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Properties of the relativistic nucleon self-energy decomposition of the symmetry energy as well as the
equation of state (EOS) of pure neutron matter (PNM) are explored systematically within the QCD sum rules
(QCDSR). Our main conclusions are as follows: (1) The five self-energy decomposition terms of the symmetry
energy according to the nucleon Lorentz structure are carefully studied, leading to the conclusion that the
symmetry energy increases as the nucleon sigma term σN increases and the contributions to the symmetry
energy due to the momentum dependence of the self-energies in symmetric nuclear matter (SNM) are very
small compared with those from other decomposition terms. (2) A smaller strange quark mass is found to
generate a larger symmetry energy, and this correlation is useful for understanding the origins of the uncertainties
on the (nucleonic matter) symmetry energy from quark level. (3) The EOS of PNM at low densities can be
effectively approximated by En(ρ ) ≈ EFFG

n (ρ ) + (Mρ/2〈qq〉vac )[(1 − ξ )(σN/2mq) − 5] which depends only on
several physical quantities such as mq, σN and 〈qq〉vac, and this formula already has predictive power and the
results are found to be consistent with those from other celebrated microscopic many-body theories at low
densities. (4) The higher order density terms in quark condensates are shown to be important to describe the
empirical EOS of PNM in the density region around and above nuclear saturation density, and these higher order
density terms are also found to hinder the appearance of chiral symmetry restoration in PNM at high densities.
(5) The symmetry energy is shown to depend strongly on the five-dimensional condensate 〈gsq†σGq〉ρ,δ ,
providing a useful approach to explore the symmetry energy through knowledge on the condensates which
can be extracted from hadronic physics. (6) The twist-4 four-quark condensates are shown to have significant
effects on the EOS of both SNM and PNM but have minor effects on the symmetry energy, and combined
with the analyses on the effects of the higher order density terms in the chiral condensates, three parameter
sets of QCDSR are constructed and they are shown to be able to describe the EOS of PNM and the symmetry
energy within a wide range of densities. Our results in the present work demonstrate that the QCDSR approach
can provide a useful way to understand the properties of dense nucleonic matter from nonperturbative QCD
vacuum.
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I. INTRODUCTION

The investigation of the equation of state (EOS) of isospin
asymmetric nucleonic matter (ANM) from quantum chromo-
dynamics (QCD) or QCD-based effective theories is one of
the long-standing issues in nuclear physics [1,2]. The exact
knowledge on the EOS of ANM provides important informa-
tion on the in-medium nucleon-nucleon effective interactions,
which play a central role, for instance, in understanding
the structure and decay properties of finite nuclei [3–5], the
dynamical processes in nuclear reactions [6–12], the structure
and evolution of neutron stars as well as the mechanism
of core-collapse supernova explosion [13–22], and the grav-
itational waves from binary neutron star merger or black-
hole neutron star merger in the multimessenger era [23–40].
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Conventionally, the EOS of ANM, defined as the binding
energy per nucleon, is expanded around the symmetric nucle-
onic matter (SNM) as E (ρ, δ) ≈ E0(ρ) + Esym(ρ)δ2 + O(δ4)
where ρ = ρn + ρp and δ = (ρn − ρp)/ρ are respectively the
nucleon density and isospin asymmetry of the system in
terms of the neutron and proton densities ρn and ρp. In
the above expansion, E0(ρ) ≡ E (ρ, 0) is the EOS of SNM,
while Esym(ρ) is the nuclear symmetry energy. The symmetry
energy Esym(ρ) can be generally decomposed into kinetic and
potential parts, i.e., Esym(ρ) = Ekin

sym(ρ) + Epot
sym(ρ). Moreover,

the potential part Epot
sym(ρ) can be further decomposed gener-

ally into several terms originating from the Lorentz structure
of the nucleon self-energies [41]. A thorough understanding
of the origin and properties of each part of the symmetry
energy is useful in both nuclear physics and astrophysics [42].
For instance, in simulating heavy-ion reactions using transport
models one needs as an input the potential symmetry energy
of quasinucleons [11,43–48], while the kinetic symmetry
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energy is found to strongly affect the critical formation density
of the resonance state �(1232) in neutron stars [49,50].
Furthermore, it has been widely discussed recently that the
kinetic symmetry energy is closely related to the nucleon-
nucleon short range correlations (SRCs) [51–66], indicating
the very fundamental nature of the symmetry energy. After
hard efforts made in the last few decades, the magnitude of
the total symmetry energy at the nuclear saturation density
ρ0 ≈ 0.16 fm−3 is now best known to be around 32 ± 3 MeV
[20,67–70].

The determination on the EOS of ANM based on the phe-
nomenological approaches such as the nonrelativistic Skyrme-
Hartree-Fock (SHF) models [71–74] and the relativistic mean
field (RMF) models [75–80] has made great success in recent
years. However, the origin of each individual term of the EOS
in these phenomenological approaches is usually blurry. For
example, the contribution from the ρ meson to the symmetry
energy largely depends on whether or not the δ meson and
the cross interactions between the ρ meson and isoscalar
mesons are included in the model for the nonlinear RMF
model [41], indicating that the contribution of the ρ meson
to the symmetry energy is only effective. On the other hand,
from the viewpoint of many body theories [75], the decom-
position and analyses of a quantity via the Green’s functions,
or more precisely, according to the Lorentz structure of the
quantity itself, is physical. In this sense, any effective method,
especially that based on the QCD, encapsulating the proper
Lorentz structure of the nucleon self-energies to investigate
the EOS of ANM will be appealing.

The QCD sum rules (QCDSR) method [81–83] provides
an important nonperturbative QCD approach to explore the
properties of nucleonic matter (see, e.g., Refs. [84]). Intu-
itively, when the QCD coupling constant is small at high
energies/small distances, the theory becomes asymptotically
free, guaranteeing the applicability of perturbative calcula-
tions. As the energy scale decreases, the coupling constant
of the theory becomes large, perturbative methods break
down eventually, and nonperturbative effects emerge. Among
these effects, the most important is the appearance of the
quark/gluon condensates. The QCDSR is actually based on
some duality relations. More specifically, the basic idea of
QCDSR for nucleonic matter calculations [84–108] is to
relate the condensates to the nucleon self-energies using the
operator product expansion (OPE) technique [109], where
information on the nucleon self-energies is introduced via
nucleon-nucleon correlation functions. On the other hand,
the EOS of ANM can be obtained through the self-energy
decomposition by analyzing the general Lorentz structure of
the nucleon self-energies [41]. Within the QCDSR method,
the exact information on the nucleon self-energies and nu-
cleonic matter EOS can thus provide useful constraints on
the in-medium quark/gluon condensates and vice versa. It
should be noted that the in-medium quark condensates pro-
vide an order parameter of spontaneous chiral symmetry
breaking in QCD. Practically, the QCDSR method is ex-
pected to work well at lower densities/momenta where ef-
fects of the complicated and largely unknown high mass-
dimensional condensates as well as continuum effects are not
important.

In this work, we use the QCDSR method to investigate
the EOS of isospin asymmetric nucleonic matter through the
nucleon self-energy decomposition formulas [41] based on the
Hugenholtz–Van Hove (HVH) theorem [110], and especially
focus on the nuclear symmetry energy and the EOS of pure
neutron matter (PNM). It is necessary to point out that the
symmetry energy was also studied recently by the QCDSR
through a specific approach mapping the nucleon self-energies
to the symmetry energy [95]. Moreover, some main results on
the EOS of PNM via the QCDSR were already reported in
Ref. [111], and more details of the calculations in Ref. [111]
will be given in the present work.

Before presenting the details on the QCDSR method and
its application in EOS of ANM, we would like to give a brief
overview of several celebrated or potentially useful QCD-
based approaches to the study on the EOS of ANM. These
approaches include the following. (1) Chiral perturbation the-
ory (ChPT) [112–135]: The basic idea of the ChPT is based on
the general effective field theory [136–138] and the ChPT has
become a well developed tool for systematically dealing with
the EOS, e.g., of PNM [139–151]. However, due to the large
uncertainties, e.g., on the many-nucleon forces [133,134]
and the nature of the method itself, the applicability of this
approach is essentially limited to the relatively low density
region. (2) Purturbative QCD (pQCD) [152–154]: The pQCD
approach is often used to explore the high-density behavior of
the dense nucleonic/quark matter [155–170], where the QCD
coupling constant αs = g2

s/4π is generally small, indicating
the possibility of the perturbative schemes applied in dense
matter at extremely high densities [171,172]. (3) The large
Nc method [173–178]: The QCD becomes solvable when the
color number Nc is large. This is an effective field theory
based on the expansion of N−1

c , and by using the techniques
developed for large Nc theories, information on the in-medium
nucleon self-energies can be obtained [179], which is po-
tentially useful for the further study on nuclear matter EOS.
(4) The method of the Dyson-Schwinger equation (DSE)
[180–190]: The DSE method is one of nonperturbative ap-
proaches, in which the resummation techniques [191–193]
are adopted to make effective approximations to the QCD
Lagrangian. (5) The functional renormalization group (FRG)
approach [194,195]: The FRG method has been applied to
investigate the EOS of ANM [196–199], where the quantum
fluctuations are included nonperturbatively [200–203] via the
renormalization group techniques [195–199]. (6) The Skyrme
model [204]: In the Skyrme model, the nucleons are described
as topological solitons (i.e., skyrmions) in a meson field
theory and thus the nucleon properties in nuclear matter can be
obtained [205,206], which can be further used to obtain a nu-
clear matter EOS [207,208]. (7) Last, but not least, numerical
approaches such as lattice QCD [209–211], quantum Monte
Carlo (QMC) simulations [212,213], and several different
types of ab initio methods [214–216] are important for the
understanding of the root properties of finite nuclei and the
dense nucleonic matter.

Early successes of QCDSR in nucleonic matter calcula-
tions can be traced back to the prediction on the large nucleon
Lorentz covariant self-energies [85]. The present work is a
natural generalization to the investigation on the EOS of
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ANM. Besides the prediction on the EOS of PNM by the
QCDSR method reported earlier [111], as we shall see, the
present results on the nuclear symmetry energy obtained via
the QCDSR method are also found to be consistent with
predictions by other state-of-the-art microscopic many body
theories, indicating that QCDSR can be applied to explore the
EOS of ANM in a quantitative manner. The QCDSR method
thus establishes a connection between the EOS of ANM and
the nonperturbative QCD vacuum.

The paper is organized as follows. Section II gives a gen-
eral description of the EOS of ANM and the Lorentz structure
of nucleon self-energies in ANM. In Sec. III, the physical
foundation of the QCDSR is introduced. In particular, the
techniques on the calculation of Wilson’s coefficients and the
properties of the condensates used in this work are given.
Section IV is devoted to the nucleon mass in vacuum within
the QCDSR method, and the major task of this section is to
determine the Ioffe parameter t through the physical nucleon
mass in vacuum, which is a starting point of the following
investigation on the EOS of ANM. In Sec. V, the self-energy
structure of the symmetry energy is analyzed via the sim-
plified QCDSR, and the high order symmetry energy effects
on the EOS of ANM are briefly discussed. Then Sec. VI
studies these high order symmetry energy effects in some
detail. Sections IV–VI are mainly qualitative, and are included
to reveal some important features on the symmetry energy
and nuclear matter EOS from QCDSR. Several important
analytical expressions are given in these three sections. In
Sec. VII, a full calculation on the EOS of SNM, the sym-
metry energy, and the EOS of PNM is given, where the first
parameter set QCDSR-1 (naive QCDSR) is constructed. In
Sec. VIII, the effects of the higher order density terms in
the chiral condensates on the symmetry energy and the PNM
EOS are explored, and as a result, the second parameter set,
i.e., QCDSR-2, is given. In Sec. IX, the contribution from
the twist-4 four-quark condensates to nucleonic matter EOS
is studied with the third parameter set QCDSR-3 constructed.
Section X gives the summaries and outlook of the work.

II. EOS OF ANM AND NUCLEON SELF-ENERGIES

In this section, we give a general description of the EOS of
ANM and its relation to the in-medium nucleon self-energy
structure in its relativistic form.

A. Definition of EOS of ANM

The EOS of ANM can be obtained through the total en-
ergy density ε(ρ, δ) by E (ρ, δ) = ε(ρ, δ)/ρ − M where M =
0.939 GeV is the nucleon rest mass. Moreover, the E (ρ, δ)
can be expanded as a power series of even-order terms in δ as

E (ρ, δ) ≈ E0(ρ) + Esym(ρ)δ2 + O(δ4), (2.1)

where E0(ρ) is the EOS of SNM, and the symmetry energy
Esym(ρ) is expressed as

Esym(ρ) = 1

2!

∂2E (ρ, δ)

∂δ2

∣∣∣∣
δ=0

. (2.2)

Around the saturation density ρ0, the E0(ρ) can be expanded,
e.g., up to second order in density, as

E0(ρ) ≈ E0(ρ0) + 1
2 K0χ

2 + O(χ3), (2.3)

where χ = (ρ − ρ0)/3ρ0 is a dimensionless variable charac-
terizing the deviations of the density from the saturation point
ρ0. The first term E0(ρ0) on the right-hand side of Eq. (2.3)
is the binding energy per nucleon in SNM at ρ0 and the
coefficient K0 of the second term is

K0 = 9ρ2
0

d2E0(ρ)

dρ2

∣∣∣∣
ρ=ρ0

, (2.4)

which is the so-called incompressibility coefficient of SNM.
Similarly, one can expand the Esym(ρ) around an arbitrary

reference density ρr as (see, e.g., Ref. [217])

Esym(ρ) ≈ Esym(ρr ) + L(ρr )χr + O
(
χ2

r

)
, (2.5)

with χr = (ρ − ρr )/3ρr, and the slope parameter of the nu-
clear symmetry energy at ρr is expressed as

L(ρr ) = 3ρr
dEsym(ρ)

dρ

∣∣∣∣
ρ=ρr

. (2.6)

For ρr = ρ0, the L(ρr ) is reduced to the conventional slope
parameter L ≡ 3ρ0dEsym(ρ)/dρ|ρ=ρ0 .

B. Lorentz structure of nucleon self-energies

For the translational and rotational invariance, parity con-
servation, time-reversal invariance, and hermiticity in the rest
frame of infinite nucleonic matter, the nucleon self-energy
may be written generally in the relativistic case as [75,
218–222]

�(|k|, k0) =�S(|k|, k0) − γμ�
μ(|k|, k0)

=�S(|k|, k0) + γ 0�V(|k|, k0)

+ �γ · k0�K(|k|, k0), (2.7)

where the isospin and density dependence of the nu-
cleon self-energy are suppressed. The quantities �K(|k|, k0),
�S(|k|, k0) and �V(|k|, k0) ≡ −�0(|k|, k0) are Lorentz (ro-
tational) scalar functions of |k| and k0 [the Minkovski metric
is selected as gμν = (+,−,−,−) in the present work], k0 =
k/|k| is the unit vector along the direction of the momentum
k. In the rest frame of infinite nucleonic matter, these invari-
ants can be expressed in terms of k0, |k| (and ρ as well as
isospin δ). The general proof of the decomposition Eq. (2.7)
can be found in Ref. [75].

The effects of interactions between nucleons on the propa-
gation of a nucleon in the medium can be included to all orders
via Dyson’s equation [223], i.e.,

G(k) = G0(k) + G0(k)�(k)G(k), (2.8)

where G0(k) is the noninteracting nucleon Green’s function
(propagator) and � is the proper self-energy. Equations (2.7)
and (2.8) are completely general in the rest frame of infinite
matter (in this case, the nucleon current-density four-vector
has only a timelike nonvanishing component) and in principle
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could be used to determine G exactly. Dyson’s equation (2.8)
can be solved formally, yielding

G−1(k) = γμ[kμ + �μ(k)] − [M + �S(k)]. (2.9)

The location of the poles in G(k) may be specified using the
modified Feynman diagrams approach.

By defining the (Dirac) effective mass as well as the
effective four-momentum of a nucleon, i.e.,

M∗ = M + �S(k), (2.10)

k∗ = k[1 + �K(k)/|k|], (2.11)

e∗ = [k∗,2 + M∗,2]1/2, (2.12)

k∗μ = kμ + �μ(k) ≡ [k0 + �0(k),k∗], (2.13)

one can rewrite the solution of Eq. (2.8) in a compact form,
i.e., G(k) = GF(k) + GD(k), where

GF(k) = γ μk∗
μ + M∗

k∗,2 − M∗,2 + i0+ , (2.14)

and

GD(k) = iπ

e∗ (γ μk∗
μ + M∗)δ(k0 − e)�(kF − |k|). (2.15)

GF and GD are two parts originating from the Pauli exclusion
principle and the propagation of real nucleons in the Fermi sea
in the interacting nucleonic matter, respectively [221,222].

The total single particle energy e can be obtained from
the dispersion relation, i.e., the solution of the following
transcendental equation:

e = [e∗ + �V(k)]k0=e

= [[k + k0�K(|k|, e)]2 + [M + �S(|k|, e)]2]1/2

+ �V(|k|, e), (2.16)

which evidently depends on |k|, the density ρ, and the energy
e itself. The above results are valid for any approximations
to the self-energy in infinite matter. In order to arrive at the
Hartree-Fock approximation, for example, we include in �

only the contributions from tadpole and exchange diagrams
[75,221–223]. Moreover, if the self-energy has no explicit
energy dependence, then one obtains

e(|k|) = [[k + k0�K(|k|)]2 + [M + �S(|k|)]2]1/2 + �V(|k|).
(2.17)

When the above expression is generalized to ANM with any
isospin asymmetry δ, we then have

eJ (ρ, δ, |k|) = [[
k + k0�J

K(ρ, δ, |k|)]2

+ [
M + �J

S(ρ, δ, |k|)]2]1/2 + �J
V(ρ, δ, |k|),

(2.18)

where the isospin and density dependence of the quantity is re-
covered. Due to the general smallness of �J

K(ρ, δ, |k|) [224],
we will neglect this term in the following study. Consequently,
the single nucleon energy is given by

eJ (ρ, δ, |k|) =
√

|k|2 + [
M +�J

S(ρ, δ, |k|)]2 + �J
V(ρ, δ, |k|).

(2.19)

In the present work, the EOS of ANM is obtained by the
formulas based on the Hugenholtz–Van Hove (HVH) theorem
[110]. More specifically [41],

E0(ρ) = 1

ρ

∫ ρ

0
dρ

(
e∗

F + �0
V

) − M, (2.20)

En(ρ) = 1

ρ

∫ ρ

0
dρ

(
e∗

F,n + �n
V

) − M, (2.21)

Esym(ρ) = k2
F

6e∗
F

+ kF

6

(
M∗

0

e∗
F

d�0
S

d|k| + d�0
V

d|k|
)

|k|=kF

+ 1

2

(
M∗

0

e∗
F

�S
sym + �V

sym

)
, (2.22)

where “0” denotes SNM, i.e., �0/n
S(V) is the scalar (vector) self-

energy in SNM/PNM, e∗
F = (M∗,2

0 + k2
F)1/2 = [(M + �0

S)2 +
k2

F]1/2, En is the EOS of PNM with e∗
F,n = (M∗,2

n + k2
F,n)1/2,

here M∗
n is the neutron effective mass in PNM. Moreover,

kF = (3π2ρ/2)1/3 (kF,n = 21/3kF) is the Fermi momentum in
SNM (PNM), �S/V

sym ≡ �S/V
sym,1 is the first-order symmetry self-

energy [41]. The main task of the present work is to explore
the density/momentum dependence of the �J

S/V(ρ, δ, |k|) via
the QCDSR method, and obtain the EOS of SNM, the EOS of
PNM, and the symmetry energy through Eqs. (2.20)–(2.22).
Furthermore, the slope parameter of symmetry energy could
be obtained by Eq. (2.6).

III. FOUNDATION OF QCDSR

In this section, we briefly describe the physical founda-
tion of QCDSR [85–95,99]. We first discuss the QCDSR
in vacuum, which is relatively simple but contains all the
important ingredients of the method. The generalization of
the QCDSR in vacuum to finite densities is then followed.
The quark/gluon condensates used in this work and the fitting
scheme are finally given.

A. QCDSR in vacuum

We start our discussions first by introducing the QCDSR
in vacuum. In this work, AA

λ denotes the gluon field where
A = 1 ∼ 8 is the color index and λ = 0 ∼ 3 is the space-time
index [99,225–228]. The matrix form of the gluon field has
the following structure:

Aμ

ab = AAμtA
ab, (3.1)

where tA = λA/2 and λA’s are the Gell-Mann matrices which
have the following basic properties:

[tA, tB] = i f ABCtC, tr(tA) = 0, tr(tAtB) = 1
2δ

AB, (3.2)

with f ABC being the structure constant of the group SU(3).
The strength tensor for the gluon field is given by

Gμν = GA
μνtA ≡ DμAμ − DνAμ, (3.3)

where Dμ = ∂μ − igsAμ is covariant derivative and gs is the
coupling constant. Another form of the above equation is

Gμν = i

gs
[Dμ,Dν], (3.4)
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and

GA
μν = ∂μAA

μ − ∂νAA
ν + gs f ABCAB

μAC
ν . (3.5)

In order to discuss QCDSR in vacuum, one should intro-
duce appropriate correlation functions of nucleons; here we
adopt [99]

�αβ (q) ≡ i
∫

d4xeiqx〈0|Tηα (x)ηβ (0)|0〉, (3.6)

where q is the momentum transfer between nucleons, |0〉 is
the nonperturbative physical vacuum, ηα is the interpolation
field of nucleons, and α, β are the Dirac spinor index. The
interpolation field for a proton is given by [229]

ηp = εabc
(
uT

aCγμub
)
γ5γ

μdc, (3.7)

where u and d are quark fields and a, b, and c are the color
index. T represents the transpose of the quark field in Dirac
space, and C is the charge conjugation operator. The central
quantity in QCDSR are the spectral functions (densities),

ραβ (q) = 1

2π

∫
d4xeiqx〈0|ηα (x)ηβ (0)|0〉, (3.8)

ρ̃αβ (q) = 1

2π

∫
d4xeiqx〈0|ηβ (0)ηα (x)|0〉. (3.9)

Using the spectral functions ραβ (q) and ρ̃αβ (q), we can
rewrite the correlation function as

�αβ (q) = −
∫ ∞

−∞
dq′

0

[
ραβ (q′)

q0 − q′
0 + i0+ + ρ̃αβ (q′)

q0 − q′
0 − i0+

]
(3.10)

with q′
μ = (q′

0,q). In fact, the spectral functions can always
be written in the following form after inserting a set of
intermediate states:

ραβ = (2π )3
∑

n

δ4(q − Pn)〈0|ηα (0)|n〉〈n|ηβ (0)|0〉. (3.11)

Using δ4(q + Pn) instead of δ4(q − Pn) gives a similar formula
for ρ̃αβ where Pμ

n is the four-momentum of state n.
Lorentz symmetry and parity invariance together mean that

the general structure of ραβ is

ραβ (q) = ρs(q
2)δαβ + ρq(q2)/qαβ

, (3.12)

where ρs and ρq are scalar functions of q. Correspondingly,
we have

�αβ (q) = �s(q
2)δαβ + �q(q2)/qαβ

. (3.13)

In the vacuum, we only need to contain integral for positive
energy (which shall be modified in the finite density case),
where the coefficients are [99]

�i(q
2) =

∫ ∞

0
ds

ρi(s)

s − q2
+ polynomials, i = s, q, (3.14)

with s the threshold parameter (∼M2 for a nucleon). For ex-
ample, the simplest phenomenological nucleon spectral den-
sities take the form ρ

phen
s (s) = Mδ(s − M2) and ρ

phen
q (s) =

δ(s − M2), corresponding to �(q) = −(/q + M )/(q2 − M2 +
i0+), which is the standard nucleon propagator in vacuum, i.e.,
the two-point nucleon-nucleon correlation function.

