̃0 − R̃0[Ũ + δ�]R, (114)

where the particle-phonon coupling amplitude is corrected as
follows:

�(ω) → δ�(ω) = �(ω) − �(0), (115)

i.e., by the subtraction of itself at ω = 0. This subtraction is
necessary for the CEDF-based calculations where the static
contribution of the particle-phonon coupling is implicitly
contained in the residual interaction Ũ [51,61].
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E. Strength function and transition densities

In order to obtain the strength distribution we, in fact, do
not necessarily need to know the response function, because
the strength distribution is directly related to the nuclear po-
larizability (68). Thus, instead of solving the equation (114),
we can consider a single or a double convolution of it with the
external field. In particular, it is often useful to consider the
density matrix variation δρ:

δρk1k2 (ω) = −
∑
k3k4

Rk1k2,k3k4 (ω)V 0
k4k3

, (116)

δρ0
k1k2

(ω) = −
∑
k3k4

R̃0
k1k2,k3k4

(ω)V 0
k4k3

, (117)

so that Eq. (114) can be transformed into

δρ(ω) = δρ0(ω) − R̃0(ω)[Ũ + δ�(ω)]δρ(ω). (118)

Thus, the spectral density S(E ) can be expressed as

S(E ) = − 1

π
lim

�→+0
Im

∑
k1k2

V 0∗
k2k1

δρk1k2 (E + i�). (119)

The transition density

ρ
f i
k1k2

= 〈 f |â†
k1

âk2 |i〉 (120)

from the initial |i〉 to the final | f 〉 state can be then related to
the spectral density S(E ) at the energy E = ω f i. In the vicinity
of ω f i the full response function is a simple pole:

R f i
k1k2,k3k4

(ω)|ω≈ω f i ≈ −ρ
f i
k1k2

ρ
f i∗
k3k4

ω − ω f i
, (121)

so that the imaginary part of the matrix element δρk1k2 (ω f i +
i�) takes the form:

Imδρk1k2 (ω f i + i�) = − 1

�
ρ

f i
k1k2

∑
k3k4

ρ
f i∗
k3k4

V 0
k4k3

, (122)

and the spectral density S(ω f i ) is given by

S(ω f i ) = 1

π
lim

�→+0

1

�

∣∣∣∣∣∣
∑
k3k4

ρ
f i∗
k3k4

V 0
k4k3

∣∣∣∣∣∣
2

. (123)

Combining the last two equations, we obtain, in analogy to the
T = 0 case [51], the relation:

ρ
f i
k1k2

= lim
�→+0

√
�

πS(ω f i )
Imδρk1k2 (ω f i + i�), (124)

which allows for an extraction of the transition densities from
a continuous strength distribution. To derive the normalization
of the transition densities, it is convenient to rewrite Eq. (114)
in the form:

[(R̃0)−1 + Ũ + �(ω) − �(0)]R(ω) = 1. (125)

Taking the derivative of Eq. (125) with respect to ω gives

−dR(ω)

dω
= R(ω)

d (R̃0)−1

dω
R(ω) + R(ω)

d�(ω)

dω
R(ω).

(126)

Inserting Eqs. (109) and (121) into Eq. (126), we obtain the
generalized normalization condition

ρ f i∗
[

N − d�(ω)

dω

∣∣∣∣
ω=ω f i

]
ρ f i = 1, (127)

where N is the finite-temperature RPA (FT-RPA) norm:

Nk1k2,k3k4 = δk1k3δk2k4

n
(
εk2 , T

)− n
(
εk1 , T

) . (128)

For the case of the energy-independent interaction, when the
derivative of �(ω) with respect to ω vanishes, we obtain the
FT-RPA normalization:∑

ph

∣∣ρ f i
ph

∣∣2 − ∣∣ρ f i
hp

∣∣2
n(εh, T ) − n(εp, T )

= 1. (129)