The other important aspect of QCDSR is the OPE. For two
local operators A and B, we have [109,225,226]

TA(x)B(0) =
∑

n

CAB
n (x, μ)On(0, μ), x → 0, (3.15)

where CAB
n ’s are the Wilson’s coefficients which can be

calculated by standard perturbative methods, and μ is the
renormalization energy scale. In the momentum space, we
then have the correlation function from the OPE side as

�(Q2) =
∑

n

Ci
n(Q2)〈On〉, (3.16)

where Q2 = −q2 and 〈On〉’s are the different types of
quark/gluon condensates. Notice that OPE is only applicable
in the large Q2 region, i.e., in the deep-space-like region.

Physically, there are no priority that the correlation func-
tions from OPE side should be same as these from the
phenomenological side, and they could also be very different
from each other. The basic assumption of QCDSR is that
in some range of q2 these different correlation functions are
physically equivalent. This range of q2, or equivalently, the
range of applicability, is called the QCDSR window. At this
point, it should be pointed out that the QCDSR approach is
usually expected to work well at lower densities/momenta.
The nucleon spectral functions in the nuclear medium are
very complicated, and at low densities/momenta there ex-
ists a very narrow resonance state corresponding to the
nucleon which can be described as a delta function. As
density/momentum increases, continuum excitations emerge
and these high density/momentum states will have increas-
ing importance at high densities/momenta. However, in
QCDSR, the contributions from high order states (e.g., high
density/momentum momentum states) are significantly sup-
pressed by the Borel transformation of correlation functions,
leading to that QCDSR shall be mainly applicable in the low
density/momentum region.

According to the above general analysis of spectral func-
tions, one can write out the general structure of the nucleon
spectral densities as

ρphen
s (s) = λ2Mδ(s − M2) + · · · , (3.17)

ρphen
q (s) = λ2δ(s − M2) + · · · . (3.18)

The delta function indicates that it is a resonance (the nu-
cleon) and the ellipsis denotes high order states. In the above
expressions, λ is the constant related to two physical states,
|0〉 and |q〉 are connected through 〈0|η(0)|q〉 = λu(q) with
q2 = M2 and u(q) the Dirac spinor, s is a threshold parameter.
Correspondingly, the correlation functions are given by

�phen
s (q2) = −λ2 M

q2 − M2 + i0+ + · · · , (3.19)

�phen
q (q2) = −λ2 1

q2 − M2 + i0+ + · · · , (3.20)

which shall be rewritten in a unified form,

�phen(q) = −λ2 /q + M

q2 − M2 + i0+ + · · · . (3.21)
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When the Borel transformation is made on the correlation
functions from both the phenomenological side and the OPE
side, one obtains the QCDSR equations, which connect the
nucleon self-energies appearing on the phenomenological side
and the quark/gluon condensates on the OPE side. Before
giving the Borel transformation of the correlation functions,
we discuss the essential procedures on QCDSR calculations,
as follows:

(1) First, we determine the interpolation field to be studied,
for example, the interpolation field for proton, Eq. (3.7), or the
more general expression,

ηp(x) = 2
[
tηp

1(x) + η
p
2(x)

]
, (3.22)

with two independent terms,

η
p
1(x) = εabc

[
uT

aCγ5db(x)
]
uc(x), (3.23)

η
p
2(x) = εabc

[
uT

aCdb(x)
]
γ5uc(x). (3.24)

In Eq. (3.22), t is a parameter whose natural value is around
−1 [229]. The interpolation field for a proton with t = −1 is
called the Ioffe interpolation field. In Sec. IV, we determine
the t in a self-consistent manner instead of using t = −1. In
order to obtain the interpolation field for the neutron, one just
needs to exchange u and d in Eq. (3.22).

(2) The second step is to determine the tensor structure of
the spectral functions. For instance, there are only “s” and “q”
parts for the nucleon correlation functions in vacuum while a
new term will emerge at finite densities.

(3) Then one writes down the dispersion relations for the
nucleon correlation functions on the phenomenological side,
e.g., Eq. (3.14), which is a fundamental step in QCDSR, and in
the next subsection we give the general correlation functions
for a nucleon at finite densities.

(4) At the same time, one writes down the OPE for the in-
terpolation fields in terms of quark/gluon condensates, where
the central quantities in this step are the Wilson’s coefficients.
Using a perturbative method from standard quantum field
theories will furnish this calculation.

(5) Finally, one makes the Borel transformation on two
types of the correlation functions, i.e., one from the phe-
nomenological side and the other from the OPE side, and then
obtains the QCDSR equations. Solving the QCDSR equations
and analyzing the results is the next procedure in the whole
program.

At the end of this subsection, we discuss the Borel trans-
formation. For any function of the momentum transfer f (Q2),
the Borel transformation

B[ f (Q2)] ≡ f̂ (M 2) (3.25)

is defined through

f̂ (M 2) ≡ lim
Q2, n → ∞
Q2/n = M 2

(Q2)n+1

n!

(
− d

dQ2

)n

f (Q2), (3.26)

where M is the Borel mass. For instance, Borel transforma-
tion of some typical functions is given by

B
[

1

(Q2)k

]
= 1

(k − 1)!(M 2)k−1
, (3.27)

B[(Q2)m] = 0, (3.28)

B
[

1

(Q2)k
ln Q2

]
= 1

(k − 1)!(M 2)k−1

×
⎡⎣ln M 2 − 1

k
− γE +

k∑
j=1

1

j

⎤⎦,

(3.29)

B[(Q2)m ln Q2] = (−1)m+1m!(M 2)m+1, . . . , (3.30)

where m is equal to 0, 1, 2, . . . , k is equal to 1, 2, 3, . . . , and
γE ≈ 0.577 is the Euler constant.

Under Borel transformation, the correlation function (3.14)
becomes

�̂i(M
2) =

∫ ∞

0
dse−s/M 2

ρi(s), i = s, q, (3.31)

where the polynomials in Eq. (3.14) disappear. The disappear-
ance of the polynomials is the most important approximation
made by the Borel transformation. As discussed above, the
high order states, and/or the continuum excitations including
polynomials in Eq. (3.14), become more and more important
at high densities/momenta; the disappearance of the polyno-
mials under Borel transformation would make the physical
predictions eventually incredible at high densities/momenta.
This is the main reason why QCDSR should mainly be
used in low density/momentum region. Moreover, the high-
s states become unimportant due to the suppression factor
e−s/M 2

, and they can be even removed [as the polynomials in
Eq. (3.14)]. As a rough example on the density region above
which the QCDSR should be broken down, we consider the
formation of the � resonance as an excited state in dense
nucleonic matter. As shown in Ref. [49], the formation density
of the first charged state of �(1232) could be smaller than
2ρ0, even to be around the saturation density. Thus it is
conservative to expect that the QCDSR should not be applied
at densities around or larger than 2ρ0. However, a comprehen-
sive analysis of the applicable region of the QCDSR deserves
further work.

B. QCDSR at finite densities

In this subsection, we generalize the QCDSR in vacuum
to finite densities. The nucleon propagator in medium at finite
densities is given by [75,76,78,221,222]

G(q) = −i
∫

d4xeiqx〈�0|Tψ (x)ψ (0)|�0〉, (3.32)

where �0 is the physical ground state for the infinite nucleonic
matter and ψ is the corresponding nucleon field. The nucleon
self-energy �(q) is defined through Dyson’s equation in the
following form (with isospin index suppressed):

[G(q)]−1 = /q − M − �(q), (3.33)

which can be decomposed into

G(q) = Gs(q
2, qu) + Gq(q2, qu)/q + Gu(q2, qu)/u (3.34)

by symmetry principles, where uμ is the nucleon four-velocity
and qu = qμuμ. The “u” term, i.e., Gu(q2, qu)/u, is new at
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finite densities. Similarly, we decompose the self-energy into
the corresponding terms,

�(q) = �̃s(q
2, qu) + �̃μ

v (q)γμ, (3.35)

with

�̃μ
v (q) = �u(q2, qu)uμ + �q(q2, qu)qμ. (3.36)

Defining the scalar self-energy in nuclear medium as �S =
M∗ − M with

M∗ = M + �̃s

1 − �q
, (3.37)

and the vector self-energy as

�V = �u

1 − �q
, (3.38)

we can then rewrite the propagator of a nucleon as

G(q) = 1

/q − M − �(q)
−→ λ∗,2 /q + M∗ − /u�V

(q0 − e)(q0 − e)
, (3.39)

where λ∗,2 is the residual factor [99], and e and e are the poles
of positive energy branch and negative energy branch, i.e.,

e = e(ρ,q) = �V(ρ,q) + e∗(ρ,q), (3.40)

e = e(ρ,q) = �V(ρ,q) − e∗(ρ,q), (3.41)

with

e∗(ρ,q) = [q2 + M∗,2(ρ,q)]1/2. (3.42)

The discontinuity passing through the real axis of q represents
the spectral function of the correlation function, i.e.,

�Gs(q0) = −2π i
λ∗,2M∗

2e∗ [δ(q0 − e) − δ(q0 − e)], (3.43)

�Gq(q0) = −2π i
λ∗,2

2e∗ [δ(q0 − e) − δ(q0 − e)], (3.44)

�Gu(q0) = −2π i
λ∗,2�V

2e∗ [δ(q0 − e) − δ(q0 − e)]. (3.45)

Based on the nucleon propagator given above, the nucleon
correlation functions can be obtained correspondingly,

�(q) ≡ i
∫

d4xeiqx〈�0|Tη(x)η(0)|�0〉, (3.46)

where η is proton’s interpolation field. Very similarly, we
decompose �(q) into three parts,

�(q) = �s(q
2, qu) + �q(q2, qu)/q + �u(q2, qu)/u, (3.47)

with

�s(q
2, qu) = 1

4
tr(�), (3.48)

�q(q2, qu) = 1

q2 − (qu)2

[
1

4
tr(/q�) − 1

4
qutr(/u�)

]
,

(3.49)

�u(q2, qu) = 1

q2 − (qu)2

[
1

4
q2tr(/u�) − 1

4
qutr(/q�)

]
.

(3.50)

Furthermore, from the discussions on the propagator above,
we have

�s(q0,q) = −λ∗,2 M∗

(q0 − e)(q0 − e)
, (3.51)

�q(q0,q) = −λ∗,2 1

(q0 − e)(q0 − e)
, (3.52)

�u(q0,q) = −λ∗,2 �V

(q0 − e)(q0 − e)
, (3.53)

and their Borel transformations are λ∗,2M∗e−(e2−q2 )/M 2
,

λ∗,2e−(e2−q2 )/M 2
, and λ∗,2�Ve−(e2−q2 )/M 2

, respectively.
On the other hand, the correlation functions constructed

from quark/gluon condensates are

�i(q
2, qu) =

∑
n

Ci
n(q2, qu)〈On〉ρ, i = s, q, u, (3.54)

where 〈On〉ρ = 〈�0|On|�0〉 are quark/gluon condensates at
finite densities. In this work, the quark/gluon condensates
at finite densities up to mass dimension 6 are included in
the QCDSR equations, i.e., 〈qq〉, 〈(αs/π )G2〉, 〈gsqσGq〉,
〈gsq†σGq〉, 〈q�1qq�2q〉, and 〈q�1λ

Aqq�2λ
Aq〉. Properties of

them will be given in the following subsections.

C. OPE coefficients

Wilson’s coefficients (OPE coefficients) Ci
n(q2, qu) could

be calculated by the standard perturbative method
[85–89,95,99]. To make the discussions simpler, we calcu-
late the OPE coefficients in SNM [99] based on the Fock-
Schwinger gauge in background field method [230]. The gen-
eralizations to the ANM are straightforward without difficulty,
and will be given in the last of this subsection. The Fock-
Schwinger gauge is

xμAμ(x) = 0, (3.55)

with Aμ ≡ AAμtA. Equation (3.55) indicates

0 = ∂μ
[
yνAA

ν (y)
] = AA

μ(y) + yν∂μAA
ν (y). (3.56)

Moreover, with

yν∂μAA
ν = yνGA

μν + yν∂ν∂
A
μ, (3.57)

one then has

AA
μ(y) + yν∂νAA

μ = yνGA
νμ. (3.58)

Using yν = αxν , we then have

d

dα
[αAμ(αx)] = αxνGA

νμ(αx), (3.59)

so

AA
μ(x) =

∫ 1

0
dααxνGA

νμ(αx), (3.60)

then

Aν (x) =
∫ 1

0
dααxμGμν (αx)

= 1

2
xμGμν (0) + 1

2
xλxμ(DλGμν )λ=0 + · · · . (3.61)
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In the background field method, the nonperturbative effects
of quarks are represented by Grassmann background fields
χ

q
aα, χ

q
aα , while the effects of gluons are represented by their

classical fields F A
μν . The propagator of two quarks in coordi-

nate space reads [230]

Sq
ab,αβ (x, 0) ≡〈Tqaα (x)qbβ (0)〉ρ

= i

2π2
δab

1

(x2)2
[/x]αβ− imq

4π2
δab

δαβ

x2
+χq

aα (x)χq
bβ (0)

− igs

32π2
F A
μν (0)tA

ab

1

x2
[/xσμν + σμν/x]αβ + · · · .

(3.62)

The products of Grassmann fields and classical fields can be
written as products of matrix elements of the ground states of
quarks and gluons, i.e.,

χq
aα (x)χq

bβ (0) = 〈qaα (x)qbβ (0)〉ρ, (3.63)

F A
κλF B

μν = 〈
GA

κλGB
μν

〉
ρ
, (3.64)

χq
aαχ

q
bβF A

μν = 〈
qaαqbβGA

μν

〉
ρ
, (3.65)

χq
aαχ

q
bβχ

q
cγ χ

q
dδ = 〈qaαqbβqcγ qdδ〉ρ, (3.66)

etc., where all the values of fields are calculated at x = 0. Then
we can write the propagator of quarks as

Sq
ab,αβ (x, 0) = i

2π2
δab

1

(x2)2
[/x]αβ − imq

4π2
δab

δαβ

x2

+ 〈qaα (x)qbβ (0)〉ρ

− igs

32π2
GA

μν (0)tA
ab

1

x2
[/xσμν + σμν/x]αβ

− 1

223
δαβδ

ab〈qq〉ρ + imq

243
[/x]αβδ

ab〈qq〉ρ

− x2

263
δαβδ

ab〈gsqσGq〉ρ

+ imqx2

2732
[/x]αβδ

ab〈gsqσGq〉ρ

− π2x4

2833
δαβδ

ab〈qq〉ρ
〈
αs

π
G2

〉
ρ

+ · · · . (3.67)

+= ++

QCD Quark Propagator

perturbative Quark Propagator

qq ρ

gsqσGq ρ

αs
π G2

FIG. 1. Quark propagator in nuclear medium. Straight line
denotes quark condensates and the wavy line represents gluon
condensates.

In Fig. 1, we show the quark propagator in nuclear medium
graphically, where the last three terms represent nonperturba-
tive effects.

The matrix element 〈qaα (x)qbβ (0)〉ρ can be projected as

〈qaα (x)qbβ (0)〉ρ

= −δab

12

[〈q(0)q(x)〉ρδαβ + 〈q(0)γλq(x)〉ργ λ
αβ

]
, (3.68)

where parity symmetry and color neutrality of the ground state
of nucleonic matter are taken into account when writing down
the above expression. At short distance, we expand the quark
field as

q(x) = q(0) + xμ(∂μq)x=0 + 1
2 xμxν (∂μ∂νq)x=0 + · · · .

(3.69)

Then using the Fock-Schwinger gauge, one obtains an
identity for gluons,

xνAν (0) + xμxν (∂μAν )x=0 + 1
2 xλxμxν (∂λ∂μAν )x=0 +· · · = 0.

(3.70)

Each term above is zero, and we thus have

xμ(Dμq)x=0 = xμ(∂μq)x=0, (3.71)

and similarly, we have

xμxν (DμDνq)x=0 = xμxν (∂μ∂νq)x=0, (3.72)

etc. After these simplifications on gluon fields, the quark fields
then can be re-expanded as

q(x) = q(0) + xμ(Dμq)x=0 + 1
2 xμxν (DμDνq)x=0 + · · · .

(3.73)

Finally, we obtain

〈qaα (x)qbβ (0)〉ρ = −δab

12

[(
〈qq〉ρ + xμ〈qDμq〉ρ + 1

2
xμxν〈qDμDνq〉ρ + · · ·

)
δαβ

+
(

〈qγλq〉ρ + xμ〈qγλDμq〉ρ + 1

2
xμxν〈qγλDμDνq〉ρ + · · ·

)
γ λ
αβ

]
, (3.74)

where all the derivatives are calculated at x = 0.
The calculations of Wilson’s coefficients of condensates 〈qDμ1 Dμ2 . . .Dμn q〉ρ[〈qγμDμ1 Dμ2 . . .Dμn q〉ρ] are very similar to

that of 〈qq〉ρ[〈qγμq〉ρ]. For example, in the coordinate space, we have

CqDμ1 Dμ2 ...Dμn q(x) = 1

n!
xμ1 . . . xμnCqq(x), CqγμDμ1 Dμ2 ...Dμn q(x) = 1

n!
xμ1 . . . xμnCqγμq(x). (3.75)
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In the momentum space, we have

CqDμ1 Dμ2 ...Dμn q(q) = (−i)n

n!

(
∂

∂qμ1

. . .
∂

∂qμn

)
Cqq(q), (3.76)

CqγμDμ1 Dμ2 ...Dμn q(q) = (−i)n

n!

(
∂

∂qμ1

. . .
∂

∂qμn

)
Cqγμq(q). (3.77)

The condensate terms in Eq. (3.74) can be furnished by writing out all the possible terms required by Lorentz symmetry, while
the coefficients of these terms can be obtained through their traces of the decomposition, i.e.,

〈qγμq〉ρ = 〈q/uq〉ρuμ, (3.78)

〈qDμq〉ρ = 〈qu · Dq〉ρuμ = −imq〈q/uq〉ρuμ, (3.79)

〈qγμDνq〉ρ = 4
3 〈q/uu · Dq〉ρ

(
uμuν − 1

4 gμν

) − 1
3 〈q /Dq〉ρ (uμuν − gμν )

= 4
3 〈q/uu · Dq〉ρ

(
uμuν − 1

4 gμν

) + 1
3 imq〈qq〉ρ (uμuν − gμν ), (3.80)

〈qDμDνq〉ρ = 4
3 〈qu · Du · Dq〉ρ

(
uμuν − 1

4 gμν

) − 1
3 〈qD2q〉ρ (uμuν − gμν )

= 4
3 〈qu · Du · Dq〉ρ

(
uμuν − 1

4 gμν

) − 1
6 〈gsqσ · Gq〉ρ (uμuν − gμν ), (3.81)

where gμν = (+,−,−,−) and u · D = uD = uμDμ, σ · G = σG.
Equations of motion are useful when deriving these expressions, e.g., for the second identity in the second line, we have used

the relation Dμ ≡ 2−1(γμ /D + /Dγμ), combined with the translation invariance gives 〈qi /D/uq〉ρ = −〈qi
←−
/D /uq〉ρ . Very similarly,

we have

〈qγλDμDνq〉ρ = 2〈q/uu · Du · Dq〉ρ
[
uλuμuν − 1

6 (uλgμν + uμgλν + uνgλμ)
] − 1

3 〈q/uD2q〉ρ (uλuμuν − uλgμν )

− 1
3 〈q/u · D /Dq〉ρ (uλuμuν − uμgλν ) − 1

3 〈q /Du · Dq〉ρ (uλuμuν − uνgλμ), (3.82)

= 2〈q/uu · Du · Dq〉ρ
[
uλuμuν − 1

6 (uλgμν + uμgλν + uνgλμ)
] − 1

6 〈gsq/uσGq〉ρ (uλuμuν − uλgμν ), (3.83)

where the relation 〈q/uD2q〉ρ = 2−1〈gsq/uσGq〉ρ is used. Expressions for other condensates with different dimensions are
similarly obtained, i.e.,〈

gsqaαqbβGA
μν

〉
ρ

− − tA
ab

96

{
〈gsqσGq〉ρ[σμν + i(uμγν − uνγμ)/u]αβ + 〈gsq/uσGq〉ρ[σμν/u + i(uμγν − uνγμ)]αβ

− 4(〈qu · Du · Dq〉ρ + imq〈q/uu · Dq〉ρ )[σμν + 2i(uμγν − uνγμ)/u]
}
, (3.84)〈αs

π
GA

κλGB
μν

〉
ρ

= δAB

96

{〈αs

π
G2

〉
ρ
(gκμgλν − gκνgλμ) − 2

〈αs

π

[
(u · G)2 + (u · G̃)2

]〉
ρ

× [gκμgλν − gκνgλμ − 2(gκμuλuν − gκνuλuμ − gλμuκuν + gλνuκuμ)]

}
, (3.85)

where we have (u · G)2 = uλGA
λνuμGAμν, G̃Aμν = 2−1εμνκλGA

κλ. Furthermore, the decomposition of the four-quark condensates
has the following form:

〈uaαubβucγ udδ〉ρ ≈ 〈uaαubβ〉ρ〈ucγ udδ〉ρ − 〈uaαudδ〉ρ〈ucγ ubβ〉ρ, (3.86)

〈uaαubβdcγ ddδ〉ρ ≈ 〈uaαubβ〉ρ〈dcγ ddδ〉ρ. (3.87)

In order to translate the above expressions from coordinate space into momentum space, we use the following formulas:∫
d4x

x2
eiqx = −4π2i

q2
,

∫
d4x

(x2)n
eiqx = i(−1)n24−2nπ2

�(n − 1)�(n)
(q2)n−2 ln(−q2) + Pn−2(q2), n � 2, (3.88)

where Pm(q2) is the polynomial of q2 of order m. We decompose the correlation functions into their odd and even parts, i.e.,