III. NUMERICAL DETAILS, RESULTS, AND DISCUSSION

A. Numerical details

In this section, we apply the finite-temperature relativistic
time-blocking approximation developed above to a quantita-
tive description of the IV GDR in the even-even spherical
nuclei 48Ca, 68Ni, and 100,120,132Sn. The general scheme of the
calculations is as follows:

(i) The closed set of the RMF equations, i.e., Eqs. (32),
(37)–(40) with the densities of Eqs. (56)–(59), are
solved simultaneously in a self-consistent way using
the NL3 parameter set [91] of the nonlinear σ model.
Thus, we obtain the temperature-dependent single-
particle basis in terms of the Dirac spinors and the
corresponding single-nucleon energies (32).

(ii) Using the obtained single-particle basis, the FT-RRPA
equations, which are equivalent to Eq. (118) without
the particle-phonon coupling amplitude �(ω), are
solved with the static RMF residual interaction Ũ
of Eq. (89) to obtain the phonon vertices gm and
frequencies ωm. The set of phonons, together with the
single-particle basis, forms the 1p1h⊗phonon config-
urations for the particle-phonon coupling amplitude
�(ω).

(iii) Finally, we solve Eq. (118) and compute the strength
function according to Eq. (74) with the external field
of the electromagnetic dipole character:

V 0
1M = eN

A

Z∑
i=1

riY1M (�i) − eZ

A

N∑
i=1

riY1M (�i ) (130)

corrected for the center-of-mass motion. An alterna-
tive numerical solution in the momentum space is also
implemented. In this case, we first solve Eq. (108)
with �(ω) → δ�(ω) in the basis of Dirac spinors and
then Eq. (95) in the momentum-channel representa-
tion [52]. Coincidence of the two solutions is used for
the testing purposes. The momentum-channel repre-
sentation has the advantage of a faster execution for
large masses and high temperatures, while the Dirac-
space representation allows for a direct extraction of
the transition densities.
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In both representations, the amplitude �(ω) takes the
nonzero values only in a 25- to 30-MeV window with respect
to the particle-hole energy differences. It has been verified by
direct calculations that further extension of this window does
not change noticeably the results for the strength distribu-
tions at the energies below this value. The particle-hole basis
was fixed by the limits εph � 100 MeV and εαh � −1800
MeV with respect to the positive continuum. We have, how-
ever, directly verified that calculations with εph � 300 MeV
eliminate the spurious translational mode completely but
almost do not change the physical states of the excitation
spectra. The values of the smearing parameter 500 and 200
keV were adopted for the calculations of the medium-light
and medium-heavy nuclei, respectively. The collective vi-
brations with quantum numbers of spin and parity Jπ =
2+, 3−, 4+, 5−, 6+ and below 15 MeV were included in the
phonon space. The phonon space was additionally truncated
according to the values of the reduced transition probabilities
of the corresponding electromagnetic transitions: All modes
with the values of the reduced transition probabilities less
than 5% of the maximal one were neglected. Keeping the
last criterion, in particular, lead to a very strong increase
of the number of phonons included in the model space at
high temperatures: At T ≈ 5–6 MeV this number becomes
an order of magnitude larger than at T = 0. This is related to
the fact that at finite temperatures the typical collective modes
lose their collectivity and many noncollective modes appear
due to the thermal unblocking.

B. Thermal mean-field calculations for compound nuclei

The thermal RMF calculations of the excitation energy E∗
as a function of temperature T for compound nuclei 48Ca,
68Ni, and 100,132Sn are illustrated in Fig. 3. Technically, as
it follows from Sec. II B, the effect of finite temperature on
the total energy of a thermally excited nucleus is mainly
induced by the change of the fermionic occupation numbers
from the values of zero and one at T = 0 to the Fermi-Dirac
distribution (53). The fermionic densities of Eqs. (56)–(59)
change accordingly and, thus, affect the meson and photon
fields being the sources for Eqs. (37)–(40). In turn, the
changed meson fields give the feedback on the nucleons, so
that the thermodynamical equilibrium is achieved through
the self-consistent set of the thermal RMF equations. As
the nucleons start to be promoted to higher-energy orbits
with the temperature increase, the total energy should grow
continuously and, in principle, the dependence E∗(T ) has to
be parabolic, in accordance with the noninteracting Fermi gas
behavior. However, the discrete shell structure and especially
the presence of the large shell gaps right above the Fermi
surface in the doubly magic nuclei cause a flat behavior of
the excitation energy until the temperature values become
sufficient to promote the nucleons over the shell gaps. This
effect is clearly visible in Fig. 3 for the doubly magic nuclei
48Ca and 100,132Sn, while it is much smaller in 68Ni which has
an open shell in the neutron subsystem. Otherwise, at T � 1
MeV the thermal RMF E∗(T ) dependencies can be very well
approximated by the parabolic fits providing the level density

0 0.5 1 1.5 2 2.5 3

-600

-580

-560

-540

E
* 

[M
eV

]

E* = a
0
 + aT

2

E* = E
RMF

(T)

0 0.5 1 1.5 2 2.5 3

-840

-820

-800

-780

-760

-740

a
0
 = -591.8 MeV a

0
 = -837.0 MeV

68
Ni

100
Sn

a = 7.39 MeV
-1

a = 11.70 MeV
-1

0 0.5 1 1.5 2 2.5 3
T [MeV]

-420

-400

-380

E
* 

[M
eV

]
E* = a

0
 + aT

2

E* = E
RMF

(T) 

0 0.5 1 1.5 2 2.5 3
T [MeV]

-1120

-1080

-1040

-1000a
0
 = -417.0 MeV a

0
 = -1114.0 MeV

48
Ca

132
Sn

a = 5.80 MeV
-1

a = 15.85 MeV
-1

FIG. 3. The energies of the thermally excited nuclei 48Ca, 68Ni,
and 100,132Sn as functions of temperature: RMF (blue circles) and
parabolic fits (red curves).

parameters which are close to the empirical Fermi gas values
a = A/k, where 8 < k < 12.

C. Isovector dipole resonance in 48Ca, 68Ni, and 100,120,132Sn

The calculated temperature-dependent spectral densities
S(ω) for 48Ca, 68Ni, and 100,120,132Sn nuclei at various tem-
peratures are shown in Figs. 4 and 5, respectively, where we
compare the evolution of the electric dipole spectral density
within FT-RRPA (left panels) and FT-RTBA (right panels).
As the temperature increases, we observe the following two
major effects:

(i) The fragmentation of the dipole spectral density be-
comes stronger, so that the GDR undergoes a con-
tinuous broadening. The increased diffuseness of the
Fermi surface enhances significantly the amount of
thermally unblocked states, especially the ones above
the Fermi energy εF , as shown schematically in Fig. 6.
These states give rise to the new transitions within
the thermal particle-hole pairs p̃h, as follows from
the form of the uncorrelated propagator (109). The
increasing amount of these new pairs reinforces the
Landau damping of the GDR. The spreading width
of the GDR determined by the PVC amplitude of
Eq. (110) also increases because of the increasing role
of the new terms with ηm = −1, in addition to the
terms with ηm = +1 which solely define the PVC at
zero temperature. As these terms are associated with
the new poles, they enhance the spreading effects with
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FIG. 4. Electric dipole spectral density in 48Ca and 68Ni nuclei
calculated within FT-RRPA (left panels) and FT-RTBA (right panels)
at various temperatures. The value of smearing parameter � =
500 keV was adopted in both calculations.

the temperature growth, in addition to the reinforced
Landau damping. At high temperatures T ≈ 5–6 MeV,
when the low-energy phonons develop the new sort of
collectivity, the coupling vertices increase accordingly,
which leads to a reinforcement of the spreading width
of the GDR. This is consistent with the experimen-
tal observations of the “disappearance” of the high-
frequency GDR at temperatures T � 6 MeV reported
in the Ref. [9], while these temperatures might be
at the limits of existence of the considered atomic
nuclei.