�i(q0,q) = �E
i (q0,q) + q0�

O
i (q0,q), i = s, q, u, (3.89)

with

�E
s (q2) = c1

16π2
q2 ln(−q2)〈qq〉ρ + 3c2

16π2
ln(−q2)〈gsqσGq〉ρ + 2c3

3π2

q2
0

q2

(
〈qiD0iD0q〉ρ + 1

8
〈gsqσGq〉ρ

)
, (3.90)

�O
s (q2) = − c1

8π2
ln(−q2)〈qiD0q〉ρ − c1

3q2
〈qq〉ρ〈q†q〉ρ, (3.91)
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�E
q (q2) = − c4

512π4
(q2)2 ln(−q2) + c4

72π2

[
5 ln(−q2) − 8q2

0

q2

]
〈q†iD0q〉ρ − c4

256π2
ln(−q2)

〈αs

π
G2

〉
ρ

− c4

1152

[
ln(−q2) − 4q2

0

q2

]〈
αs

π
[(u · G)2 + (u · G̃)2]

〉
ρ

− c1

6q2
〈qq〉2

ρ − c4

6q2
〈q†q〉2

ρ, (3.92)

�O
q (q2) = c4

24π2
ln(−q2)〈q†q〉ρ + c5

72π2q2
〈gsq

†σGq〉ρ − c4

12π2q2

(
1 + 2q2

0

q2

)(
〈q†iD0iD0q〉ρ + 1

12
〈gsq

†σGq〉ρ
)
, (3.93)

�E
u (q2) = c4

24π2
ln(−q2)〈q†q〉ρ − c5

48π2
ln(−q2)〈gsq

†σGq〉ρ + c4

2π2

q2
0

q2

(
〈q†iD0iD0q〉ρ + 1

12
〈gsq

†σGq〉ρ
)
, (3.94)

�O
u (q2) = − 5c4

18π2
ln(−q2)〈q†iD0q〉ρ − c4

3q2
〈q†q〉2

ρ, (3.95)

where we have q2
0 = (q · u)2, u = (1, 0), and c1 = 7t2 − 2t − 5, c2 = 1 − t2, c3 = 2t2 − 2t − 1, c4 = 5t2 + 2t + 5 and c5 =

7t2 + 10t + 7 [89]. In this work, the following condensates are included for the QCDSR equations:

d = 3 : 〈qq〉ρ, (3.96)

d = 4 : 〈(αs/π )G2〉ρ, (3.97)

d = 5 : 〈gsqσGq〉ρ, 〈gsq
†σGq〉ρ, (3.98)

d = 6 : 〈q�1qq�2q〉ρ, 〈q�1λ
Aqq�2λ

Aq〉ρ. (3.99)

D. QCDSR equations in ANM

Now we generalize the above results of SNM to the case of ANM, and the QCDSR equations for the proton are given by [95]

λ∗,2
p M∗

p e−[e2
p(ρ,q)−q2]/M 2 = − c1

16π2
M 4E1〈dd〉ρ,δ − C5 ·

{
3c2

16π2
M 2E0〈gsdσGd〉ρ,δL−4/9 + 2c3

3π2
q2

[
〈diD0iD0d〉ρ,δ

+ 1

8
〈gsdσGd〉ρ,δ

]
L−4/9

}
− CH ·

[
c1

8π2
epM

2E0〈diD0d〉ρ,δL−4/9+c1

3
ep〈dd〉ρ,δ〈d†d〉ρ,δ

]
, (3.100)

λ∗,2
p e−[e2

p(ρ,q)−q2]/M 2 = c4

256π4
M 6E2L−4/9 − C5 ·

[
c4

72π2
M 2

(
E0 − 4q2

M 2

)
〈d†iD0d〉ρ,δL−4/9

+ c4

72π2
M 2

(
4E0 − 4q2

M 2

)
〈u†iD0u〉ρ,δL−4/9

]
+ C4 ·

[
c4

256π2
M 2E0

〈αs

π
G2

〉
ρ,δ

L−4/9

− c4

1152π2
M 2

(
E0 − 4q2

M 2

)〈αs

π
(E2 + B2)

〉
ρ,δ

L−4/9

]
+ CH · epL−4/9

×
{

c4

48π2
M 2E0[〈u†u〉ρ,δ + 〈d†d〉ρ,δ] − c4

12π2

(
2 − q2

M 2

)[
〈u†iD0iD0u〉ρ,δ + 1

12
〈gsu

†σGu〉ρ,δ
]

− c4

12π2

(
1 − q2

M 2

)[
〈d†iD0iD0d〉ρ,δ + 1

12
〈gsd

†σGd〉ρ,δ
]

+ c5

72π2
〈gsd

†σGd〉ρ,δ
}

+CB · c1

6
˜〈dd〉2

ρ,δL
4/9 + CD · c4

6
〈d†d〉2

ρ,δL
−4/9 + BII

tw4, (3.101)

λ∗,2
p �

p
Ve−(e2

p(ρ,q)−q2 )/M 2 = c4

96π2
M 4E1[7〈u†u〉ρ,δ + 〈d†d〉ρ,δ] + C5 ·

{
3c4

8π2
q2

[
〈u†iD0iD0u〉ρ,δ + 1

12
〈gsu

†σGu〉ρ,δ
]

L−4/9

+ c4

8π2
q2

[
〈d†iD0iD0d〉ρ,δ + 1

12
〈gsd

†σGd〉ρ,δ
]

L−4/9 − c5

24π2
M 2E0〈gsu

†σGu〉ρ,δL−4/9

+ c5

48π2
M 2E0〈gsd

†σGd〉ρ,δL−4/9

}
+ CH · epM

2E0L−4/9

{
c4

18π2
〈d†iD0iD0d〉ρ,δ

+ 2c4

9π2
〈u†iD0iD0u〉ρ,δ + c4

288π2

〈αs

π
(E2 + B2)

〉
ρ,δ

+ c4

3
〈d†d〉2

ρ,δ

}
+ BIII

tw4, (3.102)
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where M is the Borel Mass and λ∗
p is the residual for quasipro-

ton, and

ep(ρ,q) = [
q2 + M∗,2

p (ρ,q)
]1/2 + �

p
V(ρ,q) (3.103)

together with

ep(ρ,q) = −[
q2 + M∗,2

p (ρ,q)
]1/2 + �

p
V(ρ,q), (3.104)

are the total effective single particle energy for the proton
(proton hole). In order to write down the QCDSR equations
for the neutron, one can exchange the quark fields of d and
u. In the above equations, 〈. . . 〉ρ,δ represents the condensates
at finite density ρ and isospin asymmetry δ. BII

tw4 and BIII
tw4

are contributions from twist-4 four-quark condensates [95],
which will be omitted until Sec. IX where we discuss their
physical effects in some detail. The wavy line in the four-
quark condensates means [99]

˜〈qq〉2
ρ,δ = (1 − f )〈qq〉2

vac + f 〈qq〉2
ρ,δ, (3.105)

with f an effective parameter introduced [111], and

L−2�η+�On =
[

ln(M /�QCD)

ln(μ/�QCD)

]−2�η+�On

(3.106)

characterizes the anomalous dimension of the interpolation
fields, �QCD ≈ 0.17 GeV is the QCD energy scale, and μ ≈
0.5 GeV is the corresponding renormalization scale. The en-
ergy dependence of the QCD coupling constant, i.e., αs ≡
g2

s/4π , is given by αs(q2) = 4π/9 ln(q2/μ2). The factor L
contains radiation effects effectively [95]. Furthermore, the
contributions from continuum excitations, whose physical ori-
gin will be discussed in Sec. IV, are included by the following
functions:

E0 = 1 − e−s∗
0/M

2
, (3.107)

E1 = 1 − e−s∗
0/M

2

(
s∗

0

M 2
+ 1

)
, (3.108)

E2 = 1 − e−s∗
0/M

2

(
s∗,2

0

2M 4
+ s∗

0

M 2
+ 1

)
, (3.109)

where we have s∗
0 = ω2

0 − q2 with ω0 representing the effect
of continuum excitations.

In Eqs. (3.100)–(3.102), the five parameters, i.e.,
C4,C5,CH,CB,CD, are introduced. If they take the value
“+1” then the corresponding contributions are included,
otherwise if they take the value “0” then the corresponding
contributions are absent. More specifically, C4 characterizes
the four-dimensional condensates, C5 for the five-dimensional
condensates, CH for the contributions from quasihole effects,
while CB and CD characterize the four-quark condensates
of the types of 〈qq〉2

ρ,δ and 〈q†q〉2
ρ,δ , respectively. In the

following analysis, effects from the anomalous dimension
and the continuum excitations denoted by the two parameters
CA and CC will be also studied. If CA = 0, then L = 1 and if
CC = 0, the functions E0, E1, and E2 take the value 1.

E. Quark and gluon condensates used in this work

In this subsection, we discuss the properties of
quark/gluon condensates with their density dependence,

which are used as input for QCDSR equations. For the
three-dimensional chiral condensate 〈qq〉ρ,δ , one could
introduce [95]

〈qq〉p
asym = 1

2 [〈p|uu|p〉 − 〈p|dd|p〉], (3.110)

where |p〉 is the proton state. The mass of a nucleon in vacuum
can be represented through the trace of energy-momentum
tensor, i.e., M〈N |ψψ |N〉 = 〈N |T |N〉, where

T = gμνT μν = muuu + mddd + msss +
∑

h=c,b,t

mhhh

≈ β

4αs
G2 + muuu + mddd + msss (3.111)

with T μν the energy momentum tensor, h denotes the heavy
quark field, and β = −9α2

s /2π is the reduced Gell-Mann–
Low functions. For the baryon octet, we have

Mp = A + muBu + mdBd + msBs, (3.112)

Mn = A + muBd + mdBu + msBs, (3.113)

M�+ = A + muBu + mdBs + msBd, (3.114)

M�− = A + muBs + mdBu + msBd, (3.115)

M�0 = A + muBd + mdBs + msBu, (3.116)

M�− = A + muBs + mdBd + msBu, (3.117)

with A = 〈(β/4αs )G2〉p,Bu = 〈uu〉p, etc. After straightfor-
ward calculations, we obtain

〈p|uu|p〉 − 〈p|dd|p〉 = (M�0 + M�− ) − (M�+ + M�− )

2ms − 2mq
(3.118)

with mq = 2−1(mu + md). On the other hand, we have

〈qq〉p
sym = 1

2
[〈p|uu|p〉 + 〈p|dd|p〉] = σN

2mq
, (3.119)

in which the nucleon sigma term is σN ≡ mqdM/dmq ≈
45 MeV [231] (see also Ref. [232]). Introducing 〈p|uu|p〉 ±
〈p|dd|p〉 = a±〈p|uu|p〉, then we can rewrite the asymmetric
part in terms of the symmetric part as

〈qq〉p
asym = a−

a+
〈qq〉p

sym, (3.120)

where [95]

a± = 1 ±
σN
mq

− (m
�0 +m�− )−(m�+ +m�− )

2ms−2mq

σN
mq

+ (m
�0 +m�− )−(m�+ +m�− )

2ms−2mq

. (3.121)

The masses of the quarks and the baryons are given by [233]

mq ≈ 3.5+0.7
−0.2 MeV, ms ≈ 95 ± 5 MeV, (3.122)

M�0 ≈ 1315 MeV, M�− ≈ 1321 MeV, (3.123)

M�+ ≈ 1190 MeV, M�− ≈ 1197 MeV; (3.124)

according to the particle data group (PDG), we then have

a±(σN) = 1 ± σN/3.5 − 249/183

σN/3.5 + 249/183
. (3.125)
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In the following studies we denote α ≡ a− and β ≡ a+ and
ξ = α/β ≈ 0.1. Collecting all the elements discussed above
we finally obtain the chiral condensate at finite densities,

〈qq〉u,d
ρ,δ ≈ 〈qq〉vac +

(
1 ∓ α

β
δ

)
〈qq〉p

symρ, (3.126)

where “−” is for the u quark and “+” is for the d quark. The
corresponding condensate in the vacuum takes the following
value [95,99]:

〈qq〉vac ≈ −(252 MeV)3. (3.127)

In Eq. (3.126), only the linear term in density ρ is considered.
In Sec. VIII, we will consider possible higher order terms
in density and study how these higher order terms affect the
nucleonic matter EOS.

Finally, we list other condensates of quarks and gluons.
Another three-dimensional condensate is 〈q†q〉u,d

ρ,δ [99],

〈q†q〉u,d
ρ,δ = (

3
2 ∓ 1

2δ
)
ρ, (3.128)

which is actually the quark density [86–89,95,99].
Other quark/gluon condensates include the following
[86–89,95,99]:

(1) Four-dimensional condensates,

〈qiD0q〉ρ,δ ≈ 0, (3.129)

〈q†iD0q〉ρ,δ = 〈q†iD0q〉vac + 〈q†iD0q〉finρ

≈ (1 ∓ ϑ1) 1
2 Mϕ1ρ, (3.130)

where ϑ1 ≈ 0.35, ϕ1 ≈ 0.55 [95]. The lowest order of gluon
condensates have mass dimension 4, i.e.,〈

αs

π
(E2 − B2)

〉
ρ,δ

= −1

2

〈αs

π
G2

〉
vac

+
〈
αs

π
(E2 − B2)

〉
fin

ρ,

≈ −1

2
(330 ± 30 MeV)4

+ (325 ± 75 MeV)ρ, (3.131)〈
αs

π
(E2 + B2)

〉
ρ,δ

=
〈
αs

π
(E2 + B2)

〉
fin

ρ

≈ (100 ± 10 MeV)ρ. (3.132)

where G2 = 2(B2 − E2) with B and E the magnetic field and
electrical fields of QCD, respectively.

(2) Five-dimensional condensates. In dimension 5, we have
several condensates constructed from quarks and gluons,

〈qiD0iD0q〉ρ,δ ≈〈qiD0iD0q〉finρ

≈
(

1 ∓ α

β
δ

)
M2ϕ2ρ, (3.133)

where ϕ2 ≈ 0.34, and

〈gsqσGq〉ρ,δ ≈
(

1 ∓ α

β
δ

)
〈gsqσGq〉p

symρ, (3.134)

with (620 MeV)2 � 〈gsqσGq〉p
sym � (3 GeV)2, and

〈q†iD0iD0q〉ρ,δ = 〈q†iD0iD0q〉finρ

≈ (1 ∓ ϑ3δ) 1
2 M2ϕ3ρ (3.135)

with ϑ3 ≈ 0.51, ϕ3 ≈ 0.145. Similarly, we have

〈gsq
†σGq〉ρ,δ ≈ (1 ∓ ϑ3δ)〈gsq

†σGq〉p
symρ, (3.136)

where −(330MeV)2 � 〈gsq†σGq〉p
sym � (660MeV)2.

(3) For the six-dimensional condensates, we consider the
effective four-quark condensates defined in Eq. (3.105). And
in Sec. IX, we study the twist-4 four-quark condensates’
effects on the quantities we are interested in.

For more detailed physical discussions on the condensates,
see, e.g., Refs. [86–89] and [99].

F. Fitting scheme

In this work, the quark/gluon condensates at finite den-
sities up to mass dimension 6 are included in the QCDSR
equations, see Eqs. (3.96)–(3.99), and the default central val-
ues are listed in the last subsection, see Eqs. (3.126)–(3.136).
Moreover, the quark masses are taken to be mq = 3.5 MeV,
ms = 95 MeV, the σ -N term σN = 45 MeV, the Borel mass
M 2 = 1.05 GeV2 [234], and the threshold parameter defined
in Eqs. (3.107)–(3.109), as ω0 = 1.5 GeV [99] except a slight
different ω0 = 1.4 GeV in Secs. V and VI.

Starting from Sec. VIII, we consider the following quark
chiral condensates:

〈qq〉ρ,δ ≈ 〈qq〉vac + σN

2mq
(1 ∓ ξδ)ρ + �(1 ∓ gδ)ρ2,

(3.137)

The motivation for including the last term “�(1 ∓ gδ)ρ2”
in Eq. (3.137) is as follows [111]: As the density increases,
the linear approximation for the chiral condensates becomes
worse eventually, and higher order terms in density should be
included in the 〈qq〉ρ,δ . However, the density dependence of
the chiral condensates is extremely complicated, and there is
no general power counting scheme to incorporate these higher
order density terms. Besides the ρ2 term we adopted here,
for instance, based on the chiral effective theories [145,235],
a term proportional to ρ5/3 was found in the perturbative
expansion of 〈qq〉ρ,δ in ρ. On the other hand, using the chiral
Ward identity [236], a ρ4/3 term was found in the density
expansion in the chiral condensates. In our work, including
the higher order ρ2 term is mainly for the improvement of
describing the empirical EOS of PNM around and above
saturation density, for which we use the celebrated Akmal-
Pandharipande-Ravenhall (APR) EOS [237]. In this sense, the
� term adopted here is an effective correction to the chiral
condensates beyond the linear leading order. Two aspects
related to the � term should be pointed out: (1) Without the
higher order ρ2 term, the EOS of PNM around and above
saturation density cannot be adjusted to be consistent with that
APR EOS, i.e., there exists systematic discrepancy between
the QCDSR EOS and the APR EOS; (2) Using an effective
correction with a different power in density, e.g., a ρ5/3 term,
the conclusion does not change, i.e., the EOS of PNM around
and above saturation density can still be adjusted to fit the
APR EOS, and the sign of the coefficients � and g will not
change although their absolute values change; see the results
in Fig. 31. In the following, we abbreviate the QCDSR using
the chiral condensate without the last term in Eq. (3.137) as
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the “naive QCDSR” [111], which will be explored in detail in
Sec. VII D.

In carrying out the QCDSR calculations, we fix the central
value of the En(ρ) at a very low density, ρvl = 0.02 fm−3,
to be consistent with the prediction by the ChPT [143,144],
i.e., En(ρvl) ≈ 4.2 MeV, the central value of the symmetry
energy Esym(ρ) at a critical density ρc = 0.11 fm−3 to be
Esym(ρc) ≈ 26.65 MeV [217], and fit the EOS of PNM be
close to the APR EOS as much as possible, via varying �,
g, and f . We note that the parameter f defined in Eq. (3.105)
is essentially determined by En(ρvl), and the overall fitting of
the EOS of PNM to the APR EOS and the symmetry energy
at ρc determines the other two parameters � and g [111].

IV. NUCLEON MASS IN VACUUM

In this section, we use the QCDSR to study the nucleon
mass in vacuum. The motivation is twofold: first the connec-
tion between the nucleon mass and the quark/gluon conden-
sates in the QCDSR is explored, and most importantly the
scheme for determining the Ioffe parameter t [229] is given
here, i.e., via the relation Mvac,static

QCDSR (t ) = 939 MeV.
Conventionally, the high energy states or the continuum

states are not given by the QCDSR method itself, and in
order to model these states in the nucleon spectral densities
(3.17) and (3.18), one usually adopts the corresponding results
from the OPE calculations [99]. More specifically, the nucleon
correlation functions from the OPE side including only the
lowest order terms are given by

�OPE
s (q2) = q2

4π
ln(−q2)〈qq〉vac, (4.1)

�OPE
q (q2) = − (q2)2

64π4
ln(−q2) − 1

32π2
ln(−q2)

〈αs

π
G2

〉
vac

− 2

3q2
〈qq〉2

vac, (4.2)

where the last term in �OPE
q (q2) is the four-quark condensates

expressed in terms of the square of the chiral condensate.
Moreover, t = −1 is adopted here for simplicity. The Borel
transformations of them are given by

�̂OPE
s (M 2) = − 1

4π2
M 4〈qq〉vac, (4.3)

�̂OPE
q (M 2) = 1

32π4
M 6 + 1

32π2
M 4

〈
αs

π
G2

〉
vac

+ 2

3
〈qq〉2

vac.

(4.4)

Consequently, the high energy/continuum states are approx-
imated by the equivalent OPE terms, starting at the sharp
threshold s0 = ω2

0, i.e., [99],

ρphen
s (s) = λ2Mδ(s − M2) − 1

4π2
s〈qq〉vac�(s − s0), (4.5)

ρphen
q (s) = λ2δ(s − M2) +

[
1

64π4
s2 + 1

32π2

〈αs

π
G2

〉
vac

]
×�(s − s0); (4.6)

see Fig. 2 for the sketch of the effects of s0.

ρphen

s
s0M

FIG. 2. Sketch of the spectral densities (4.5) and (4.6).

After putting these spectral functions into Eq. (3.14) and
finishing the Borel transformation, we obtain the correlation
functions at the phenomenological side in the QCDSR,

�̂phen
s (M 2) = λ2Me−M2/M 2

− M 4

4π2
〈qq〉vac

(
1 + s0

M 2

)
e−s0/M 2

, (4.7)

�̂phen
q (M 2) = λ2e−M2/M 2

+ M 6

32π4

(
1 + s0

M 2
+ s2

0

2M 4

)
e−s0/M 2

+ M 2

32π2

〈αs

π
G2

〉
vac

e−s0/M 2
. (4.8)

Then according to the QCDSR, i.e.,

�̂phen
s (M 2) = �̂OPE

s (M 2), (4.9)

�̂phen
q (M 2) = �̂OPE

q (M 2), (4.10)

where �̂OPE
s (M 2) and �̂OPE

q (M 2) are given by Eqs. (4.3)
and (4.4), respectively, one obtains the expression for nucleon
mass in vacuum as [238]

M = 2φM 4E1

M 6E2 + bM 2E0 + 4φ2/3
, (4.11)

where E0, E1, and E2 are defined in Eqs. (3.107)–(3.109), and
the following abbreviations are introduced:

φ = −(2π )2〈qq〉vac, b = π2
〈αs

π
G2

〉
vac

. (4.12)

Furthermore, if we neglect all the high-dimensional except the
three-dimensional chiral condensates, a very simple formula
for the nucleon mass in vacuum is obtained, i.e.,

M = −8π2

M 2
〈qq〉vac, (4.13)

demonstrating that the nucleon mass in vacuum is roughly
determined by the chiral condensates in vacuum.

Moreover, the above discussion clearly shows that the
nucleon mass in vacuum obtained in the QCDSR is not
necessarily about its realistic value 939 MeV. For in-
stance, taking M 2 = 1.05 GeV2, 〈qq〉vac = −(0.252 GeV)3,
〈(αs/π )G2〉vac = (0.33 GeV)4, and s0 = ω2

0 = 2.25 GeV2,
one obtains the mass M ≈ 0.847 GeV, which has about a
92-MeV deviation from 939 MeV (roughly an effect about
10%), and in Fig. 3, the nucleon mass in vacuum as a function
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FIG. 3. Nucleon mass in vacuum as a function of Borel mass
squared by Eq. (4.11).

of the Borel mass (squared) obtained by Eq. (4.11) is shown.
In this work, we put an extra constraint on the QCDSR
method, i.e., the nucleon mass in vacuum is set to be 939 MeV.
Consequently the Ioffe parameter t should be determined
uniquely once the other parameters are fixed. Specifically,
when we rewrite the QCDSR equations in vacuum under the
static condition, i.e., taking ρ = 0 and q = 0, one obtains

λ2Me−[e2(ρ,0)]/M 2 = − c1

16π2
M 4E1〈qq〉vac, (4.14)

λ2e−[e2(ρ,0)]/M 2 = c4

256π4
M 6E2L−4/9

+ c4

256π2
M 2E0

〈αs

π
G2

〉
vac

× L−4/9 + c1

6
〈qq〉2

vacL4/9, (4.15)

where c1 = 7t2 − 2t − 5 and c4 = 5t2 + 2t + 5. Then the
Ioffe parameter t could be expressed as

t =
√

12(F + H + 1)(3F + 3H − 2)

7F + 7H − 5
+ F + H + 1

7F + 7H − 5
(4.16)

with

F = −16

M

M 2E1〈qq〉vacL4/9

M 4E2
π2 + E0

〈
αs
π

G2
〉
vac

, (4.17)

H = −128π2

3M 2

〈qq〉2
vacL8/9

M 4E2
π2 + E0

〈
αs
π

G2
〉
vac

. (4.18)

In Fig. 4, the Ioffe parameter t as a function of the Borel
mass squared M 2 with different threshold parameter s0 is
shown. The Borel mass squared was extensively studied in
the literature and the value of it was found to fall within the
range 0.8 GeV2 � M 2 � 1.4 GeV2 [99,234]. In this work,
we choose M 2 ≈ 1.05 GeV2 as our default value for the
Borel mass squared, and the Ioffe parameter obtained via
Eq. (4.16) is found to be around −1.2 considering 2 GeV2 �
s0 � 3 GeV2, which is close to the Ioffe value (tIoffe = −1).
For example, taking s0 = 3 GeV2, the Ioffe parameter at
M 2 = 1.05 GeV2 is found to be about t ≈ −1.04. Moreover,

FIG. 4. Ioffe Parameter t as a function of the Borel mass squared
with different s0.

the Ioffe parameter will be set to its default value (tIoffe = −1)
in Secs. V and VI mainly for qualitative discussions, and start-
ing from Sec. VII, t would be self-consistently determined by
the scheme given here, i.e., Eq. (4.16). The treatment on the
Ioffe parameter given here is natural, thus one can obtain the
physical nucleon mass in vacuum when the QCDSR equations
are applied at zero density.

V. MAIN STRUCTURE OF THE SYMMETRY ENERGY

In this section, we discuss the structure of the symme-
try energy through the simplified QCDSR equations, which
will be given shortly. The main purpose of this section
is to qualitatively analyze the nucleon self-energy structure
of the symmetry energy through Eq. (2.22), and leave the
detailed/quantitative calculation on the Esym(ρ) to the follow-
ing sections.

In the simplified version, the QCDSR equations for proton
have the following form:

λ∗,2
p M∗

p e−[e2
p(ρ,q)−q2]/M 2 = −M 4

4π2
〈dd〉ρ,δ, (5.1)

λ∗,2
p e−[e2

p(ρ,q)−q2]/M 2 = M 6

32π4
, (5.2)

λ∗,2
p �

p
Ve−[e2

p(ρ,q)−q2]/M 2 = 1

12π2
M 4(7〈u†u〉ρ,δ + 〈d†d〉ρ,δ ),

(5.3)

i.e., they only include the three-dimensional chiral conden-
sates, and for all the high-dimensional condensates as well
as the contributions from continuum excitations, quasihole
effects are neglected. In the above expressions, M∗

p is the
proton’s Dirac effective mass at finite densities introduced
through the following dispersion relation:

ep(ρ,q) = [
M∗,2

p (ρ,q) + q2
]1/2 + �

p
V(ρ,q). (5.4)

The discussion in this section on the symmetry energy from
the QCDSR is more qualitative and thus the Ioffe parame-
ter t is set at its natural value, i.e., t = −1, as mentioned
in the last section. Via exchanging the d quark and the u
quark, one can obtain the corresponding sum rule equations
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for a neutron, i.e.,

λ∗,2
n M∗

n e−[e2
n(ρ,q)−q2]/M 2 = −M 4

4π2
〈uu〉ρ,δ, (5.5)

λ∗,2
n e−[e2

n(ρ,q)−q2]/M 2 = M 6

32π4
, (5.6)

λ∗,2
n �n

Ve−[e2
n(ρ,q)−q2]/M 2 = 1

12π2
M 4(7〈d†d〉ρ,δ + 〈u†u〉ρ,δ ),

(5.7)

and the total single particle energy for the neutron is defined
similarly as Eq. (5.4). The QCDSR with Eqs. (5.1)–(5.3) and
(5.5)–(5.7) and the dispersion relation for the proton/neutron
is called the mostly simplified QCDSR (“msQCDSR”). It
is necessary to point out that in the msQCDSR, the nu-
cleon self-energies have no momentum dependence, thus the
corresponding momentum-dependent terms in Eq. (2.22) are
absent naturally. The momentum-dependent terms and their
consequences will be explored in some detail in Sec. VII, and
the corresponding contributions to the symmetry energy are
found to be small (see the blue and green lines of Fig. 17).

The nucleon Dirac effective mass M∗
J and the vector self-

energy �J
V could be obtained immediately in the msQCDSR

as

M∗
J (ρ) = −8π2

M 2
〈qq〉u,d

ρ,δ, (5.8)

�J
V(ρ) = 8π2

3M 2
(8〈q†q〉u,d

ρ,δ ). (5.9)

The nucleon Dirac effective mass in SNM is then given by

M∗
0 (ρ) = −8π2

M 2
〈qq〉ρ ≈ −8π2

M 2

(
〈qq〉vac + σNρ

2mq

)
, (5.10)

and the vector self-energy by

�0
V(ρ) = 64π2

3M 2
〈q†q〉ρ, (5.11)

with 〈q†q〉ρ = 3ρ/2.
Similarly, the nucleon Dirac effective mass and the vector

self-energy in ANM are given by

M∗
p (ρ) = −8π2

M 2

[
〈qq〉vac + σNρ

2mq

(
1 + α

β
δ

)]
, (5.12)

M∗
n (ρ) = −8π2

M 2

[
〈qq〉vac + σNρ

2mq

(
1 − α

β
δ

)]
, (5.13)

and

�
p
V(ρ) = 8π2

3M 2
(7〈u†u〉ρ,δ + 〈d†d〉ρ,δ ), (5.14)

�n
V(ρ) = 8π2

3M 2
(7〈d†d〉ρ,δ + 〈u†u〉ρ,δ ), (5.15)

respectively. The definitions of α and β are given
in Eq. (3.125). Consequently, the first-order symmetry
scalar/vector self-energy is obtained as

�S
sym(ρ) = �n

S − �
p
S

2δ
= 4π2σN

M 2mq

α

β
ρ, (5.16)

�V
sym(ρ) = �n

V − �
p
V

2δ
= 8π2

M 2
ρ, (5.17)

where the symmetry self-energy is generally defined as [41]

�S/V
sym,i(ρ,q) = 1

i!

∂ i

∂δi

⎡⎣∑
J=n,p

τ J,i
3 �J

S/V(ρ, δ,q)

2

⎤⎦
δ=0

. (5.18)

In the above definition, we use τ n
3 = +1 and τ

p
3 = −1.

Through Eq. (2.22), one can obtain the symmetry energy
in the msQCDSR as

Esym(ρ) = k2
F

6e∗
F

+ 2π2σN

M 2mq

M∗
0

e∗
F

α

β
ρ + 4π2ρ

M 2
, (5.19)

with its decomposition given by

Ekin
sym(ρ) = k2

F

6e∗
F

, (5.20)

E1st,S
sym (ρ) = 1

2

M∗
0

e∗
F

�S
sym(ρ) = 2π2σN

M 2mq

M∗
0

e∗
F

α

β
ρ, (5.21)

E1st,V
sym (ρ) = 1

2
�V

sym(ρ) = 4π2ρ

M 2
, (5.22)

where e∗
F = (k2

F + M∗,2
0 )1/2, and the sum of the last two terms

is the potential part of the symmetry energy in the msQCDSR
Epot

sym(ρ) = E1st,S
sym (ρ) + E1st,V

sym (ρ). Several features of these ex-
pressions should be pointed out as follows:

(1) At low densities, the leading order term in the sym-
metry energy is the kinetic part, which roughly scales as
ρ2/3 since at low densities e∗

F ≈ M. The potential part of the
symmetry energy contributes starting from the linear terms in
density ρ. Moreover, both the scalar and vector self-energy
contributions to the symmetry energy are positive in the
msQCDSR, i.e., E1st,S

sym (ρ) > 0 and E1st,V
sym (ρ) > 0, and this

finding will be verified in the full QCDSR.
(2) Perhaps much more important is that, through

Eqs. (5.21) and (5.22), one establishes the connection between
the symmetry energy and some other fundamental quantities,
such as the quark mass mq and the nucleon-sigma term σN.
For instance, a larger mq corresponds to a smaller E1st,S

sym (ρ)
[dependence of E1st,S

sym (ρ) on σN is nontrivial since σN also
affects the ratio α/β, and will be discussed in detail in
Sec. VII; see the fourth panel of Fig. 20].

(3) Tracing back to the physical origin of the isospin factor
α/β, see Eq. (3.126), one can simply obtain the E1st,S

sym (ρ) if
other approaches could give the density/isospin dependence
of the chiral condensates. For instance, Ref. [239] gave a
different isospin effect of the chiral condensate, i.e., α/β ↔
c/ f 2

π with c a low energy coefficient and fπ the pion decay
constant, then

E1st,S
sym (ρ) ∼ σNρ

mq f 2
π

∼ −
(

mπ

mq

)2
σNρ

〈qq〉vac
, (5.23)

where the last relation is obtained via the Gell-Mann–Oakes–
Renner relation m2

π f 2
π = −mq〈qq〉vac. The above relation

shows the E1st,S
sym (ρ) scales as the square of the ratio mπ/mq.

It is fair to say that the E1st,S
sym (ρ) is the most nontrivial term

in the decomposition of the symmetry energy and its density
dependence largely characterizes the change of the density

024303-15



BAO-JUN CAI AND LIE-WEN CHEN PHYSICAL REVIEW C 100, 024303 (2019)

FIG. 5. High order effect of the EOS as a function of density
in msQCDSR; parameters are ω0 = 1.4 GeV, σN = 45 MeV, mq =
3.5 MeV, ms = 95 MeV, M 2 = 1.05 GeV2 (default set).

behavior of the total symmetry energy. More discussions on
this issue will be given in the following sections.

(4) On the other hand, the density dependence of E1st,V
sym (ρ)

is much simpler and even when other contributions are in-
cluded in the QCDSR equations, it only changes slightly.

An important problem related to the structure of the sym-
metry energy is the parabolic approximation of the EOS of
ANM. Let us briefly discuss it in the msQCDSR and leave
the more detailed investigations to the next section. Parabolic
approximation of the EOS of ANM could be conventionally
characterized as

Epara
n (ρ) ≈ E0(ρ) + Esym(ρ), (5.24)

or equivalently the parabolic approximation of the symmetry
energy,

Epara
sym (ρ) ≈ En(ρ) − E0(ρ), (5.25)

i.e., the Epara
sym (ρ) is the difference between the EOS of PNM

and that of SNM. Consequently, the high order effect of the
EOS of ANM is given by

EHO(ρ) ≡ Epara
sym (ρ) − Esym(ρ), (5.26)

or

EHO(ρ) = Esym,4(ρ) + Esym,6(ρ) + · · · , (5.27)

since En(ρ) = E0(ρ) + Esym(ρ) + Esym,4(ρ) + Esym,6(ρ) +
· · · , where Esym,4(ρ), Esym,6(ρ), . . . , are the fourth-order
symmetry energy, sixth-order symmetry energy, . . . [240].
In Fig. 5, the high order EOS EHO(ρ) as a function of
density in the msQCDSR is shown. At the saturation
density, the high order effect is found to be about
EHO(ρ0) ≈ −2.4 MeV. Although many investigations on
the high order symmetry energy both from microscopic
calculations and phenomenological models [11,240–248]
indicates that the magnitude of the high order term, especially
the fourth-order symmetry energy, is small, e.g., roughly
|EHO(ρ � ρ0)| � 1 MeV at ρ0 ≈ 0.16 fm−3, there are still no
fundamental symmetries and/or principles guaranteeing its
smallness. Thus it is an interesting issue to explore the high

order EOS of the ANM in the framework of QCDSR, and this
is the main subject of the next section.

Finally, let us qualitatively discuss the possible relation
between the symmetry energy and the chiral condensates. In
order to make the discussion general, we assume that the
chiral condensates has the following density structure:

〈uu〉ρ,δ = 〈qq〉vac + D1
u F 1

u (δ)ρ + D θ
u F θ

u (δ)ρθ + · · · ,
(5.28)

〈dd〉ρ,δ = 〈qq〉vac + D1
d F 1

d (δ)ρ + D θ
d F θ

d (δ)ρθ + · · · ,
(5.29)

with θ > 1, and we also assume that

D1
u = D1

d ≡ D1, D θ
u = D θ

d ≡ D θ ; (5.30)

then we have

〈uu〉ρ,δ − 〈dd〉ρ,δ ≈ D1
[
F 1

u (δ) − F 1
d (δ)

]
ρ

+ D θ
[
F θ

u (δ) − F θ
d (δ)

]
ρθ . (5.31)

Neglecting the high order term, i.e., the θ term temporarily,
we have

〈uu〉ρ,δ − 〈dd〉ρ,δ ≈ D1[F 1
u (δ) − F 1

d (δ)
]
ρ, (5.32)

and consequently the first order symmetry scalar self-energy
is given by

�S
sym(ρ) ≈ − 4π2D1

M 2
· [F 1

u (1) − F 1
d (1)

]
ρ, (5.33)

and the corresponding contribution to the symmetry energy is

E1st,S
sym (ρ) ≈ −2π2D1

M 2

M∗
0

e∗
F

· [F 1
u (1) − F 1

d (1)
]
ρ. (5.34)

Due to the empirical knowledge on the nucleon Dirac effective
mass in SNM, the scalar self-energy part of the symmetry
energy strongly depends on the structure of the u/d quark
condensates, especially the isospin part, i.e., the properties of
the function F 1

u/d. The D1 is given by D1 = σN/2mq, thus

E1st,S
sym (ρ) ≈ −π2σN〈qq〉vac

M 2mq
·
[
F 1

u (1) − F 1
d (1)

]
ρ

〈qq〉vac
. (5.35)

If the u quark in PNM restores its chiral symmetry first,
i.e., 〈uu〉ρ approaches zero earlier than 〈dd〉ρ as the density
increases, then E1st,S

sym (ρ) is positive; on the opposite side,
E1st,S

sym (ρ) is negative. In the msQCDSR, one has E1st,S
sym (ρ) > 0,

i.e., the u quark in PNM restores its chiral symmetry earlier
than the d quark. When we consider higher order terms in den-
sity (characterized by F θ

u/d) in the chiral condensates, different
patterns may emerge. It indicates that one can constrain the
density dependence of the chiral condensates via the empirical
knowledge of the symmetry energy within a reasonable den-
sity region. This is one of the motivations to include the higher
order density terms in the chiral condensates as in Eq. (3.137),
which will be further explored in detail in Sec. VIII.

VI. MORE DISCUSSIONS ON EHO(ρ)

In this section, we study the effects of the high order
effects of the EOS of ANM. In order to study the parabolic
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FIG. 6. Symmetry energy as well as its parabolic approximation.
The physical meaning is given in the main context. Parameters used
are the same as those used in Fig. 5.

approximation of the EOS of ANM, we add terms into the
QCDSR equations eventually. For example, based on the
msQCDSR, we add the four-quark condensates of the form
〈qq〉2

ρ,δ , i.e.,

〈qq〉2
ρ,δ −→ (1 − f )〈qq〉2

vac + f 〈qq〉2
ρ,δ ≡ Bq

4( f ) ≡ ˜〈qq〉2
ρ,δ,

(6.1)

into the QCDSR equation, and call the corresponding QCDSR
the simple QCDSR (abbreviated as sQCDSR), which is de-
noted by CB = 1. Specifically, the relevant QCDSR equations
are modified as [where t = −1 is adopted in Eqs. (6.2) and
(6.3)]

proton(p) :
M 6

32π4
−→ M 6

32π4
+ 2

3
Bd

4( f ), (6.2)

neutron(n) :
M 6

32π4
−→ M 6

32π4
+ 2

3
Bu

4( f ), (6.3)

compared with Eqs. (5.2) and (5.6) for the msQCDSR, re-
spectively. Similarly, C4 = 1 means four-dimensional con-
densates are included based on CB = CA = 1, etc. The whole
order of adding different types of effects is as follows:
“msQCDSR” (only three-dimensional condensates) → CB =
1 [sQCDSR with Bq

4( f ) included] → CA = 1 (anomalous
effects L−2�η+�On ) → C4 = 1 (four-dimensional conden-
sates) → C5 = 1 (five-dimensional condensates) → CH =
1 (quasihole effects) → CD = 1 (four-quark condensates of
type 〈q†q〉2

ρ,δ , which is absent in vacuum) → “full QCDSR
(fQCDSR)” (CC = 1). In these calculations, the Ioffe param-
eter t = −1 is adopted. In Fig. 6, the symmetry energy and its
parabolic approximation are shown as functions of density in
the above order. It is obvious from the figure that the parabolic
approximation behaves well until the continuum excitations
(CC = 1), characterized by the functions E0, E1, and E2, i.e.,
Eqs. (3.107)–(3.109), are included. For example, in the full
QCDSR (abbreviated as fQCDSR), the EHO at ρ0 is found to
be about EHO(ρ0) ≈ 5.7 MeV. However, the EHO(ρ0) in the
QCDSR to order CD = 1 is about 0.7 MeV.

FIG. 7. EHO and Esym at ρc = 0.11 fm−3 as functions of con-
tinuum excitations factor ω0 (upper) and Borel mass squared M 2

(lower) in fQCDSR.

The investigations on the dependence of the high order
effect EHO(ρ) on the intrinsic parameters of the QCDSR will
be useful for understanding the behavior of the parabolic ap-
proximation of the ANM EOS. In the following, we study the
dependence of EHO(ρ) on the continuum excitation parameter
ω0, the Borel mass M , and the effective four-quark conden-
sates parameter f . In Fig. 7, we show the EHO(ρ) and Esym(ρ)
at (the cross density) ρc = 0.11 fm−3 [67,217,249,250] as
functions of the continuum excitations factor ω0 (upper) and
Borel mass squared M 2 (lower) using the fQCDSR equations.
Since the symmetry energy Esym(ρ) at the cross density ρc

is better constrained [217,250] than that at the saturation
density, we will also focus on the symmetry energy at ρc

besides its value at ρ0 in the following sections. Two main
features of Fig. 7 are necessary to point out: (1) With the
value of ω0 increasing, i.e., as the effects of the continuum
excitations reduces, the parabolic approximation of the EOS
of ANM becomes better, and this finding is consistent with the
results shown in Figs. 6(g) and 6(h) (if ω0 → ∞, there will
be no continuum excitation effects). (2) As the Borel mass
(squared) increases, the parabolic approximation becomes
better, however, the symmetry energy also becomes larger.
The symmetry energy and the EHO display almost opposite
variation tendency with the ω0 and M 2. For example, the
symmetry energy at ρc with M 2 = 1.05 GeV2 is found to
be about 43.1 MeV, which is much larger than the empirical
value of about 26.6 MeV [217], however, the corresponding
EHO(ρc) is found to be about 5.1 MeV. These results show that
the parabolic approximation of the EOS of ANM in QCDSR
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is heavily broken, indicating that the fourth-order symmetry
energy even the higher order terms maybe large.