(ii) The formation and enhancement of the low-energy
strength below the pygmy dipole resonance. This en-
hancement occurs due to the new transitions within
thermal p̃h pairs with small energy differences. The
number of these pairs increases with the temperature
growth in such a way that at high temperature T ≈
5–6 MeV the formation of new collective low-energy
modes becomes possible. Within our model, these
new low-energy modes are not strongly affected by
PVC. The lack of fragmentation is due to the fact
that for the thermal p̃h pairs with small energy differ-
ences the numerator of Eq. (110) contains the factors
n(εk6 − ηmωm, T ) − n(εk5 , T ) which are considerably
smaller than those for the regular T = 0 ph pairs of
states located on the different sides with respect to
the Fermi surface. Notice that the smallness of this
factor for the p̃h pairs is not compensated by the
denominator n(εk4 , T ) − n(εk3 , T ) which is balanced
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FIG. 5. Same as in Fig. 4 but for 100,120,132Sn nuclei with the
smearing parameter � = 200 keV.

by the numerator of Eq. (109). The inclusion of the
finite-temperature ground state correlations (GSC) in-
duced by the PVC in the particle-phonon coupling
amplitude �(ω) may enforce the fragmentation of the
low-energy peak.

FIG. 6. Emergence of thermally unblocked states below and
above the Fermi energy εF . Here p̃h stands for the thermally un-
blocked hole-hole (hh) and particle-particle (pp) fermionic pairs with
the nonzero values of the uncorrelated propagator (109).
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FIG. 7. The role of the exponential factor: Strength function
S̃(E ) (solid curves) versus spectral density S(E ) (dashed curves) for
the dipole strength in 48Ca (left panel) and 120Sn (right panel).

The trends are similar for the dipole strength in all consid-
ered nuclei shown in Figs. 4 and 5. The open-shell nuclei, such
as 68Ni and 120Sn, are superfluid below the critical tempera-
ture, which is Tc ≈ 0.6�c, where �c is the superfluid pairing
gap. It takes the values �c = 1.6 MeV and �c = 1.1 MeV for
68Ni and 120Sn, respectively, so that the superfluidity already
vanishes at T = 1 MeV in these nuclei. As our approach
does not take the superfluid pairing into account at T > 0, we
cannot track this effect continuously; however, by comparing
the strength distributions at T = 0 and T = 1 MeV for 68Ni
and 120Sn we can see how the disappearance of superfluidity
influences the strength. In the doubly magic nuclei the dipole
strength shows almost no change when going from T = 0 to
T = 1 MeV. This observation is consistent with the thermal
RMF calculations displayed in Fig. 3. As already discussed
above, the presence of the large shell gaps in both neutron
and proton subsystems requires a certain value of temperature
to promote the nucleons over the shell gap. One can see
that this temperature is T ≈ 0.75–1 MeV for the considered
closed-shell nuclei.

Notice that until now we discussed the microscopic spec-
tral density S(E ) without the exponential factor 1/[1 −
exp(−E/T )], which is present in the strength function S̃(E )
(74) due to the detailed balance. This factor does not affect
the GDR region at all temperatures under study; however,
at moderate to high temperatures it enhances noticeably the
low-energy strength, as illustrated in Fig. 7 for the dipole
response of 48Ca and 120Sn. At E = 0 this factor is singular
while the spectral density is equal to zero, so that the total
strength function has, thus, a nontrivial limit at E → 0. As
one can see from Fig. 7, this limit is finite except for the
T = 0 case when the strength function coincides with the
spectral density vanishing at E → 0. In this work we focus
mostly on the features of the spectral density, which is the
zero-temperature analog of the strength function, in order to
resolve clearly the details of the nuclear response at very
low transition energies E without concealing its fine features
by the exponential factor. It can be easily included, for in-
stance, when experimental data on the low-energy response
become available. The important features are, in particular,
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FIG. 8. Left panel: Width of the giant dipole resonance in
120,132Sn as a function of temperature. The experimental values from
Refs. [6,8,92] are shown for 120Sn. Right panel: The EWSR for 48Ca
and 132Sn with respect to the TRK sum rule.

the absence of the spurious translational mode and the clear
zero-energy limit of the spectral density.