Now let us study the four-quark effective parameter f on
the EOS qualitatively. The effects of f can be demonstrated
semianalytically in the sQCDSR (including the contributions
from the four-quark condensates of the type 〈qq〉2

ρ,δ based
on the msQCDSR), and then according to Eqs. (2.20) and
(2.21), one can obtain the E0(ρ) and En(ρ), respectively. The
〈qq〉2

ρ,δ type of the four-quark condensates in SNM can be
approximated as

B4( f ) = (1 − f )〈qq〉2
vac + f (〈qq〉vac + aρ)2

≈ 〈qq〉2
vac + 2 f a〈qq〉vacρ ≡ A + B f ρ, (6.4)

where B4 (without superscript) denotes the corresponding
term in SNM, a = σN/2mq,A = 〈qq〉2

vac,B = 2a〈qq〉vac. In
the above approximation, the term proportional to ρ2 is omit-
ted, since we are only interested in low density behavior of the
EOS. The nucleon effective mass is given by (Ioffe parameter
t = −1 in this estimate)

M∗
0 (ρ) = − (M 4/4π2)〈qq〉ρ

M 6/32π4 + (2/3)B4( f )

≈ − M 4

4π2D
〈qq〉ρ ·

(
1 − 2B

3D
f ρ

)
, (6.5)

where 〈qq〉ρ is the chiral condensate in SNM, and

D = M 6

32π4
+ 2A

3
= M 6

32π4
+ 2

3
〈qq〉2

vac. (6.6)

Thus, M∗
0 (ρ) ≈ I1 + I2ρ + O(ρ2), with

I1 = −M 4〈qq〉vac

4π2D
, (6.7)

I2 = − M 4

4π2D

(
a − 2B f 〈qq〉vac

3D

)
. (6.8)

In a very similar manner, one can obtain the approximation
for the vector self-energy,

�0
V(ρ) ≈ M 4

12π2D
8〈q†q〉ρ ·

(
1 − 2B

3D
f ρ

)
, (6.9)

using the expression for 〈q†q〉ρ , then �0
V(ρ) ≈ S2ρ + O(ρ2)

with S2 = M 4/π2D. Then according to Eq. (2.20), one ob-
tains

E0(ρ) ≈ I1 − M + 3

10I1

(
3π2

2

)2/3

ρ2/3 + 1

2
(I2 + S2)ρ,

(6.10)

to order ρ. The first term on the right hand side should be zero
since E0(0) = 0, leading to M = −M 4〈qq〉vac/4π2D [251],
and one obtains the following approximation for the EOS of
SNM:

E0(ρ) ≈ EFFG
0 (ρ) + 1

2 (I2 + S2)ρ, (6.11)

where EFFG
0 (ρ) = 3k2

F/10M is the free Fermi gas (FFG) pre-
diction on the EOS of SNM; using the expressions for I2 and

S2, the EOS of SNM can finally be written as

E0(ρ) ≈ EFFG
0 (ρ) + 1

2

Mρ

〈qq〉vac

×
[

σN

2mq

(
1 + 16π2 f

3

M〈qq〉vac

M 4

)
− 4

]
. (6.12)

Similarly, the nucleon effective mass in PNM could be
approximated as M∗

n (ρ) ≈ I1 + W2ρ, with W2 = (1 − α/β )I2,
and �n

V(ρ) ≈ 5S2ρ/4 + O(ρ2), then the EOS of PNM is
given approximately by

En(ρ) ≈ EFFG
n (ρ) + 1

2

(
W2 + 5

4
S2

)
ρ

= EFFG
n (ρ) + 1

2

Mρ

〈qq〉vac

×
[(

1 − α

β

)
σN

2mq

(
1 + 16π2 f

3

M〈qq〉vac

M 4

)
− 5

]
,

(6.13)

where EFFG
n (ρ) = 3k2

F,n/10M ∼ ρ2/3 is the FFG prediction on
the EOS of PNM. This expression is already very interesting.
For example, since the EOS of PNM at very low densities (say
densities smaller than 0.01 fm−3) could be determined very
accurately by simulations or microscopic calculations, there
exists a relation between several fundamental quantities and
the model parameters in the QCDSR, such as the four-quark
effective parameter f , the nucleon-sigma term σN (the factor
α/β also depends on σN), the chiral condensate in vacuum, the
light quark mass, and the Borel mass. Specifically, a positive
f parameter leads to a reduction on the En(ρ), which will
be verified numerically in the following sections (e.g., see
Fig. 28). Moreover, as discussed in Sec. III F, the parameter
f would be essentially determined by the EOS of PNM at a
very low density ρvl ≈ 0.02 fm−3, and it is also indicated in
Eq. (6.13). Based on the approximations for E0(ρ) and En(ρ),
the symmetry energy obtained in the parabolic approximation
is roughly given by

Epara
sym (ρ) ≈ EFFG

sym,para(ρ) − 1

2

Mρ

〈qq〉vac

×
[
α

β

σN

2mq

(
1 + 16π2 f

3

M〈qq〉vac

M 4

)
+ 1

]
,

(6.14)

where the kinetic symmetry energy in the parabolic approxi-
mation is given by

EFFG
sym,para(ρ) ≡ EFFG

n (ρ) − EFFG
0 (ρ)

= (22/3 − 1)EFFG
0 (ρ) ≈ 0.59EFFG

0 (ρ). (6.15)

On the other hand, when using the exact nucleon self-
energy decomposition formula Eq. (2.22) for calculating
the symmetry energy, one obtains Ekin

sym(ρ) = (3/5)EFFG
0 (ρ),

E1st,S
sym (ρ) ≈ −2−1(α/β )ρI2, and E1st,V

sym (ρ) ≈ 8−1ρS2, in the
same approximation level (i.e., in the sQCDSR). Interest-
ingly, the potential part of the symmetry energy in the two
approaches is found to be the same at this order (i.e., order ρ),
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FIG. 8. EOS of SNM and that of PNM as functions of density
with different f using in fQCDSR. Parameters are the same as these
used in Fig. 5.

and only the kinetic part introduces the corresponding high
order effects, which is about −0.01EFFG

0 (ρ). Going beyond
the linear order in density, the f parameter will come into
play in the high order effects of the EOS EHO(ρ). Moreover,
the above qualitative analysis (approximation) on the En(ρ),
E0(ρ), and Esym(ρ) is useful for further investigations on,
e.g., the correlation between the role played by the four-quark
condensates and the EOS of ANM, as mentioned just above.
Furthermore, if one takes f = 0 in Eq. (6.13), then the En(ρ)
could be written as [111]

En(ρ) ≈ EFFG
n (ρ) + 1

2

Mρ

〈qq〉vac

[(
1 − α

β

)
σN

2mq
− 5

]
, (6.16)

which depends only on several fundamental quantities, such
as mq, 〈qq〉vac, and σN, and not on the effective parameters
f and M 2. Despite its simplicity, Eq. (6.16) already has the
power of quantitative predictions at very low densities. We
will discuss more on this point in the following sections.

In Fig. 8, the effects of the parameter f on the EOS of
SNM and that of PNM in the fQCDSR are shown. Although
the predictions on E0(ρ) and En(ρ) are quantitatively incor-
rect compared to their empirical constraints, the effects of
f are obvious, which are consistent with the estimate given
in Eqs. (6.12) and (6.13), i.e., as f increases, the E0(ρ)
and En(ρ) are both enhanced correspondingly. However, the
enhancement on En(ρ) due to f is less than that on E0(ρ) as
shown from Eqs. (6.12) and (6.13) by a factor α/β, leading to
the result that as f increases, the symmetry energy is reduced;
see Eq. (6.14). The numerical results on the Esym(ρ) and
EHO(ρ) using the fQCDSR equations are shown in Fig. 9. For
example, the high order effects in the EOS at ρc = 0.11 fm−3

with f = 0, 0.25, and 0.5 are found to be about 7.5, 6.6, and
6.3 MeV, respectively, and those values at ρ0 = 0.16 fm−3

are found to be about 8.8, 7.4, and 6.4 MeV, respectively.
These results again, when combining the features shown in
Fig. 7 and that the Borel mass squared was constrained to
fall within about 0.8 GeV2 � M 2 � 1.4 GeV2 [234] together
with the continuum excitation factor about 2 GeV2 � s∗

0 ∼
ω2

0 � 3 GeV2 [99], indicate that the high order term EHO(ρ)

FIG. 9. Esym (left) and EHO (right) as functions of density with
different f in fQCDSR. Other parameters are the same as these used
in Fig. 5.

at the cross density ρc and at the saturation density ρ0 are
generally not small (e.g., � 1MeV).

Finally, it is useful to generally analyze the origin of the
possible breakdown of the parabolic approximation of the
EOS of ANM in the QCDSR framework. In the msQCDSR,
the density dependence of the chiral condensates has the
following structure:

〈qq〉u,d
ρ,δ = 〈qq〉vac + a(1 ∓ ξδ)ρ; (6.17)

see Eq. (3.126), where a = σN/2mq and ξ = α/β. Moreover,
the nucleon Dirac effective mass and the vector self-energy
are given as M∗

J ∼ 〈qq〉u,d
ρ,δ and �J

V ∼ 〈q†q〉u,d
ρ,δ; see Eqs. (5.8)

and (5.9), respectively. Then, the corresponding contribution
originating from the scalar self-energy to the EOS of SNM via
Eq. (2.20) can be obtained from the following estimate:

E0(ρ) ∼ 1

ρ

∫ ρ

0
dρ

(
�0

S + �0
V + k2

F

2
(
M + �0

S

) + · · ·
)

or, roughly ∼aρ/2, where “· · · ” in the above expression
denotes relativistic corrections. Moreover, the relevant con-
tribution to EOS of PNM is roughly given by a(1 − ξ )ρ/2
via Eq. (2.21). Consequently, the symmetry energy obtained
using the parabolic approximation, i.e., Epara

sym (ρ), is roughly
−aξρ/2. It can be easily shown that the contribution of the
vector self-energy to the symmetry energy exactly cancels in
the parabolic approximation and in the self-energy decompo-
sition for the Esym(ρ) in the msQCDSR both are 4π2ρ/M 2;
see Eq. (5.22). Consequently, the scalar self-energy con-
tribution to the symmetry energy via the decomposition is
roughly given by −(M∗

0/e∗
F)aξρ/2 via simply subtracting

a(1 − ξ )ρ/2 and aρ/2 and multiplying a factor M∗
0/e∗

F. Thus
EHO(ρ) = Epara

sym (ρ) − Esym(ρ) is found to be

EHO(ρ) ∼ −1

2
aξρ

(
1 − M∗

0

e∗
F

)
, (6.18)

where the overall factor is unimportant for the qualita-
tive demonstration. At low densities, e∗

F = (M∗,2
0 + k2

F)1/2 ≈
k2

F/2M∗
0 + M∗

0 ≈ M∗
0 , indicating that the expression in the

parentheses in Eq. (6.18) is small. As density increases, the
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EHO(ρ) by Eq. (6.18) increases eventually, leading to the
increasing of the high order effects eventually. For example,
keeping only the leading order term in (kF/M∗

0 )2, one obtains
the high order effect as

EHO(ρ) ∼ −aξk2
Fρ/4M∗,2

0 , (6.19)

in the msQCDSR. It shows that the high order effect EHO(ρ)
is negative (see the left panel of Fig. 5).

Furthermore, when considering higher order terms in den-
sity in the chiral condensates, e.g.,

〈qq〉u,d
ρ,δ = 〈qq〉vac + a(1 ∓ ξδ)ρ + b(1 ∓ ζ δ)ρθ , θ > 1,

(6.20)

and assuming other quark/gluon condensates remain un-
changed, then the integration of EOS from Eqs. (2.20) and
(2.21) gives roughly −(θ + 1)−1bζρθ to the symmetry energy
from the ρθ term. And the corresponding term using the
self-energy decomposition of the symmetry energy is given by
−(M∗

0/e∗
F)bζρθ/2; consequently the difference becomes now

E θ term
HO (ρ) = Epara,θ term

sym (ρ) − E θ term
sym (ρ)

∼ −bζρθ

(
1

θ + 1
− 1

2

M∗
0

e∗
F

)
≈ 1

2
bζρθ θ − 1

θ + 1
; (6.21)

the last line is valid at low densities where M∗
0 ≈ e∗

F is a good
approximation. It is obvious from this expression the EHO(ρ)
will not be small even at low densities, and the high order
effects become more and more important as density increases
since when keeping the term in (kF/M∗

0 )2, one has

E θ term
HO (ρ) ≈ 1

2
bζρθ θ − 1

θ + 1
− 1

4
bζ

(
kF

M∗
0

)2

ρθ . (6.22)

The first term is absent if θ = 1 and in this case the second
term is relatively small owing to the small factor (kF/M∗

0 )2.
On the other hand, the higher order terms in density in the
chiral condensates are naturally essential as density increases,
e.g., the linear approximation (3.126) breaks down eventually.
Combining these analyses, it is intuitive to conclude that
one of the main reasons for the breakdown of the parabolic
approximation for the EOS of ANM in the QCDSR may be
the higher order density terms in the chiral condensates, and
this finding will be justified in the numerical studies in the
following sections. The other effects, such as the continuum
excitations, may also lead to the breakdown of the parabolic
approximation.

VII. FULL CALCULATIONS ON EOS OF ANM

After three sections on the nucleon mass in vacuum, the
self-energy structure of the symmetry energy, and the high
order effects of the EOS of ANM (mainly qualitatively)
given above, we now systematically investigate the EOS of
ANM through the full QCDSR calculations. It is necessary to
mention again that the default parameters used are the same
as these used in Fig. 5 except ω0, i.e., mq = 3.5 MeV,ms =
95 MeV, f = 0,M 2 = 1.05 GeV2, σN = 45 MeV, and ω0 =

FIG. 10. Nucleon self-energies in SNM as functions of den-
sity with different values of ω0 (left), M 2 (center), or f (right),
respectively.

1.5 GeV. In this section, the dependence of the physical
quantities on ω0, M 2, f , and σN will be studied carefully.
Moreover, the Ioffe parameter t ≈ −1.22 is determined in
this section self-consistently via the scheme for the nucleon
mass in vacuum given in Sec. IV. This section is organized as
follows: The nucleon self-energies in SNM will be explored
first in Sec. VII A; then the symmetry energy with its self-
energy decomposition will be studied in Sec. VII B; Sec. VII C
studies the correlation between the symmetry energy and
the quark/gluon condensates, and finally the first QCDSR
parameter set in this work, i.e., QCDSR-1 [or the naive
QCDSR in the sense only the linear density terms in the chiral
condensates, i.e., Eq. (3.137), are included], will finally be
given in Sec. VII D. Shortcomings of QCDSR-1 together with
the possible improvements will also be given.

A. Nucleon self-energies in SNM

In Fig. 10, the nucleon self-energies in SNM as functions
of density with different values of ω0, M 2, or f , respectively,
are shown. It is obvious that these three parameters all have
obvious effects on the vector self-energy �0

V, while ω0 and
M 2 have little impacts on the scalar self-energy �0

S, and the
effects of the parameter f on both the �0

S and �0
V are shown

to be sizable (similar phenomena are also displayed in Fig. 8).
Fig. 11 shows the nucleon Dirac effective mass in SNM

M∗
D ≡ M∗

0 = M + �0
S(ρ), as a function of density with differ-

ent f , where the empirical constraint on the nucleon Dirac
effective mass in SNM about M∗

D(ρ0)/M ≈ 0.6 ± 0.1, e.g.,
by analyzing the energy level splitting data in several typ-
ical finite nuclei (e.g., see Ref. [79]), is also shown. The
QCDSR gives a reasonable result for M∗

D, for instance, the
M∗

D(ρ0)/M is found to be about 0.45 for f = 0, 0.53 for
f = 0.25, and 0.64 for f = 0.5. In Fig. 12, the ratio of
�0

V and �0
S as a function of density with different f or

ω0 is shown. Specifically, �0
V(ρ)/�0

S(ρ) ≈ −0.7 ∼ −0.3, or
�0

V(ρ)/�0
S(ρ) ≈ −0.5 ± 0.2, within a wide range of den-

sities, is obtained. The nearly constant ratio �0
V(ρ)/�0

S(ρ)
indicates that the density dependence of the self-energies is
almost linear. In Figs. 13 and 14, the �0

V and �0
S as functions

of the Borel mass squared or the continuum excitation factor
ω0 with different f at the cross density ρc = 0.11 fm−3 are
shown. The M 2 dependence of �0

V and �0
S at other densities is
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FIG. 11. Nucleon Dirac effective mass in SNM as a function of
density with different f , M∗

D ≡ M∗
0 .

also studied, which shows very similar behavior. Interestingly,
the QCDSR window for the Borel mass squared M 2, i.e., the
region where the dependence of the quantities on M 2 is weak
even to be insensitive, from Fig. 13 is found to be roughly
about 1 GeV2 � M 2 � 1.5 GeV2, which is consistent with
the early studies on it; e.g., Ref. [234] gave about 0.8 GeV2 �
M 2 � 1.4 GeV2. Furthermore, the effects of f on both the
scalar and the vector self-energies are found to be obvious
from Fig. 13; see also Fig. 10. Figures 10–14 together demon-
strate that the four-quark condensates have sizable effects on
the self-energies. Investigations on the four-quark condensates
from more fundamental approaches (instead of only using the
effective parameter f ) thus will be extremely important for
making further progress in the QCDSR method. In Fig. 15, the
density dependence of �0

V and �0
S with different σN is shown.

It is clearly shown that the sigma term σN strongly affects the
scalar self-energy. The reason is that the density dependence
of �0

S is directly determined by the σN. For instance, in the
msQCDSR, one has

�0
S(ρ) = −8π2

M 2

(
〈qq〉vac + σNρ

2mq

)
− M, (7.1)

FIG. 12. Ratio of �0
V and �0

S as a function of density with
different f or ω0.

FIG. 13. �0
V and �0

S as functions of Borel mass squared with
different f at ρc = 0.11 fm−3.

i.e., �0
S(ρ) linearly decreases as the density ρ increases. On

the other hand, the effects of σN on the vector self-energy
�0

V are found to be essentially small, through the full QCDSR
calculations. Actually, the �0

V is independent of the σN in the
msQCDSR.

In Fig. 16, the density dependence of �0
V and �0

S obtained
order by order according to the same scheme used in Fig. 6
is shown. Since the density dependence of the quark/gluon
condensates adopted in this section is linear (without the
higher order density terms), the predictions on the dependence
of the self-energies are also found to be roughly linear. The
change on the scalar self-energy �0

S from the msQCDSR to
the fQCDSR is relatively smaller than that on the vector self-
energy �0

V. For example, at ρ0 = 0.16 fm−3, �S(ρ0) changes
from −464 MeV in the msQCDSR to −506 MeV in the
fQCDSR. However, for the �V(ρ0), it changes from 370 MeV
in the msQCDSR to 170 MeV in the fQCDSR, inducing a
−54% relative change.

Another feature in Fig. 16 is that the predictions on the
scalar self-energy in the msQCDSR (black solid line) and in
the sQCDSR (red dash line) are exactly the same. This can be
proved as follows. In the msQCDSR, the expression for the
effective mass is given by (in order to make a general proof
here the Ioffe parameter can take any value instead of being

FIG. 14. �0
S (left) and �0

V (right) as functions of ω0 with different
f at ρc = 0.11 fm−3.
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FIG. 15. �0
V and �0

S as functions of density with different values
of σN.

set to −1; 〈qq〉ρ is the chiral condensate at finite densities in
SNM)

M∗
0 (ρ) = −16π2c1

c4

〈qq〉ρ
M 2

, (7.2)

or equivalently c1/c4 = −M 2M∗
0/16π2〈qq〉ρ ; taking it at

zero density leads to c1/c4 = −M 2M/16π2〈qq〉vac, thus one
obtains the following formula for the nucleon scalar self-
energy as a function of density:

�
0,msQCDSR
S (ρ) = M∗

0 (ρ) − M

= M

[ 〈qq〉ρ
〈qq〉vac

− 1

]
, (7.3)

which is independent of the parameters c1 and c4. Similarly, in
the sQCDSR, one has an extra term, i.e., c1〈qq〉2

vac/6 ≡ c1I in
the QCDSR equations, and the corresponding effective mass
is given by

M∗
0 (ρ) = − (c1/16π2)M 4〈qq〉ρ

(c4/256π4)M 6 + c1I
; (7.4)

solving it gives

c1

c4
= − (M/256π4)M 6

(1/16π2)M 4〈qq〉vac + MI , (7.5)

FIG. 16. Density dependence of �0
S (left) and �0

V (right) ob-
tained order by order as the same meaning in Fig. 6.

FIG. 17. Symmetry energy with its self-energy decompositions
as functions of density in fQCDSR.

or equivalently

M = − (c1/16π2)M 4〈qq〉vac

(c4/256π4)M 6 + c1I
, (7.6)

thus

�
0,sQCDSR
S (ρ) = M∗

0 (ρ) − M

= −
c1
c4

M 4〈qq〉vac

16π2

[ 〈qq〉ρ
〈qq〉vac

− 1
]

M 6

256π4 + c1I
c4

= M

[ 〈qq〉ρ
〈qq〉vac

− 1

]
, (7.7)

i.e., the scalar self-energy �0
S(ρ) obtained in sQCDSR is

still given by Eq. (7.3), furnishing the proof. When other
condensates are included in the QCDSR equations, however,
there will be no close expression for the scalar self-energy.

B. Symmetry energy

In this subsection, we generally study the self-energy de-
composition of the symmetry energy through the full QCDSR
equations without any fitting scheme. The five terms in
Eq. (2.22) are the kinetic symmetry energy Ekin

sym(ρ), contri-
butions from momentum dependence of the scalar self-energy
Emom,0,S

sym (ρ) and that of the vector self-energy Emom,0,V
sym (ρ),

first order symmetry scalar self-energy E1st,S
sym (ρ), and the

first order symmetry vector self-energy E1st,V
sym (ρ), respec-

tively. In Fig. 17, each term as a function of density is
shown. For example, at the cross density ρc = 0.11 fm−3,
one has Ekin

sym(ρc) ≈ 14.9 MeV, Emom,0,S
sym (ρc) ≈ −4.3 MeV,

Emom,0,V
sym (ρc) ≈ 2.5 MeV, E1st,S

sym (ρc) ≈ 12.3 MeV, and simi-
larly E1st,V

sym (ρc) ≈ 18.6 MeV, leading to the total symmetry
energy about Esym(ρc) ≈ 44.1 MeV. Obviously, the value of
the total symmetry energy at ρc is much larger than the empir-
ical constraints on it, e.g., the one obtained by analyzing the
binding energy difference between a heavy isotope pair gives
Esym(ρc) ≈ 26.65 ± 0.2 MeV [217]. As a reference, we also
give these symmetry energy terms at the saturation density ρ0;
they are about 23.9, −5.0, 5.2, 14.7, and 25.4 MeV, leading to

024303-22



RELATIVISTIC SELF-ENERGY DECOMPOSITION OF … PHYSICAL REVIEW C 100, 024303 (2019)

FIG. 18. The same as Fig. 17 but for the slope parameter of the
symmetry energy.

Esym(ρ0) ≈ 64.2 MeV. Despite the large discrepancy between
the symmetry energy from the fQCDSR and the empirical
constraints, the QCDSR predicts the sign of the momentum
dependence of the nucleon self-energies, i.e.,

Emom,0,S
sym (ρ) = kF

6

M∗
0

e∗
F

d�0
S

d|k|
∣∣∣∣
|k|=kF

< 0, (7.8)

Emom,0,V
sym (ρ) = kF

6

d�0
S

d|k|
∣∣∣∣
|k|=kF

> 0, (7.9)

and these relations will be further studied in Sec. VII D and
the following sections when the fitting scheme (Sec. III F) is
adopted.

The slope parameter of the symmetry energy, i.e.,
L(ρ) = 3ρdEsym(ρ)/dρ [it is easy to recognize meaning
of L from the context since we use the same letter for the
slope parameter of the symmetry energy and the anomalous
dimension of the interpolation field defined in Eq. (3.106)],
can similarly be decomposed as different nucleon self-energy
terms; see Ref. [41] for more details. However, the most
straightforward manner is to calculate each symmetry energy
decomposition term, i.e., L j (ρ) = 3ρdE j

sym(ρ)/dρ with
j = “kin,” “mom,0,S,” “mom,0,V,” “1st,S,” and “1st,V.”
In Fig. 18, the density dependence of these terms is
shown, and for instance, at the cross density ρc, one
obtains Lkin(ρc) ≈ 51.4 MeV, Lmom,0,S(ρc) ≈ −8.7 MeV,
Lmom,0,V(ρc) ≈ 13.7 MeV, L1st,S(ρc) ≈ 23.0 MeV, and
L1st,V(ρc) ≈ 45.8 MeV, leading to L(ρc) ≈ 125.1 MeV.
The value of L(ρc) is similarly found to be much larger
than the constraint on it, e.g., L(ρc) ≈ 46 ± 4.5 MeV from
Ref. [217] by analyzing the correlation between the neutron
skin thickness of the neutron-rich heavy nuclei and the L
parameter. As a reference, we also list these terms at the
saturation density; they are 100.6, −4.9, 32.6, 14.9, and
65.9 MeV, respectively, and L ≡ L(ρ0) ≈ 209.2 MeV. Thus,
the prediction on the L parameter from the QCDSR without
any fitting scheme is much larger than the empirical one both
at the cross density and at the saturation density, for example,
the L parameter at ρ0 was nowadays better constrained to be
about 60 ± 30 MeV (see, e.g., Refs. [20,67,68,70]).

FIG. 19. Symmetry energy as a function of density with different
ω0 (left), M 2 (center), or f (right).