The width and the energy weighted sum rules are the
most important integral characteristics of the GDR which
are usually addressed in theoretical and experimental stud-
ies. In particular, they help benchmarking the theoretical
approaches because of their almost model-independent char-
acter. The left panel of Fig. 8 illustrates the evolution of
GDR’s width �(T ) with temperature obtained in FT-RTBA
for 120Sn and 132Sn nuclei together with experimental data
which are available only for 120Sn. The theoretical widths
at T = 0 are taken from our previous calculations [51,52],
respectively. Because of the phase transition in 120Sn at T <

1 MeV, �(T ) has a smaller value at T = 1 MeV than at
T = 0 as the disappearance of the superfluid pairing reduces
the width. As already mentioned, the thermal unblocking
effects do not yet appear at T = 1 MeV in both 120Sn
and 132Sn because of their specific shell structure. For the
protons which form the Z = 50 closed shell and have the
next available orbitals only in the next major shell, T = 1
MeV temperature is not yet sufficient to promote them over
the shell gap with a noticeable occupancy. In the neutron
subsystem, the situation in 132Sn is similar while in 120Sn
the lowest available orbit is the intruder 1h11/2 state where
particles get promoted relatively easily, but after this orbit
there is another shell gap. As a consequence, at T = 1 MeV
there is still no room for the p̃h pair formation and, hence,
for a noticeable thermal unblocking. Thus, our result can
explain the unexpectedly small GDR’s width at T = 1 MeV
reported in Ref. [8], in contrast to the thermal shape fluctua-
tion calculations. After T = 1 MeV in 132Sn and T = 2 MeV

TABLE I. Widths of the giant dipole resonance in 120Sn cal-
culated by fitting the FT-RRPA and FT-RTBA strengths with the
Lorentz distribution within the energy interval 0 � E � 25 MeV.

T (MeV) 0 1.0 2.0 3.0 4.0

� (MeV), FT-RRPA 2.70 2.26 3.09 6.94 14.46
� (MeV), FT-RTBA 4.43 3.08 4.07 8.46 16.92
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FIG. 9. The temperature evolution of the low-energy dipole spec-
tral density in 68Ni calculated within FT-RTBA with the smearing
parameter � = 20 keV.

in 120Sn we obtain a fast increase of �(T ) because of the
formation of the low-energy shoulder by p̃h pairs and due
to a slow increase of the fragmentation of the high-energy
peak emerging from the finite-temperature effects in the PVC
amplitude �(ω). As 132Sn is more neutron-rich than 120Sn,
the respective strength in the low-energy shoulder of 132Sn is
larger, which leads to a larger overall width in 132Sn at tem-
peratures above 1 MeV. The GDR’s widths for T > 3 MeV
in 132Sn and for T > 4 MeV in 120Sn are not presented
because the standard procedure based on the Lorentzian fit of
the microscopic strength distribution fails in recognizing the
distribution as a single peak structure.

The overall agreement of FT-RTBA calculations with data
for the GDR’s width in 120Sn is found very reasonable except

for the temperatures around 2 MeV, possibly due to defor-
mation and shape fluctuation effects, which are not included
in the present calculations. Our results are also consistent
with those of microscopic approach of Ref. [27], which are
available for the GDR energy region at T � 3 MeV, while in
the entire range of temperatures under study �GDR(T ) shows
a nearly quadratic dependence agreeing with the Fermi liquid
theory [93]. Table I shows a comparison of �GDR(T ) in 120Sn
calculated within FT-RRPA and FT-RTBA by fitting the cor-
responding strength distribution by the Lorentzian within the
energy interval 0 � E � 25 MeV. One can see that in both ap-
proaches, after passing the minimum at T = 1 MeV because
of the transition to the nonsuperfluid phase, �GDR(T ) grows
quickly with temperature. The difference between the width
computed in the two models is about 1.0–1.7 MeV at low
temperatures while it increases to ≈2.5 MeV at T = 4 MeV.
It can be concluded that the PVC contribution to the width
evolution is rather minor and the latter occurs mostly due
to the reinforcement of the Landau damping with the tem-
perature growth. Indeed, we could observe from varying the
boundaries of the energy interval, where the fitting procedure
is performed, that the amount of the low-energy strength is
very important for the value of the width.