In Fig. 19, the symmetry energy as a function of density
with different ω0, M 2, or f is shown. It is clearly shown from
the figure that the effects of ω0 and M 2 are comparatively
larger than those of f . This could be easily understood; e.g.,
according to Eq. (6.14), the effects of the f term on the
symmetry energy is mainly characterized by the factor ξ ≡
(α/β ) f ≈ 0.1 f . Thus there is no surprise that the effects of
the parameter f on the symmetry energy is smaller than those
on the EOS of SNM or that of PNM since the relevant term in
E0(ρ) or En(ρ) is directly proportional to f or (1 − α/β ) f ;
see the relevant analyses in Sec. VI, i.e., Eqs. (6.12) and
(6.13). It means that the effects of f on the symmetry energy
is roughly canceled; see the left panel of Fig. 9 for a similar
calculation.

In Fig. 20, the density dependence of the self-energy de-
composition of the symmetry energy is shown with different
σN. The effects of σN on the kinetic symmetry energy Ekin

sym(ρ)
is found to be large and it could be understood as follows:
as σN increases, then according to, e.g., Eq. (5.10) from
the msQCDSR, one finds that the effective mass M∗

0 (ρ) is
reduced. Consequently, e∗

F is also reduced, leading to the
enhancement on the kinetic symmetry energy k2

F/6e∗
F. For

instance, the Ekin
sym(ρ0) changes from about 19.2 MeV at

σN = 30 MeV to 30.9 MeV at σN = 60 MeV, roughly a 61%
relative increase. However, on the other hand, the factor y ≡
M∗

0/e∗
F ≈ 1 − x2/2 decreases as x ≡ kF/M∗

0 increases. Then
according to Eq. (5.21), whether E1st,S

sym (ρ) ∼ yσN is enhanced
or reduced depends on the competition between the enhance-
ment factor σN and the reduction factor y, and the final effect
is found to reduce the E1st,S

sym (ρ) at a fixed density, as shown
in Fig. 20(d), i.e., the factor y wins the competition over σN.
Besides Ekin

sym(ρ) and E1st,S
sym (ρ), the effects of σN on the other

three terms are very nontrivial and could not be analyzed in
a semianalytical manner. The Emom,0,S

sym (ρ) and Emom,0,V
sym (ρ),

for instance, are found to be enhanced from about −4.8 to
−3.6 MeV and 2.2 to 3.0 MeV as σN changes from 30 to
60 MeV, respectively, and the E1st,V

sym (ρ) is almost unaffected.
Moreover, as shown in Fig. 20, the enhancement due to the
increasing of σN on the kinetic symmetry energy is much
larger than the reduction on E1st,S

sym (ρ), leading to the enhance-
ment on the total symmetry energy, as shown in the left panel
in Fig. 21. For example, if one takes σN = 45 ± 15 MeV as
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FIG. 20. Density dependence of the self-energy decomposition of the symmetry energy with different σN.

shown in the left panel in Fig. 21, then the uncertainty on the
symmetry energy is found to be about 3.5 MeV (12.3 MeV)
at ρc (ρ0). Furthermore, the σN affects the density dependence
of the symmetry energy in the sense that a smaller σN induces
a softer symmetry energy, i.e., a smaller slope parameter
L. Specifically, the relative change generated by varying σN

from 30 to 60 MeV on the L parameter shown in the left
panel of Fig. 21 is about 73%. The connection between the
nucleon-sigma term σN and the parameter L itself provides a
possible mechanism to investigate the density dependence of
the symmetry energy.

Interestingly, as shown in the right panel in Fig. 21, a larger
mass of the s quark will induce a smaller symmetry energy. In
fact, one can find that the effects of s quark mass ms come
into play in the symmetry energy through the parameters α

and β defined in Eq. (3.121). For instance, taking a smaller
(larger) value of the s quark mass, e.g., ms = 60 MeV (ms =
130 MeV), one then obtains α ≈ 0.29 (0.14) and β ≈ 1.71
(1.86), leading to α/β ≈ 0.17 (0.08). Then according to the
expression for �S

sym(ρ) from the msQCDSR [see Eq. (5.16)],
one can easily find that a smaller (larger) ms induces a larger
(smaller) E1st,S

sym (ρ), shown in the left panel in Fig. 22 [e.g., the
�1st,S

sym (ρc) changes from about 8.2 to 21.5 MeV as ms changes
from 130 to 60 MeV, inducing an effect about 13.3 MeV].
On other hand, the s quark mass only affects the E1st,V

sym (ρ) in
a more minor manner through the total QCDSR equations,

FIG. 21. Symmetry energy as a function of density with different
σN (left) or ms (right).

shown in the right panel in Fig. 22 (the corresponding effect
is found to be about 2.4 MeV at ρc), i.e., the change on
the E1st,V

sym (ρ) due to the ms is relatively small compared
to its effects on E1st,S

sym (ρ). From the decomposition (2.22),
ms obviously has no effects on the other three terms, i.e.,
Ekin

sym(ρ), Emom,0,S
sym (ρ), and Emom,0,V

sym (ρ) (since these terms only
involve the symmetric quantities). These analyses finally lead
to the conclusion that considering the ms uncertainties will
induce sizable effects on the total symmetry energy. To our
best knowledge, since there exist no similar analyses on the
relation between the symmetry energy and the s quark mass,
our studies on it may provide new insights into the physical
origin of as well as the uncertainties on the nuclear symmetry
energy with respect to the s quark mass.

In Fig. 23, we show the density dependence of the sym-
metry energy obtained order by order. One can find that the
four-quark condensates of the type (3.105) essentially have
large effects on the symmetry energy (from the msQCDSR
with black solid line to the sQCDSR with red dash line
denoted by “CB = 1”). For instance, the symmetry energy
at ρc (ρ0) in the msQCDSR is found to be about 61.2 MeV
(88.9 MeV). On the other hand, the Esym in the sQCDSR at ρc

(ρ0) is found to be about 49.8 MeV (72.3 MeV), generating
a reduction of about 11.4 MeV (16.6 MeV), respectively.
Once Eq. (3.105) is included in the QCDSR equations, the
following effects are found to be much smaller compared to

FIG. 22. E 1st,S
sym (left) and E 1st,V

sym (right) as functions of the density
with different ms.
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FIG. 23. Density dependence of the symmetry energy obtained
order by order as the same scheme in Fig. 6.

those from Eq. (3.105). These estimates demonstrate again the
importance of the four-quark condensates (3.105).

Finally, the self-energy decomposition of the symmetry
energy with different ω0/M 2/ f is shown in Fig. 24. The
order by order results on these terms are also shown in the
fourth row. Several features are necessary to be pointed out
from these figures: (1) At a fixed density, the effects of the
continuum excitation factor ω0 on each decomposition term
are positive correlated, i.e., a smaller (larger) ω0 corresponds
to a smaller (larger) Emom,0,S

sym (ρ) or Emom,0,V
sym (ρ) or E1st,S

sym (ρ)
or E1st,V

sym (ρ), and ω0 almost does not affect Ekin
sym(ρ). (2) The

effects of the Borel mass squared M 2 on the Emom,0,S
sym (ρ) or

Emom,0,V
sym (ρ) or E1st,S

sym (ρ) are similar like ω0. However, as M 2

increases, E1st,S
sym (ρ) is shown to be reduced, and the overall

effects of M 2 are shown to enhance the symmetry energy (see
also Fig. 19). (3) As the four-quark condensates parameter
f increases, the effective mass M∗

0 (and consequently e∗
F)

increases according to Eq. (6.5), leading to the reduction on
the kinetic symmetry energy at a fixed density, as shown
in the left panel of row 3 in Fig. 24. (4) For the order by
order calculations, the continuum excitation effects are found
to be large on Emom,0,S

sym (ρ), Emom,0,V
sym (ρ), and E1st,S

sym (ρ); see
the black dotted lines shown in the second, third, and fourth
panels (from left) in the fourth row of Fig. 24. Features
shown in these figures clearly establish the close relationships
between the self-energy decomposition terms of the symmetry
energy and the effective parameters appearing in the QCDSR,
providing important guidelines to understand the physical
origin of the symmetry energy as well as the corresponding
uncertainties.

C. Correlation between Esym(ρ) and condensates

In this subsection, we study the correlation of the nucleon
self-energies and the symmetry energy with the quark/gluon
condensates. These explorations are useful for generally es-
tablishing the connection between the EOS of ANM in nuclear
physics, and the condensates encapsulating the degrees of
freedom of quarks and gluons in hadronic physics (and related
issues in QCD). The condensates and their uncertainties are

FIG. 24. Self-energy decomposition of the symmetry energy
with different ω0 (upper), M 2 (second line), and f (third line). The
order by order calculations on these decompositions are also shown
(fourth line), and the meaning of different curves is the same as those
in Fig. 23.

listed as follows (see Sec. III E):

〈qq〉vac : −(255 ∼ 220 MeV)3, −(252 MeV)3;

(7.10)〈αs

π
G2

〉
vac

: (330 ± 30 MeV)4, (330 MeV)3; (7.11)

Ga : 325 ± 75 MeV, 325 MeV; (7.12)

Gs : 100 ± 10 MeV, 100 MeV; (7.13)

ϑ1 : 0.1 � ϑ1 � 0.6, 0.35; (7.14)

ϑ3 : 0.0 � ϑ3 � 1.0, 0.51; (7.15)

ϕ1 : 0.2 � ϕ1 � 0.8, 0.55; (7.16)

ϕ2 : 0.1 � ϕ2 � 0.6, 0.34; (7.17)

ϕ3 : 0.0 � ϕ3 � 0.3, 0.145; (7.18)
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FIG. 25. Correlations of the nucleon self-energies in SNM (up-
per) and the symmetry energy (lower) with the 11 condensate param-
eters as well as �QCD, at ρc = 0.11 fm−3.

〈gsqσGq〉p
sym : 0.62 GeV2 ∼ 3 GeV2, 0.62 GeV2; (7.19)

〈gsq
†σGq〉p

sym : −0.33 GeV2 ∼ 0.66 GeV2, 0.66 GeV2;

(7.20)

�QCD : 0.17 ± 0.5 GeV, 0.17 GeV, (7.21)

where the last term in each line represents the central value of
the quantity, and

Ga =
〈αs

π
(E2 − B2)

〉
, Gs =

〈αs

π
(E2 + B2)

〉
. (7.22)

Other parameters introduced in the QCDSR are αs = 0.5,
f = 0, as well as μ = 0.5 GeV, M 2 = 1.05 GeV2, ω0 =
1.5 GeV, σN = 45 MeV, mq = 3.5 MeV, and ms =
95 MeV.

In general, one can in the framework of the QCDSR study
different correlations between the condensates and other phys-
ical quantities, through the QCDSR equations. For example,
in Fig. 25, the correlation between the nucleon self-energies
in SNM �0

S/V(upper panel)/nuclear symmetry energy (low
panel) at the cross density ρc and the condensate properties
is shown. Similarly, a very similar correlation pattern will be
found if one studies the correlation at other densities, e.g., at
ρ0. For the scalar self-energy �0

S, since, e.g., �0
S ∝ −〈qq〉vac

in the msQCDSR [see Eq. (7.1)], a larger chiral condensate
in vacuum naturally leads to a smaller �0

S. Besides the strong

dependence on 〈qq〉vac, both �0
S and �0

V are independent of the
other condensate properties except that �0

S weakly depends on
the five-dimensional parameter 〈gsqσGq〉p

sym.
On the other hand, the dependence of the symmetry energy

on the quark/gluon condensates shows very fruitful patterns
(see the lower panel of Fig. 25), for instance, the positive
correlation between Esym(ρ) and 〈qq〉vac. This could be un-
derstood as follows: as the 〈qq〉vac increases (e.g., moving
from left to right on the horizon axes), the nucleon Dirac
effective mass M∗

0 = M + �0
S is reduced correspondingly

(since �0
S increases), leading to an enhancement on the factor

e∗,−1
F = [k2

F + (M + �0
S)2]−1/2 at a fixed density, thus con-

sequently the kinetic symmetry energy Ekin
sym(ρ) = k2

F/6e∗
F is

enhanced. While on the other hand, other symmetry energy
decomposition terms [defined in Eq. (2.22)] depend weakly
on the chiral condensate in vacuum. More specifically, the
symmetry energy at ρc is changed from 35.1 MeV at 〈qq〉vac =
−(255 MeV)3 to 61.0 MeV at 〈qq〉vac = −(220 MeV)3, gen-
erating an enhancement about 25.9 MeV. More interestingly,
the symmetry energy is found to depend on several other
quantities characterizing the high mass dimensional conden-
sates, and among which the symmetry energy displays the
strongest correlation with the ϑ3 and the 〈gsq†σGq〉p

sym param-
eters. It is not intuitive to understand this strong correlation,
however, these two parameters together determine the density
dependence of the mixing condensates of quarks and gluons,
i.e., 〈gsq†σGq〉ρ,δ ≈ (1 ∓ ϑ3δ)〈gsq†σGq〉p

sym, see Eq. (3.136),
and to our best knowledge, it is the first time to relate the
nuclear symmetry energy to the quark and gluon mixing
condensates, with the latter the very fundamental quantities
in hadronic physics. Thus the strong connection between
Esym(ρ) and 〈gsq†σGq〉ρ,δ provides a useful bridge to explore
the properties of EOS of ANM using the knowledge from
other physics branches (e.g., hadronic physics here).

D. QCDSR-1 (naive QCDSR)

Based on the qualitative analyses given in the above sec-
tions and the full QCDSR calculations given in this section,
we now give the first set of the QCDSR parameters to study
the EOS of ANM. In this subsection and the following two
sections, the main attention will be given to the density depen-
dence of the EOS of SNM, the symmetry energy, and the EOS
of PNM, while the other physical quantities such as depen-
dence of the self-energies on the Borel mass squared, etc., will
not be given (which actually could be obtained very similarly
as the analyses in the above subsections). According to the
fitting scheme given in Sec. III F, the four-quark condensates
parameter f is found to be about f ≈ 0.50. Interestingly, with
only the f parameter, the PNM EOS En(ρ) at the density
ρvl ≈ 0.02 fm−3 and the symmetry energy Esym(ρ) at ρc ≈
0.11 fm−3 could be fitted reasonably within their empirical
ranges (Sec. III F), i.e., En(ρvl) ≈ 4.2 MeV [143,144] and
Esym(ρc) ≈ 26.65 ± 0.2 MeV [217]. In the following, we call
this QCDSR parameter set QCDSR-1, or the naive QCDSR,
in the sense that only the linear approximation of the chiral
condensates is used [i.e., without the � term in Eq. (3.137)].
Moreover, the twist-4 four-quark condensates will not be
included in this section and in the next section, and we explore
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FIG. 26. Density dependence of the symmetry energy and its
self-energy decomposition in QCDSR-1. The corresponding results
(shown by thin lines) from the RMF model calculations with the
FUSGold interaction are also included for comparison (note that The
E 1st,S

sym , Emom,0,S
sym , and Emom,0,V

sym are identically zero for FSUGold).

this type of condensate on the EOS of ANM in some detail in
Sec. IX.

In Fig. 26, the symmetry energy as well as its self-energy
decomposition [see Eq. (2.22)] are shown. Specifically,
the symmetry energy at cross density ρc = 0.11 fm−3

is found to be about Esym(ρc) ≈ 26.9 MeV (slightly
larger than the one adopted in the fitting scheme), while
the corresponding decomposition terms are found to be
about Ekin

sym(ρc) ≈ 11.6 MeV, Emom,0,S
sym (ρc) ≈ −6.6 MeV,

Emom,0,V
sym (ρc) ≈ 0.6 MeV, E1st,S

sym (ρc) ≈ 12.9 MeV, and
E1st,V

sym (ρc) ≈ 8.4 MeV, respectively. As a reference, the
symmetry energy as well as the corresponding decomposition
terms at ρ0 are found to be about 45.1, 17.4, −9.1, 1.2,
21.4, and 14.2 MeV, respectively. It is obvious that the
Esym(ρ0) from the naive QCDSR is still some larger than
its empirical constraints (e.g., about 32 ± 3 MeV). As is
shown in Fig. 26, the momentum dependence of the nucleon
scalar (vector) self-energy is negative (positive) within the
density region, which is consistent with the results obtained
in the last section without adopting the fitting scheme.
However, as mentioned in the above sections, the magnitude
of the momentum dependence of the nucleon self-energies is
essentially weak (both the blue and green lines), leading to
a relative smaller contribution to the symmetry energy. For
comparison, we also include in Fig. 26 the corresponding
predictions from the phenomenological nonlinear RMF
model with the celebrated parameter set FSUGold [252].
Since there is no scalar and isovector channel (characterized
by the so-called δ meson) in the FSUGold parameter set,
the E1st,S

sym is identically zero, and since the conventional
RMF approaches lack momentum-dependent interactions,
the corresponding momentum-dependent terms Emom,0,S/V

sym are
zero too. More specifically, the total symmetry energy in the
FSUGold parameter set at the density ρc = 0.11 fm−3/the
density ρ0 = 0.16 fm−3 is about 27.1 MeV/34.2 MeV. In
addition, it is seen from Fig. 26 that the E1st,V

sym from FSUGold
is significantly different from the prediction of QCDSR-1.

Furthermore, the symmetry energy (2.22) could also be
rewritten as [41,253]

Esym(ρ) = k2
F

6M∗
L

+ 1

2

[
M∗

0

e∗
F

�S
sym + �V

sym

]
, (7.23)

where M∗
L is the nucleon Landau effective mass in SNM,

defined as [253]

M∗
L(ρ) ≡ kF[deF/d|k|]|k|=kF (7.24)

with eF(ρ, |k|) the total single nucleon energy in SNM.
Consequently, from the sum of the kinetic symmetry energy
and the two terms related to the momentum dependence of
the self-energies, one can easily obtain the Landau mass.
In QCDSR-1, the nucleon Landau mass in SNM is given
by M∗

L/M ≈ 1.29 at the saturation density (the Dirac mass
will be given shortly). It is also interesting to notice that the
overall density dependence of the symmetry energy is very
different for QCDSR-1 and FSUGold, reflecting that the slope
parameter L is different in these predictions. Specifically, the
slope parameter of the symmetry energy could be obtained
directly through its definition, and at ρc the L parameter L(ρc)
in QCDSR-1 is found to be 105.9 MeV, which is much larger
than the empirical constraints; see, e.g., Refs. [217,250]. On
the other hand, the L(ρc) in FSUGold is about 50.0 MeV.
While at ρ0 = 0.16 fm−3, the L parameter in QCDSR-1
(FSUGold) is found to be about 196.8 MeV/(63.9 MeV),
once again showing that the one obtained from QCDSR-1 is
much larger than the phenomenological prediction. The large
symmetry energy at the saturation density as well as the L
parameter both at the cross density and the saturation density
indicate that the linear approximation of the condensates,
especially the chiral condensates (3.137), already breaks down
at densities significantly less than the saturation density ρ0. It
is necessary to consider the effective higher order terms in
density in the chiral condensate, and this is the main task of
the next section.

In Fig. 27, the total symmetry energy obtained in QCDSR-
1 as a function of density is shown. Although the symme-
try energy roughly passes through the constraint at ρc ≈
0.11 fm−3 [217,250,254,255], its density behavior both at low
densities � 0.05 fm−3 and at densities �0.12 fm−3 is shown
to be inconsistent with the predictions from other approaches
in the sense that the symmetry energy obtained in QCDSR-1
is too stiff. Several other typical constraints on the symmetry
energy also shown in Fig. 27 include the results from the
analysis of isobaric analog states (IASs) [250] while the
shaded area enclosed by the solid cyan line and labeled by
“IAS+NSkin” results when the IAS analysis is supplemented
with additional constraints from neutron skin data, the con-
straint on the symmetry energy from heavy ion collisions
(HICs) which is labeled by the blue band [12]. A recent study
on the symmetry energy at low densities (around ρ0/3) using
the electric dipole polarizability in 208Pb is also shown for
comparison [254] by the magenta band. Two studies on the
symmetry energy at the cross density [217] are shown; they
are the constraint on the symmetry energy at ρc ≈ 0.11 fm−3

to be Esym(ρc) ≈ 26.65 ± 0.20 MeV using the isotope binding
energy difference [217], which is labeled by a magenta star,
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FIG. 27. Symmetry energy obtained by QCDSR-1. Also shown
are the results from the analysis of isobaric analog states (IASs) [250]
while the shaded area enclosed by the solid cyan line and labeled by
“IAS+NSkin” results when the IAS analysis is supplemented with
additional constraints from neutron skin data, the constraint on the
symmetry energy from heavy ion collisions (HIC) [12] (blue band).
A recent study on the symmetry energy at around ρ0/3 using the
electric dipole polarizability in 208Pb is also shown for comparison
[254] (magenta band). Two studies on the symmetry energy at
the cross density [217] are shown; they are the constraint on the
symmetry energy at ρc ≈ 0.11 fm−3 using isotope binding energy
difference [217] which is labeled by a magenta star and that from
fit of ground state properties of double magic nucleus using Skyrme
CSkp functionals [255] (blue circle).

and that from the fit of ground state properties of a double
magic nucleus using Skyrme CSkp functionals, which found a
value of Esym(ρc) ≈ 25.4 ± 0.8 MeV at ρc ≈ 0.10 fm−3 [255]
(blue circle). Moreover, since we are mainly interested in the
symmetry energy from QCDSR method at densities � ρ0,
some other constraints on Esym(ρ) at densities �ρ0 will not
be compared here, e.g., Ref. [256] constraints the symmetry
energy between ρ0 to about 2ρ0.

In Fig. 28, we show the EOS of PNM as a function
of density. Also included in Fig. 28 are the results from
ChPT [143,144] (green band), QMC simulations combined
with chiral force to next-to-next-to-leading order (N2LO) with
[257] (blue band) and without [258] (magenta band) leading-
order chiral three-nucleon interactions forces, next-to-leading
order (NLO) lattice calculation [259] (magenta circle), and
QMC simulations for PNM at very low densities [260] (green
diamond). The result from analyzing experimental data on the
electric dipole polarizability αD in 208Pb [254] is also shown
for comparison. The inset in Fig. 28 shows the EOS of PNM
at very low densities. Interestingly, by artificially neglecting
the contributions from dimension-4 and higher order terms
[and only keeping the four-quark condensates of the type
(3.105)], one obtains an effective approximation for EOS of
PNM, see Eq. (6.13) and Eq. (6.16), and the latter [Eq. (6.16)]
clearly demonstrates how the chiral condensate goes into play
in the EOS of PNM, i.e., the second term characterized by
several constants (ξ, σN,mq and 〈qq〉vac) is negative, leading
to a reduction on the En(ρ) compared to the FFG prediction.
In Fig. 28, we also plot the results from Eq. (6.16) at densi-

FIG. 28. EOS of PNM obtained by QCDSR-1. Also shown are
the results from ChPT [143,144] (green band), QMC simulations
combing with chiral force to next-to-next-to-leading order (N2LO)
with [257] (blue band) and without [258] (magenta band) leading-
order chiral three-nucleon interactions forces, next-to-leading order
(NLO) lattice calculation [128] (magenta circle), QMC simulations
for PNM at very low densities [260] (green diamond), the APR EOS
[237] (black open squares), the free Fermi gas (FFG) prediction (blue
line), and the analytical approximation of En(ρ ) [i.e., Eq. (6.16)]
(purple solid squares). The results from analyzing the electric dipole
polarizability in 208Pb [254] is also shown for comparison.

ties � 0.02 fm−3 (violet solid square). One can see that the
approximation Eq. (6.16) can already produce reasonably the
En(ρ) at low densities. The FFG prediction on the EFFG

n (ρ),
however, already becomes larger at, e.g., ρvl = 0.02 fm−3,
and even a relativistic correction −k4

F,n/56M3 to the EFFG
n (ρ)

will not make the situation much better, strongly indicating
that the noninteracting Fermi model lacks the fundamental
information between nucleons and nucleons to produce the
correct EOS. Furthermore, it is seen from Fig. 28 that the
prediction on the En(ρ) from QCDSR-1 is consistent with
several QMC simulations and lattice computation at densities
� 0.02 fm−3, showing that QCDSR is a reliable approach in
the study of EOS of PNM, especially at lower densities, where
the naive QCDSR is good enough.

Although the only adjustable parameter f in the naive
QCDSR is fixed by the En(ρ) at the very low density of
0.02 fm−3 [thus the En(ρ) at densities greater than 0.02 fm−3

has no fitting requirements], the prediction on the EOS of
PNM at densities � 0.1 fm−3 in QCDSR-1 is found to be
well behaved compared with the APR EOS, demonstrating
that the QCDSR with the linear density approximation for
the chiral condensates can be quantitatively applied to study
the EOS of PNM within this density region. However, as
density even increases, the systematic deviation between the
En(ρ) obtained by QCDSR-1 and that predicted by APR
EOS becomes large and this cannot be improved by simply
adjusting the parameter f , indicating on the other hand that
the leading-order linear density approximation for the chiral
condensates does not work well enough and the higher order
density terms in the chiral condensates are needed for the
PNM calculations at these densities. For example, at ρ0 ≈
0.16 fm−3, the difference between the ARP EOS and the
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FIG. 29. EOS of SNM obtained by QCDSR-1. Empirical con-
straints on the saturation density and the binding energy, i.e.,
(ρ0,E0(ρ0)) = (0.16 ± 0.02 fm−3,−16 ± 2 MeV), is also shown.

En(ρ) from QCDSR-1 is found to be about 5.4 MeV. Once
one considers the term �gρ2 in Eq. (3.137) for PNM, and
recalculates the En(ρ) under the fitting scheme, we find that
compared with the case of the naive QCDSR, the obtained
prediction can be largely improved to fit the APR EOS. This
feature suggests that the QCDSR with effective higher order
density terms in quark condensates can be used to study
the EOS of dense nucleonic matter at higher densities. The
relevant investigations will be given in the next section.

Since in our fitting scheme (see Sec. III F), the constraints
on the En(ρ) at a very low density ρvl and on the symmetry en-
ergy at ρc are used without using any empirical constraints on
the EOS of SNM (even the symmetry energy constraint is not
used in QCDSR-1), it is interesting to explore the consequent
prediction on the E0(ρ) from the QCDSR-1. In Fig. 29, we
show the density dependence of the EOS of SNM obtained in
QCDSR-1. The empirical constraints on the saturation density
about ρ0 ≈ 0.16 ± 0.02 fm−3 and the corresponding binding
energy E0(ρ0) ≈ −16 ± 2 MeV are also shown in Fig. 29. For
instance, the E0(ρ) at 0.16 fm−3 (0.11 fm−3) in QCDSR-1
is found to be about −34.0 MeV (−19.7 MeV). And in the
meanwhile, the saturation density of QCDSR-1 itself is found
to be about ρ

QCDSR-1
0 ≈ 0.6 fm−3, with the corresponding

binding energy about −100.0 MeV, showing that the sym-
metric matter in QCDSR-1 is very deep bounded. It actually
is another cue that the effective � term in Eq. (3.137) is
important, indicating the breakdown of the chiral condensates
at linear order at densities even smaller than the saturation
density. Moreover, it is really a very difficult problem on how
to obtain the correct (even reasonable) saturation properties of
the SNM in the microscopic theories (see, e.g., Ref. [151] in
the framework of ChPT). Based on the symmetry energy and
the EOS of SNM and the EOS PNM, one can estimate the
high order effects in the EOS EHO(ρ), and the detailed results
on EHO(ρ) will not be given here (see Fig. 36). However as
a reference, for example, the EHO(ρ) is found to be about
3.6 MeV (1.1 MeV) at ρc (ρ0), demonstrating again that the
EHO(ρ) is generally non-negligible in QCDSR.

In Fig. 30, the nucleon self-energies in SNM and the
nucleon Dirac effective mass as functions of density are

FIG. 30. Density dependence of the nucleon self-energies in
SNM and the nucleon Dirac effective mass obtained in QCDSR-
1. The predictions on the self-energies from the Dirac-Brueckner-
Hartree-Fock (DBHF) approach [261] is also shown for comparison.

shown. The predictions on the self-energies by the Dirac-
Brueckner-Hartree-Fock (DBHF) calculations [261] are also
shown for comparison. It is obvious from the figure that
although the overall tendency of the density dependence of the
self-energies is consistent compared to the DBHF predictions,
the density behavior roughly characterized, e.g., by the index
σ in ρσ is very different. It demonstrates once again that the
higher density terms in the chiral condensates are important,
since �0

S(ρ) is directly related to the chiral condensates 〈qq〉ρ .
Moreover, the nucleon Dirac effective mass at ρ0 = 0.16 fm−3

is found to be M∗
D/M ≈ 0.65, which is consistent with the em-

pirical constraints [11] (since from Fig. 30 it is clearly shown
that around 0.16 fm−3 the prediction on �0

S is consistent with
the DBHF prediction).

As a short summary of this section, we determine the
effective parameter f in the QCDSR to fix the En(ρ) at ρvl ≈
0.02 fm−3 with the prediction from ChPT, and the symmetry
energy at the cross density ρc is found to be consistent with
the empirical constraints. However, the symmetry energy at
the saturation density and the slope parameter L at both the
saturation and the cross density are found to be too large,
clearly indicating the breakdown of the linear approximation
for the chiral condensates. Besides, the EOS of PNM at larger
densities around 0.1 fm−3 also shows systematic deviation
from the APR EOS. Improving the EOS of PNM and the
density behavior of the symmetry energy is one of the main
motivations to include higher order terms in density in the
chiral condensates, which is the main issue in the next section.

VIII. HIGHER ORDER DENSITY TERMS IN CHIRAL
CONDENSATES, SYMMETRY ENERGY, AND QCDSR-2

As studied in the last section, the symmetry energy and
its slope parameter in QCDSR-1 are found to be too large at
the saturation density, indicating the linear approximation for
the chiral condensates [i.e., Eq. (3.126)] breaks down already
at densities less than the saturation point since the density
dependence of the chiral condensates is directly related to the
symmetry energy, e.g., see the expression for the symmetry
energy obtained in the msQCDSR, i.e., Eqs. (5.19) and (5.21).
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FIG. 31. Same as Fig. 28 but for QCDSR-2 [111]. The En(ρ )
from QCDSR-1 is also shown for comparison. See the text for details.

In this section, we study the possible higher order terms in
density in the chiral condensates introduced by the � term
in Eq. (3.137). Once the � term is included in the chiral
condensates, two other effective parameters, i.e., � and g, are
introduced, and �, g, and f will be determined by the En(ρ)
at a very low density ρvl = 0.02 fm−3, the symmetry energy
at ρc = 0.11 fm−3, and adjusting the PNM EOS to fit the
APR EOS as much as possible; see the fitting scheme given
in Sec. III F. Consequently, these parameters will be read-
justed. Besides, other parameters in the QCDSR are still taken
as M 2 = 1.05 GeV2, ω0 = 1.5 GeV, σN = 45 MeV, mq =
3.5 MeV, and ms = 95 MeV. One then obtains f ≈ 0.43,
�′ ≡ � × 〈qq〉vac ≈ 3.45 [111], and g = −0.64. Moreover,
the Ioffe parameter t ≈ −1.22 is independent of the � term
introduced, since when using the nucleon mass in vacuum to
fix the parameter t it only depends on the vacuum properties
of the condensates.

We abbreviate the corresponding QCDSR parameter set
QCDSR-2. Based on the obtained � and g, we can es-
timate the density below which the � term has a minor
contribution to the quark condensates. This density can be
estimated as |�(1 − g)ρ2| � |(σN/2mq)(1 − ξ )ρ|, i.e., the
last term in Eq. (3.137) is significantly less than the second
term in Eq. (3.137), and we thus obtain ρ � ρes ≈ 2.13 fm−3.
Therefore, the effects of � and g on the En(ρ) are trivial at
substantial densities, e.g., when one artificially takes �′ = 0
and keeping f fixed, the En(ρvl) [En(0.1 fm−3)] changes from
4.20 to 4.22 MeV (from 11.15 to 10.01 MeV). Thus it is
reasonable to expect that effects of � and g on the En(ρ) at low
densities � 0.1 fm−3 are small. However, as the densities even
increase, there is no guarantee that the � term still has small
effects on the EOS of PNM since the En(ρ) is obtained by
integrating over the density; see Eq. (2.21) [111]. In Fig. 31,
the En(ρ) obtained in QCDSR-2 is shown, and the prediction
on the EOS of PNM from QCDSR-1 is also shown for
comparison. Other constraints on En(ρ) shown in the figure
are the same as those in Fig. 28. Compared with the prediction
on the En(ρ) by the naive QCDSR, once one considers the
term �gρ2 in Eq. (3.137) for PNM, and recalculates the
corresponding EOS, one finds that the obtained prediction is
largely improved to fit the APR EOS. For instance, the EOS

FIG. 32. Symmetry energy obtained in QCDSR-2. The Esym(ρ )
from QCDSR-1 is also shown for comparison. See the text for details.

of PNM at 0.12 fm−3 is now found to be 12.9 MeV, which
is very close to the APR prediction 13.3 MeV. Moreover, the
overall fitting between the EOS of PNM from QCDSR-2 and
the APR EOS is much better compared with the prediction
by QCDSR-1, e.g., at densities � 0.16 fm−3. These features
suggest that the QCDSR with effective higher order density
terms in quark condensates can be used to study the EOS of
dense nucleonic matter at higher densities. It is also necessary
to point out that using a different higher order density term
in Eq. (3.137) and refixing the parameters f , �, and g by
the same fitting scheme, the density behavior of the En(ρ) is
almost unchanged. For example, when adopting a ρ5/3 term,
i.e., �(1 ∓ gδ)ρ5/3, then f ≈ 0.46, �′ ≡ � × 〈qq〉2/3

vac ≈ 1.61
and g ≈ −0.34 could be obtained, and the corresponding
En(ρ) is shown in Fig. 31 by the magenta dotted line. It is
obvious to see that using a different higher order density term
in the chiral condensates will not change our conclusions on
the EOS of PNM [111]. In the following, we will not consider
other higher order density terms in Eq. (3.137) except the one
that has the form �(1 ∓ gδ)ρ2.

In Fig. 32, the density dependence of the symmetry en-
ergy obtained in QCDSR-2 is shown, and the Esym(ρ) from
QCDSR-1 is also shown here for comparison. Compared
to the prediction on the symmetry energy from QCDSR-1,
the Esym(ρ) from QCDSR-2 is now largely improved, e.g.,
from about 0.04 fm−3 to about the saturation density ρ0.
For example, the Esym(ρ) now can roughly pass through the
constraints obtained from the IAS studies (green band). More
specifically, when evaluating at ρ ≈ 0.04 fm−3, the symmetry
energy changes from 8.0 MeV in the naive QCDSR to about
10.8 MeV in QCDSR-2, introducing a relative 35% change,
and more interestingly now Esym(0.04 fm−3) is very close
to the lower limit predicted by the IAS studies at about
11.1 MeV. Similarly, the symmetry energy at ρ0 = 0.16 fm−3

changes from 45.1 MeV in QCDSR-1 to about 35.3 MeV
in QCDSR-2, and the relative change is about −22%. All
these features demonstrate that the higher order density terms
in the chiral condensates (3.137) are essentially needed to
describe a reasonable density behavior of the symmetry
energy.
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FIG. 33. Same as Fig. 26 but for QCDSR-2.

Similarly, the nucleon self-energy decomposition
[Eq. (2.22)] of the symmetry energy obtained in QCDSR-2
is shown in Fig. 33. The corresponding results from
the RMF model with FSUGold [252] are also included
for comparison. At the cross density ρc = 0.11 fm−3,
for instance, one now obtains Ekin

sym(ρc) ≈ 11.7 MeV,
Emom,0,S

sym (ρc) ≈ −5.3 MeV, Emom,0,V
sym (ρc) ≈ 0.8 MeV,

E1st,S
sym (ρc) ≈ 7.4 MeV, and E1st,V

sym (ρc) ≈ 12.1 MeV, and
consequently Esym(ρc) ≈ 26.7 MeV (the fitting scheme).
Moreover, the symmetry energy at the saturation density
is found to be about 35.2 MeV with its self-energy
decomposition terms of about 16.6, −7.8, 1.5, 3.0, and
21.8 MeV, respectively. Besides the weak momentum
dependence of the self-energies in SNM revealed several
times in the above sections, one can find interestingly that
the E1st,S

sym (ρ) starts to decrease at a critical density about
0.09 fm−3 and to even be negative around the saturation
density. This change could be traced back to the effective
� term introduced in the chiral condensates (3.137). These
features demonstrate again the importance of the higher order
terms in density in the chiral condensates. It is necessary to
point out that using a different higher order term in density
(such as a term proportional to ρ4/3 or ρ5/3 as discussed in
Sec. III F) and refits the parameters of the model, the changes
in the density behavior of the symmetry energy will be almost
the same as the one shown in Fig. 33, i.e., the E1st,S

sym (ρ) starts
to decreases at a critical density and even to become negative.
Moreover, the E1st,V

sym (ρ) becomes dominant at densities
�0.1 fm−3 compared with the kinetic symmetry energy,
e.g., E1st,V

sym (ρ0) ≈ 22.0 MeV and Ekin
sym(ρ0) ≈ 16.7 MeV,

leading to E1st,V
sym (ρ0)/Ekin

sym(ρ0) ≈ 1.32. Furthermore, as the
effective � term is included, the density dependence of
the symmetry energy obtained from QCDSR-2 is found to
be closer to the one from the phenomenological FSUGold
parameter set. However, as in the case of QCDSR-1, the
E1st,V

sym from FSUGold is again significantly different from
the prediction of QCDSR-2. Compared with the QCDSR
approach, therefore, the phenomenological nonlinear RMF
model with FSUGold exhibits very different self-energy
decomposition of the symmetry energy.

FIG. 34. The parameter γ (ρ ) ≡ L(ρ )/3Esym(ρ ) obtained in
QCDSR-2 at ρc and at ρ0. See the text for details.

The L parameter could be obtained through the density be-
havior of the symmetry energy. Specifically, one finds that at
ρc (ρ0) the L parameter is about 64.7 MeV (67.5 MeV). Com-
pared with the predictions on the L parameter by QCDSR-1,
i.e., 105.9 MeV (at ρc) and 196.8 MeV (at ρ0), the � term
introduces a relative amount about −39% (−66%) on the L at
ρc (ρ0). Interestingly, although the L(ρc) is slightly larger than
the best empirical constraints nowadays [e.g., L(ρc) about
46 ± 4.5 MeV from Ref. [217]], the L parameter at the satura-
tion density is found to be consistent with its empirical value
about 60 ± 30 MeV (e.g., see Refs. [20,67,68]). Moreover, a
relevant quantity for the discussion on the density behavior of
the symmetry energy is given by Ref. [250],

γ (ρ) = dlnEsym(ρ)

dlnρ
= L(ρ)

3Esym(ρ)
. (8.1)

The γ parameter introduced in the parametrized form of the
symmetry energy, e.g., Esym(ρ) ∼ (ρ/ρ0)γ , is often used in
heavy-ion collisions simulations [12]. For instance, the γ

parameter of the potential part was constrained to be about
γ ≈ 0.72 ± 0.19 in Ref. [256] from the comparison of the
elliptic flow ratio of neutrons with respect to charged particles
based on UrQMD predictions. In our calculation in QCDSR-
2, we find that the γ parameter is about 0.81 (0.64) at ρc (ρ0).
Reference [250] gives the constraint on γ obtained by the IAS
analyses, shown in Fig. 34. It is interesting to see that the γ

parameter obtained in QCDSR-2 at ρc is shown to be slightly
larger than the blue band, however, the γ parameter at ρ0 is
quite consistent with the one given by Ref. [250].

In Fig. 35, we show the EOS of SNM obtained in QCDSR-
2. Due to the effective � term introduced in the chiral con-
densate, the saturation density of QCDSR-2 is improved to
be about 0.2 fm−3, with the corresponding binding energy
about −26.7 MeV. The improvements on the EOS of PNM,
the EOS of SNM, and the symmetry energy together verify
again that the higher order terms in density in the chiral
condensates are important. Similarly in Fig. 36, the EHO(ρ) ≈
Esym,4(ρ) + Esym,6(ρ) + · · · as a function of density is shown
in both QCDSR-1 and QCDSR-2. As discussed in Sec. VI,
the higher order terms in density in the chiral condensates
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FIG. 35. EOS of SNM obtained in QCDSR-2.

may eventually break the parabolic approximation of the EOS
of ANM, see the discussion given around Eq. (6.21), and we
find in QCDSR-2 that the EHO(ρ) is about 7.1 MeV (4.4 MeV)
at ρ0 (ρc). Although the high order term EHO(ρ) is generally
believed to have very little effect on, e.g., the nuclear structure
problems, it may induce sizable influence on the quantities
in neutron stars [240,245], such as the core-crust transition
density and the transition pressure. Detailed investigation on
the EHO(ρ) in the QCDSR will be extremely useful for further
studies on the relevant issues, which however is beyond the
main scope of the present work.

In Fig. 37, the density dependence of the nucleon self-
energies in SNM is shown. Compared with the density be-
havior of the self-energies obtained in QCDSR-1 shown in
the left panel of Fig. 30, the overall density behavior is
largely improved in QCDSR-2. For instance, the �0

S (�0
V)

at ρ0 ≈ 0.16 fm−3 is now shown to be about −312.3 MeV
(258.5 MeV), which is close to the prediction by the DBFH
theories about −339.7 MeV (267.7 MeV). Moreover, the
nucleon Dirac effective mass in SNM is found to be about
M∗

D(ρ0)/M ≈ 0.68, via the �0
S(ρ) since M∗

D = M + �0
S. Fur-

thermore, the nucleon Landau effective mass could be ob-
tained by the sum of Ekin

sym(ρ), Emom,0,S
sym (ρ), and Emom,0,V

sym (ρ),

FIG. 36. High order effects of the EOS of ANM obtained in
QCDSR-1 and QCDSR-2.

FIG. 37. Density dependence of the nucleon self-energies in
SNM obtained in QCDSR-2.

see Eq. (7.23), consequently M∗
L(ρ0)/M ≈ 1.19 through the

decomposition of the symmetry energy (see Fig. 33).
Since in QCDSR-2, the parameters � and g are fixed,

one can inversely study their effects on the chiral conden-
sates (3.137). In Fig. 38, the density dependence of the
chiral condensates in QCDSR-2 as well as the corresponding
predictions from ChPT [145,235,239] and the FRG method
[197] is shown [111]. As demonstrated in Eq. (3.137) and
shown in the figure, the chiral condensate at low densities
is dominated by the linear density term. More specifically,
one has (〈uu〉ρ − 〈dd〉ρ )/〈qq〉vac ≈ −ρσNξ/mq〈qq〉vac > 0 at
low densities, since 〈qq〉vac is negative. As density increases,
the � term in Eq. (3.137) starts to dominate and even to
flip the relative relation of the magnitude between 〈uu〉ρ
and 〈dd〉ρ , leading to 〈uu〉ρ/〈qq〉vac < 〈dd〉ρ/〈qq〉vac when
the density is larger than about 0.15 fm−3. For instance, the
〈dd〉ρ0/〈qq〉vac (〈uu〉ρ0/〈qq〉vac) in PNM is found to change
from 0.45 (0.56) in the linear density approximation to 0.60
(0.59) with the inclusion of the � term, leading to an enhance-
ment of about 33% (5%). It is necessary to point out that this

FIG. 38. Density dependence of quark condensates in PNM from
QCDSR. Also shown are the results from ChPT [145,235,239] and
FRG approach [197]. Taken from Ref. [111].
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flip is a direct consequence of the inclusion of the higher order
� term in Eq. (3.137).

More interestingly, one can find that the higher order �

term in Eq. (3.137) stabilizes the chiral condensate both for u
and d quarks at larger densities, while the leading-order linear
density approximation Eq. (3.137) leads to chiral symmetry
restoration at a density about 2ρ0 [111]. The hindrance of the
chiral symmetry restoration due to the higher order density
terms in quark condensates has important implications on
the physical degrees of freedom in the core of compact stars
such as the neutron stars/quark stars where the matter is very
close to the PNM. These features are consistent with a recent
analysis on the same issue based on the FRG method [197].

Furthermore, if one uses a different σN, then by readjusting
the values of the parameters f , �, and g based on the fitting
scheme (see Sec. III F), it can be demonstrated that the σN

has very little influence on the EOS of ANM. Different σN

leads to different � and g, but the density dependence of the
chiral condensates will change only quantitatively, instead of
qualitatively since the σN term (linear order) is a perturbation
to the vacuum chiral condensates, and similarly, the � term is
a perturbation to the linear term. It should be pointed out that
the exploration on the σN itself is an important issue in nuclear
physics, and the exact knowledge on the σN will certainly help
improve our understanding on the relevant aspects of the in-
medium strong interaction.

Now, let us vary the values of the parameters � and g, while
at the same time keeping all the other parameters fixed, and
meanwhile the EOS of PNM at 0.02 fm−3 and the symmetry
energy at 0.11 fm−3 are fixed by the fitting scheme (Sec. III F).
Since � and g essentially have no effect on En(ρvl) and
the parameter f is determined by En(ρvl), f ≈ 0.43 remains
unchanged. Moreover, fixing of the symmetry energy at ρc

indicates that �g ≈ const, since the effects of � and g on the
EOS of SNM and that of PNM are roughly given by∫

�ρ2dρ,
∫

�(1 − g)ρ2dρ, (8.2)

and thus � and g contribute to the symmetry energy roughly
as

∫
�gρ2dρ. In Fig. 39, we show the En(ρ) with the upper

(lower) black dashed line corresponding to �′ ≈ 4.00, g ≈
−0.552 (�′ ≈ 2.70, g ≈ −0.817) by maximally expanding
the greed band predicted by the ChPT. In this sense we can
study the extra constraints on the En(ρ) from the QCDSR. It
is at this time necessary to point out that although the error on
En(ρvl) is relatively small by the state-of-the-art microscopic
many-body calculations and simulations, it still has some
uncertainties (e.g., the uncertainties generated by the nucleon-
sigma term σN). However in our scheme, the En(ρvl) is fixed
at a certain value, thus the constraints on the En(ρ) given in
the following paragraphs should be thought of only as a rough
estimate. On the other hand, it is useful to study the saturation
properties of the EOS of SNM, since fixing the En(ρvl) actu-
ally gives a relevant estimate on the uncertainties on the satu-
ration density of E0(ρ) due to the higher order density terms in
Eq. (3.137). It is clearly seen from Fig. 39 that in such a way,
a much stronger constraint on the EOS of PNM in the density
region from about 0.04 fm−3 to 0.12 fm−3 is obtained (inset
of Fig. 39). For example, one obtains 6.8 MeV (10.0 MeV) �

FIG. 39. EOS of PNM with different (�′, g) to maximally span
the green band (ChPT) shown in Fig. 31 for the density dependence
of En(ρ ). The black dash (dash-dotted) line corresponds to �′ ≈
4.00, g ≈ −0.552 (�′ ≈ 2.70, g ≈ −0.817). See the text for details.