The right panel of Fig. 8 shows the evolution of the energy-
weighted sum rule for 48Ca and 132Sn nuclei calculated within
FT-RRPA and FT-RTBA in the percentage with respect to
the Thomas-Reiche-Kuhn (TRK) sum rule. The EWSR at
T > 0 can be calculated in full analogy with the case of
T = 0 [38,94]. In our approach, where the meson-exchange
interaction is velocity-dependent, already in RRPA and rela-
tivistic quasiparticle random phase approximation (RQRPA)

FIG. 10. The evolution of the proton and neutron transition densities for the most prominent peaks below 10 MeV in 68Ni and 100Sn within
FT-RTBA. The green dashed lines indicate the rms nuclear radius.
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TABLE II. Major contributions of neutron (n) and proton (p) ph and p̃h configurations to the strongest dipole states below 10 MeV in 68Ni
calculated within FT-RTBA for different temperatures.

68Ni; T = 0; 68Ni; T = 1 MeV; 68Ni; T = 2 MeV; 68Ni; T = 3 MeV;
E = 6.89 MeV E = 7.16 MeV E = 7.70 MeV E = 3.49 MeV

10.3% (2p3/2 → 2d5/2) n 56.8% (2p1/2 → 3s1/2) n 4.9% (1 f5/2 → 2d5/2) n 31.1% (3s1/2 → 3p3/2) n
9.8% (2s1/2 → 2p3/2) p 4.4% (1 f7/2 → 1g9/2) n 3.2% (1 f7/2 → 1g9/2) n 15.7% (2d5/2 → 3p3/2) n
7.1% (1 f7/2 → 1g9/2) p 2.2% (1 f5/2 → 2d5/2) n 2.9% (2p3/2 → 2d5/2) n 0.1% (3s1/2 → 3p1/2) n
6.2% (1 f5/2 → 2d5/2) n 1.4% (1 f7/2 → 1g9/2) p 2.1% (1 f5/2 → 2d3/2) n 0.01% (1 f7/2 → 1g9/2) n
6.1% (1 f7/2 → 1g9/2) n 1.0% (1 f5/2 → 2d3/2) n 1.7% (1 f7/2 → 1g9/2) p 0.01% (1g9/2 → 1h11/2) n
4.6% (1 f5/2 → 2d3/2) n 0.9% (2p3/2 → 3s1/2) n 1.3% (2p1/2 → 2d3/2) n
1.0% (2p1/2 → 2d3/2) n 0.9% (2p1/2 → 2d3/2) n 1.1% (2s1/2 → 2p3/2) p
0.9% (1d3/2 → 2p1/2) p 0.7% (2p1/2 → 4s1/2) n 0.9% (2p3/2 → 3s1/2) n
0.9% (1d3/2 → 2p3/2) p 0.5% (2p3/2 → 2d5/2) n 0.2% (1d3/2 → 2p1/2) p
0.7% (2p3/2 → 3s1/2) n 0.3% (1d3/2 → 2p3/2) p 0.2% (1d3/2 → 2p3/2) p
0.4% (1 f5/2 → 3d3/2) n 0.2% (1d3/2 → 2p1/2) p 0.1% (1 f5/2 → 3d3/2) n
0.3% (2s1/2 → 2p1/2) p 0.1% (2p1/2 → 5s1/2) n
0.2% (2p3/2 → 3d5/2) n
0.2% (1 f5/2 → 3d5/2) n
0.2% (2p3/2 → 2d3/2) n
0.2% (1 f7/2 → 2d5/2) p
0.1% (1 f7/2 → 2d5/2) n

49.2% 69.4% 18.6% 46.92%
68Ni; T = 4 (MeV); 68Ni; T = 5 (MeV); 68Ni; T = 6 (MeV);

E = 2.55 (MeV) E = 3.87 (MeV) E = 3.63 (MeV)

66.1% (2 f7/2 → 2g9/2) n 61.9% (2g9/2 → 2h11/2) n 21.2% (1i11/2 → 1 j13/2) n
5.1% (3p1/2 → 3d3/2) n 3.0% (3 f7/2 → 4d5/2) n 9.5% (2d5/2 → 2 f7/2) p
0.7% (2 f5/2 → 2g7/2) n 0.4% (2g7/2 → 3 f5/2) n 8.8% (1i13/2 → 1 j15/2) n
0.4% (2d3/2 → 3p1/2) n 0.3% (2d3/2 → 2 f5/2) p 3.2% (2d3/2 → 2 f5/2) n
0.1% (1g7/2 → 2 f5/2) n 0.2% (1h11/2 → 1i13/2) n 0.1% (2g9/2 → 3 f7/2) n

0.1% (3d3/2 → 2 f5/2) n

72.4% 65.9% 42.8%

at T = 0 we observe up to 40% enhancement of the TRK sum
rule within the energy regions which are typically studied in
experiments [51,52], in agreement with data. In the resonant
time-blocking approximation without the GSC of the PVC
type the EWSR should have exactly the same value as in RPA
[59] with a little violation when the subtraction procedure
is performed [59,60]. Typically, at T = 0 in the subtraction-
corrected RTBA we find a few percent less EWSR in finite
energy intervals below 25–30 MeV than in RRPA, but this
difference decreases if we take larger intervals. This is due
to the fact that in RTBA the strength distributions are more
spread and if cut, leaves more strength outside the finite
interval. A similar situation takes place at T > 0. Figure 8(b)
shows that the EWSR decreases slowly with the temperature
growth because the entire strength distribution moves down
in energy. In both nuclei, the FT-RRPA and FT-RTBA EWSR
values practically meet at T = 6 MeV when their high-energy
tails become less important.

To gain a better understanding of the formation and en-
hancement of the low-energy strength, we have performed
a more detailed investigation of the dipole strength in the
energy region E < 10 MeV. The dipole strength in 68Ni
calculated at different temperatures with a small value of the
smearing parameter � = 20 keV is displayed in Fig. 9. In the

testing phase, these calculations were used to ensure positive
definiteness of the spectral density as it reflects a very delicate
balance between the self-energy and exchange terms in the
PVC amplitude �(ω). In particular, we found that consistency
between p̃h pairs involved in self-energy and exchange terms
is very important.

The FT-RTBA calculations presented in Fig. 9 resolve
individual states in the low-energy region showing the details
of the evolution of the thermally emergent dipole strength.
In particular, one can trace how the major peak moves to-
ward lower energies and its intensity increases. The pro-
ton and neutron transition densities for the most prominent
peak below 10 MeV are displayed for different temperature
values in Fig. 10 for the neutron-rich 68Ni nucleus and for
the neutron-deficient 100Sn nucleus. In the neutron-rich 68Ni
nucleus proton and neutron transition densities show in-phase
oscillations inside the nucleus while neutron oscillations be-
come absolutely dominant outside for 0 � T � 5 MeV. At
the temperature T = 6 MeV protons and neutrons exhibit
out of phase oscillation which resembles the well-recognized
pattern of the collective giant resonance. Indeed, as it is
shown in Table II below, the low-energy peak at T = 6
MeV has some features of collective nature. The situation
is quite similar in the neutron-deficient 100Sn nucleus, which

024307-15



HERLIK WIBOWO AND ELENA LITVINOVA PHYSICAL REVIEW C 100, 024307 (2019)

exhibits the in-phase oscillations of protons and neutrons
inside the nucleus, but with the dominance of proton os-
cillations in the outer area. Analogously, at T = 6 MeV
one starts to distinguish a GDR-like pattern of the out-of-
phase oscillation in the low-lying state at E = 3.25 MeV. We
also notice that at 3 � T � 6 MeV the oscillations extend to
far distances from the nuclear central region.

In order to have some more insights into the structure of the
new low-energy states, we have extracted the p̃h compositions
of the strongest low-energy states at various temperatures. The
quantities

z f i
ph =

∣∣ρ f i
ph

∣∣2 − ∣∣ρ f i
hp

∣∣2
nh(εh, T ) − np(εp, T )

(131)

are given in Table II in percentage with respect to the
FT-RTBA generalized normalization condition of Eq. (127).
In most of the cases, we omit contributions of less than
0.1%. The bottom line shows the total percentage of pure ph
and p̃h configurations, so that the deviation of this number
from 100% characterizes the degree of PVC, according to
Eq. (127).

We start with the state at E = 6.89 MeV at T = 0 which
shows up as a slightly neutron-dominant state with seven
two-quasiparticle contributions bigger than 1%. This state can
be classified as a relatively collective one. At T = 1 MeV
the 68Ni nucleus becomes nonsuperfluid and one can see that
the strongest low-energy state has a dominant particle-hole
configuration. For the E = 7.70 MeV state at T = 2 MeV
the major contribution comes from the PVC as the particle-
hole configurations sum up to 18.6% only. It is important
to emphasize that the considered peaks at T � 2 MeV are
dominated by the ph transitions of nucleons across the Fermi
surface, while at T � 3 MeV they are mainly composed of
the thermal p̃h transitions between the states above the Fermi
energy. These states are mostly located in the continuum,
which is discretized in the present calculations. Although a
more accurate continuum treatment is necessary to investigate
the low-energy response at finite temperatures [43], as the
large number of the basis harmonic oscillator shells are taken
into account in this work, the discretized description of the
continuum should be quite adequate. Thus, we notice that
at T � 2 MeV the collectivity becomes destroyed by the
thermal effects until it reappears again at T = 6.0 MeV. This
temperature is, however, rather high and can be close to
the limiting temperature which terminates existence of the
nucleus [9].

IV. CONCLUSIONS AND OUTLOOK

We present a finite-temperature extension of the nuclear
response theory beyond the relativistic RPA. In order to
calculate the time-dependent part of the nucleon-nucleon
interaction, which contains coupling between nucleons and
correlated two-nucleon pairs (phonons), we generalize the
time-blocking method developed previously for the zero-
temperature case. The proposed soft blocking applied to the
Matsubara two-fermion propagators allows for ordering the
corresponding diagrams in the imaginary-time domain and,
thus, reduces the Bethe-Salpeter equation for the nuclear
response to a single frequency variable equation.

The method named finite-temperature relativistic time-
blocking approximation was implemented on the base of
quantum hadrodynamics which was thereby extended beyond
the one-loop approximation for finite temperatures. Using
the NL3 parametrization for the covariant energy density
functional, we investigated the temperature dependence of the
dipole response in medium-light 48Ca, 68Ni, and medium-
heavy 100,120,132Sn nuclei. The obtained results are consistent
with the existing experimental data on the GDR’s width
and with the result of Landau theory for the temperature
dependence of the GDR’s width. The calculations extended
to high temperatures explain the critical phenomenon of the
disappearance of the GDR and suggest that the collective mo-
tion may reappear at low frequencies in the high-temperature
regime.

The analytical method presented in this work is of a
general character, so that it can be widely applied to the
response of strongly correlated systems at finite temperature.
The presented numerical implementation of FT-RTBA opens
a way to quantitative systematic studies of excitations and
deexcitations of compound nuclei in a wide energy range.
For an accurate description of the low-energy strength at
the r-process temperature conditions the present version of
FT-RTBA has to be further improved by the inclusion of
continuum effects and ground state correlations associated
with the PVC. Future work will address these issues.
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