En(0.05 fm−3) [En(0.1 fm−3)] � 7.3 MeV (12.1 MeV), lead-
ing to a 68% (54%) reduction on the uncertainties on En(ρ)
at 0.05 fm−3 (0.1 fm−3), compared with the constraints from
ChPT [143,144]. These results indicate that combing the
QCDSR and ChPT can significantly improve the predictions
on the EOS of PNM.

In Fig. 40, the EOS of SNM E0(ρ) with different � and g is
shown. It is interesting to find that with a smaller �′ (or equiv-
alently a larger � = �′/〈qq〉vac) the saturation properties are
closer to the empirical constraints. For example, the saturation
density (binding energy at that density) is found to be about
0.18 fm−3 (−22.9 MeV) with �′ ≈ 2.70 and g ≈ −0.817,
introducing a relative improvement about 10% (14%) on ρ0

[E0(ρ0)] compared to the QCDSR-2 prediction (0.2 fm−3 and
−26.7 MeV). On the other hand, with a larger �′ ≈ 4.00
and correspondingly g ≈ −0.552, the saturation density (the
corresponding binding energy) is found to about 0.24 fm−3

(−34.0 MeV). The overall uncertainty on the E0(ρ) is plotted
in the inset of Fig. 40. Combining the discussions given
above, it shows that before the EOS of PNM and the density

FIG. 40. EOS of SNM with different � and g. Black dashed
(dash-dotted) line corresponds to �′ ≈ 4.00, g ≈ −0.552 (�′ ≈
2.70, g ≈ −0.817).
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FIG. 41. Density dependence of the chiral condensates both in
SNM and PNM.

dependence of the chiral condensates at densities around the
saturation density are well determined, it is hard to make
accurate predictions on the EOS of SNM. Specifically, it
could be found that while keeping the EOS of PNM to be
consistent with the ChPT predictions within density from zero
to about 0.18 fm−3 and meanwhile the symmetry energy at
ρc fixed, the uncertainty on the nuclear saturation density
(binding energy) due to the � term in Eq. (3.137), is about
0.06 fm−3 (−11.1 MeV), a relative uncertainty about 38%
(69%) compared to ρ0 ≈ 0.16 fm−3 [E0(ρ0) ≈ −16 MeV],
strongly indicating that the higher order terms in density in
the chiral condensates also have a sizable impact on the EOS
of SNM. Naturally, if other uncertainties are included, e.g.,
the uncertainties on σN, the twist-4 four-quark condensates
discussed in the next section, and the uncertainties on the
symmetry energy at ρc, etc., it may lead the corresponding
uncertainties on much larger ρ0 and E0(ρ0). A detailed anal-
ysis on this issue is beyond the main scope of the present
work.

Finally, we show in Fig. 41 the density dependence of
the chiral condensates both in SNM and PNM, including the
uncertainties introduced by the parameters � and g. Besides
the chiral symmetry restoration pattern discussed for u and
d quarks in PNM in the above paragraphs (see Fig. 38),
the nonlinear density corrections in the chiral condensates
(3.137) also make the restoration of the chiral symmetry in
SNM to occur at an even higher density (green band in the
right panel of Fig. 41). More interestingly, the d quark chiral
condensate in PNM with the allowable ranges of � and g
may even increase at a critical density about 0.25 fm−3 (red
band), indicating that the d quark in PNM is very stable.
Since the main component of neutron stars is the neutrons
(roughly 2/3 of the components of a neutron star are d
quarks), the hindrance of the chiral symmetry restoration of
the d quark may have important consequences on investigat-
ing the quark-involved dynamical processes in these compact
objects.

FIG. 42. Effects of the twist-4 four-quark condensates on the
EOS of SNM and the EOS of PNM.

IX. TWIST-4 FOUR-QUARK CONDENSATES, SYMMETRY
ENERGY, AND QCDSR-3

In this section, the effects of the twist-4 four-quark six-
dimensional condensates on the EOS of ANM are studied
and correspondingly QCDSR-3 is constructed. The twist-4
condensates effects on the symmetry energy were first studied
in Ref. [95]. Since the discussion in this section is very similar
to those done in Sec. VIII, here we mainly focus on the
related issues on the EOS of PNM, the EOS of SNM, and
the symmetry energy.

The contributions to the QCDSR Eqs. (3.101) and (3.102)
from the twist-4 condensates for a proton are given by [95]

BII
tw4 = − 1

4παs

M

2

[
"1 + ("2 + "3δ) − 1

3
("4 − "5δ)

]
× ρL−4/9, (9.1)

BIII
tw4 = 4ep

4παs

M

2

[
"1 + ("2 + "3δ) − 1

3
("4 − "5δ)

]
× ρL−4/9; (9.2)

the five parameters, i.e., "1 ∼ "5, characterizing the twist-4
condensates together with three different parameter sets are
given and discussed in Ref. [95]. Similar contributions can be
written out for the neutron by exchanging the u and d quarks
in the above expressions (i.e., the parameters "1 ∼ "5). In the
following, we call them the set 1, set 2, and set 3 parameter
sets, respectively.

In Fig. 42, we show the effects of the twist-four conden-
sates on the EOS of SNM and the EOS of PNM, where the
other parameters are the same as those obtained in QCDSR-2.
It is clearly shown from Fig. 42 that the twist-four condensates
have a large impact both on the E0(ρ) and En(ρ), as first
pointed out in Ref. [95]. For instance, the E0(ρ) at ρc takes
a value of about 36.3 MeV (13.3, 0.3 MeV) in the twist-4
condensate parameter set 1 (set 2, set 3) compared with the
QCDSR-2 prediction of about −18.9 MeV without these con-
densates, expanding an uncertainty of about 55.2 MeV. Simi-
larly, the En(ρ) at ρc takes a value of about 72.9 MeV (49.2,
35.4 MeV) in parameter set 1 (set 2, set 3) and 12.1 MeV
in QCDSR-2 without the twist-4 four-quark condensates,
introducing an uncertainty of about 60.8 MeV. This sizable
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FIG. 43. Effects of the twist-4 condensates on the symmetry
energy.

influence on the En(ρ) and E0(ρ) is found to be consistent
with the findings in Ref. [95]. However the symmetry energy
obtained by the difference between the En(ρ) and the E0(ρ)
(i.e., the parabolic approximation) directly from the results
shown in Fig. 42 is found to be about 36.6 MeV (35.9, 35.1
MeV) and 31.0 MeV in parameter set 1 (set 2, set 3) and
in QCDSR-2 at ρc. The uncertainty on the symmetry energy
from these four parameter sets is found to be maximally about
5.6 MeV at the cross density. The large uncertainties on the
EOS of SNM and EOS of PNM due to the twist-4 four-quark
condensates are roughly canceled, leading to a relative smaller
impact on the symmetry energy. In Fig. 43, the density depen-
dence of the symmetry energy with the twist-4 condensates
included and that obtained in QCDSR-2 are shown through
Eq. (2.22). Although one uses the QCDSR-2 parameters ( f ,
�, and g), the density dependence of the symmetry energy in-
cluding the twist-4 condensates is very close to the prediction
by QCDSR-2, within a wide range of densities. Specifically,
the Esym(ρc) is found to be about 31.4 MeV (30.9, 30.5
MeV) in parameter set 1 (set 2, set 3), indicating once again
that the EHO(ρ) is already non-negligible at densities smaller
than ρ0 when compared with the parabolic approximation
prediction just given above. It is also very interesting to notice
from Fig. 43 that the twist-4 condensates tend to soften the
symmetry energy at densities larger than and/or around the
saturation density. In the following we readjust the parameters
�, g, and f according to the fitting scheme (Sec. III F), i.e., the
EOS of PNM at ρvl to be about 4.2 MeV, the symmetry energy
at ρc to be about 26.65 MeV, and meanwhile the En(ρ) to be
fitted with the APR EOS as much as possible.

Based on the fitting scheme (Sec. III F), we obtain f ≈
0.360, �′ ≈ 4.50, and g ≈ −0.50 when the twist-4 four-quark
condensates are included, and this parameter set is abbreviated
as QCDSR-3. In the meanwhile the Ioffe parameter is still
about −1.22, which is unaffected by the twist-4 four-quark
condensates. Shown in Fig. 44 is the EOS of PNM obtained in
QCDSR-3, and the corresponding predictions from QCDSR-
1, QCDSR-2, as well as the nonlinear RMF model with
FSUGold are also included for comparison. For reference,
we note the En(ρ) at ρc (ρ0) in FSUGold is about 12.8 MeV
(19.4 MeV). We find that the EOS of PNM from QCDSR-3

FIG. 44. Same as Fig. 28 but for QCDSR-3. The corresponding
predictions from QCDSR-1, QCDSR-2, as well as FSUGold are also
included for comparison. See the text for details.

at densities � 0.12 fm−3 is essentially the same as the one
without the twist-4 condensates (i.e., in QCDSR-2), which
is also in nice agreement with the FSUGold prediction at
these densities. And at the nuclear saturation density ρ0 =
0.16 fm−3, the En(ρ0) changes from about 17.1 MeV in
QCDSR-2 to 15.9 MeV in QCDSR-3 [111], introducing a rel-
ative reduction about 7%. However, the discrepancy from the
APR EOS becomes eventually apparent as densities increase
�0.12 fm−3. Since the high-twist operators have some impact
on several processes in hadronic physics [152,262], the exact
knowledge of the density dependence of the En(ρ) provides a
novel tool to study these operators.

We show in Fig. 45 the density dependence of the symme-
try energy obtained in QCDSR-3 as well as the corresponding
predictions from QCDSR-1, QCDSR-2, and FSUGold. The
symmetry energy at densities � 0.1 fm−3 is improved com-
pared with several constraints, e.g., the Esym(ρ) at 0.04 fm−3

is found to be about 11.9 MeV (compared with the 10.8 MeV
in QCDSR-2), which is safely within the IAS constraints.
Moreover, the symmetry energy at ρ0 now is found to be about

FIG. 45. Density dependence of the symmetry energy obtained
in QCDSR-3. The corresponding predictions from QCDSR-1,
QCDSR-2, as well as FSUGold are also included for comparison.
See the text for details.
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FIG. 46. EOS of SNM obtained in QCDSR-3; the prediction on
E0(ρ ) from QCDSR-2 is also shown.

31.6 MeV. Furthermore, the slope parameter of symmetry
energy L at ρc is now at about 49.8 MeV, which is consistent
with the empirical constraints about 46 ± 4.5 MeV [217]. The
γ parameter at ρc now is at about 0.62, which safely falls
within the band in Fig. 34. On the other hand, the L parameter
at the saturation density ρ0 in QCDSR-3 is found to be about
16.4 MeV. The softening of the symmetry energy at densities
�ρ0 is a possible signal that even higher order terms in density
in the condensates beyond the � term need to be included
effectively.

Finally, we show the density dependence of E0(ρ) obtained
in QCDSR-3 in Fig. 46. Obviously, the saturation properties
obtained in QCDSR-3 and QCDSR-2 are similar. For in-
stance, the saturation density (binding energy) in QCDSR-3 is
now given as about 0.21 fm−3 (−29.0 MeV), which is slightly
larger (deeper) than the prediction by QCDSR-2. It is also
interesting to notice that the uncertainties introduced by the
twist-4 four-quark condensates on the saturation properties
of the SNM could be covered by the effective ranges of �

and g discussed in the last section (see Fig. 40) although the
origins of the uncertainties are different, showing that the
effects of the twist-4 condensates on the saturation proper-
ties of the SNM are smaller than the higher order density
terms in the chiral condensates. This again shows the par-
ticular importance of the � term in the chiral condensates
in Eq. (3.137). Moreover, other characteristic quantities for
the EOS of ANM are also obtained in QCDSR-3, e.g., the
nucleon Landau/Dirac effective mass M∗

L/D(ρ0)/M in SNM at
ρ0 (ρc) is found to be about 1.10/0.67 (1.21/0.74), while the
high order effects in the EOS of ANM EHO(ρ) is found to be
about 10.9 MeV (6.1 MeV) at ρ0 (ρc). These features together
show again that the parameter set QCDSR-3 is very similar to
QCDSR-2.

X. SUMMARY AND OUTLOOK

In this work, we have systematically investigated the EOS
of isospin asymmetric nucleonic matter within the framework
of QCDSR, and mainly focused on the relativistic self-energy
decomposition of the nuclear symmetry energy and the EOS
of PNM. Based on the fitting scheme that the EOS of PNM

at ρvl = 0.02 fm−3 and the symmetry energy Esym(ρ) at ρc =
0.11 fm−3 are fixed at 4.2 MeV and 26.65 ± 0.2 MeV, respec-
tively, and the total En(ρ) to densities about ρ0 is fitted to the
APR EOS as much as possible, several interesting results are
obtained as follows:

(1) In the conventional QCDSR, the prediction on the nu-
cleon mass in vacuum is not necessarily about 939 MeV [99].
In this work the nucleon mass in vacuum is self-consistently
determined via M∗

D(0) ≡ M∗
0 (0) = M ≡ 939 MeV, leading to

the Ioffe parameter t to be about −1.22 (which is close to its
natural value tIoffe = −1) in three QCDSR parameter sets, and
more specifically the Ioffe parameter expressed in terms of
the chiral condensate and the gluon condensate in vacuum is
obtained; see Eq. (4.16). This paves an important step to the
consequent investigations on the EOS. For instance, the EOS
of SNM via E0(ρ) = ρ−1

∫ ρ

0 dρ[e∗
F(ρ) + �0

V(ρ)] − M needs
an accurate nucleon mass in vacuum.

(2) The Lorentz structure based on the nucleon self-
energy decomposition of the symmetry energy is carefully
explored. Specifically, the first-order symmetry scalar self-
energy is found to depend heavily on the nucleon sigma term
σN. For instance, in the msQCDSR, this term is given by
E1st,S

sym (ρ) = 2π2M∗
0σNαρ/(M 2mqe∗

Fβ ), where α/β character-
izes the isospin effects of the chiral condensates at linear
order. This relation establishes a useful connection between
the symmetry energy and the evolution of the quark mass
since the nucleon sigma term actually characterizes the evo-
lution of the nucleon mass as a function of the light quark
mass, i.e., σN = mqdM/dmq. Consequently, the σN term is
found to largely affect E1st,S

sym (ρ) since y = M∗
0/e∗

F ≈ 1 − x2/2
with x = kF/M∗

0 , where the effective mass M∗
0 = M + �0

S
depends on the σN almost linearly, and the final effect is as
σN increases the E1st,S

sym (ρ) decreases. Moreover, the kinetic
nuclear symmetry energy Ekin

sym(ρ) = k2
F/6e∗

F is also found to

be largely affected by the σN since e∗
F = (M∗,2

0 + k2
F)1/2 could

be approximated as M∗
0 + k2

F/2M∗
0 = M + �0

S + k2
F/2M∗

0 , i.e.,
Ekin

sym(ρ) increases as σN increases. Finally, as the σN increases,
the total symmetry energy Esym(ρ) increases as a result of the
competition between the Ekin

sym(ρ) and the E1st,S
sym (ρ); see the left

panel of Fig. 21.
(3) The vector nucleon self-energy contributes to the nu-

clear symmetry energy as, e.g., E1st,V
sym (ρ) = 4π2ρ/M 2 in the

msQCDSR, and this part originates from the densities of
d quarks [〈d†d〉ρ,δ = (3 + δ)ρ/2] and u quarks [〈u†u〉ρ,δ =
(3 − δ)ρ/2]. The linear density dependence is almost un-
changed in the fQCDSR via the very complicated QCDSR
equations. Moreover, the E1st,V

sym (ρ) becomes the dominant
contribution to the symmetry energy as ρ � 0.1 fm−3.

(4) Contributions to the nuclear symmetry energy
due to the momentum dependence of the nucleon self-
energies are found to be Emom,0,S

sym (ρ) ∼ [d�0
S/d|k|]kF < 0

and Emom,0,V
sym (ρ) ∼ [d�0

V/d|k|]kF > 0, at densities smaller or
around ρ0. Moreover, the magnitude of these terms is much
smaller than the kinetic part and the first order symmetry
parts, showing that the corresponding momentum dependence
in QCDSR is weak.

(5) The dependence of the symmetry energy on the strange
quark mass is found to be large. This large effect can be
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understood via E1st,S
sym (ρ) = 2π2M∗

0σNαρ/(M 2mqe∗
Fβ ) in the

msQCDSR since a larger strange quark mass induces a
smaller factor α/β, and consequently a smaller E1st,S

sym (ρ). The
connection between the strange quark mass and the symmetry
energy provides a useful bridge to understand the possible
origins of the uncertainties on the Esym(ρ); see the right panel
of Figs. 21 and 22.

(6) A few useful approximations for the EOS of ANM
and the related quantities are obtained in the QCDSR,
among which the approximation for the EOS of PNM,
i.e., En(ρ) ≈ EFFG

n (ρ) + (Mρ/2〈qq〉vac)[(1 − ξ )(σN/2mq) −
5], already has quantitative predictive power at low densities,
where EFFG

n (ρ) is the FFG EOS of PNM. This low density
formula clearly demonstrates how the chiral condensate goes
into play in the EOS of PNM, e.g., the second term character-
ized by several constants (ξ, σN, mq, and 〈qq〉vac) leads to a
reduction on the En(ρ) compared to the FFG prediction.

(7) The high order term in the EOS of ANM character-
ized by the EHO(ρ) ≈ Esym,4(ρ) + Esym,6(ρ) + · · · is carefully
studied in the QCDSR. Specifically, EHO(ρ) is found to be siz-
able at densities � ρ0, indicating the conventional parabolic
approximation for the EOS of ANM is broken in the QCDSR.
For instance, the EHO(ρ) at the saturation density in the
fQCDSR calculations with the fitting scheme adopted is found
to be about 1.1 ∼ 11.9 MeV, indicating that the uncertainty
on EHO(ρ) in the QCDSR is essentially large compared with
the one from phenomenological models.

(8) The correlation between the symmetry energy and
several quantities characterizing the quark/gluon condensates
is investigated. Specifically, besides the strong dependence
on the chiral condensates in vacuum 〈qq〉vac, the symmetry
energy is also found to heavily depend on the five-dimensional
mixing condensate 〈gsq†σGq〉ρ,δ . This correlation provides a
novel tool to explore the properties of symmetry energy and
even the EOS of ANM via the knowledge of the in-medium
quark/gluon condensates from, e.g., hadronic physics.

(9) The effects of twist-4 four-quark six-dimensional con-
densates on the EOS of SNM and the EOS of PNM are
found to be large. For instance, these condensates induce an
amount about 50–60 MeV on the E0(ρ) and En(ρ). However,
their effects on the symmetry energy are almost canceled
since the Esym(ρ) is roughly the difference between the En(ρ)
and E0(ρ), and as a result the twist-4 condensates induce an
uncertainty of about several MeVs on the symmetry energy.

(10) The effective higher order terms in density in the chiral
condensates, i.e., �(1 ∓ gδ)ρ2, are found to strongly affect the
EOS of PNM and the EOS of SNM. By refitting the model
parameters in the presence of the � term, the EOS of PNM
at densities around ρ0 is found to be systematically consistent
with the APR EOS, which is selected as the reference EOS
in this work. Moreover, the higher order density terms in
quark condensates also lead to the stabilization of u/d chiral
condensates at higher densities, which may have important
implications on the QCD phase diagram under extreme con-
ditions at low temperatures, large isospin, and large baryon
chemical potentials, which is essential for understanding the
physical degrees of freedom in the core of neutron stars.
Furthermore, using a different higher order density term such

as �(1 ∓ gδ)ρ5/3 gives a very similar prediction on the En(ρ);
see Fig. 31.

(11) Three parameter sets of the QCDSR are constructed,
i.e., QCDSR-1 (naive QCDSR), QCDSR-2, and QCDSR-3,
respectively. QCDSR-1 includes only the linear approxima-
tion for the chiral condensates without the effective � term in
the chiral condensates (3.137) and the twist-4 four-quark con-
densates. Compared with QCDSR-1, QCDSR-2 additionally
includes the effective � term in the chiral condensates (3.137)
but without the twist-4 four-quark condensates. QCDSR-3
includes the linear approximation for the chiral condensates,
the effective � term in the chiral condensates (3.137), and
the twist-4 four-quark condensates. The symmetry energy at
ρ0 ≈ 0.16 fm−3 in QCDSR-1, QCDSR-2, and QCDSR-3 is
found to be about 45.1, 35.2, and 31.6 MeV, respectively,
while the corresponding slope parameter of the symmetry
energy L at ρc (ρ0) is found to be 105.9 (196.8) MeV,
64.7 (67.5) MeV, and 49.8 (16.4) MeV, respectively. The
tendency of the change in Esym(ρ) and L(ρ) shows that
the higher order terms in density in the chiral condensates
improve the density behavior of the symmetry energy com-
pared with the empirical constraints, while the twist-4 con-
densates soften the Esym(ρ) at densities larger than about
ρc. Moreover, the saturation properties of SNM are largely
improved from QCDSR-1 to QCDSR-2 or QCDSR-3, e.g.,
the (ρ0,E0(ρ0)) are changed from (0.6 fm−3,−100.0 MeV)
in QCDSR-1 to (0.2 fm−3,−26.7 MeV) in QCDSR-2 or
(0.21 fm−3,−29.0 fm−3) in QCDSR-3. Furthermore, the
EOSs of PNM obtained in three QCDSR parameter sets
are consistent with each other at low densities less than
about 0.08 fm−3, indicating that at these low densities the
naive QCDSR is well behaved for the En(ρ). Finally, we
have better constrained the En(ρ) in the density region from
about 0.04 fm−3 to 0.12 fm−3 by combining the results from
QCDSR and ChPT, e.g., the En(0.05 fm−3) [En(0.1 fm−3)] is
constrained to be between 6.8 MeV (10.0 MeV) and 7.3 MeV
(12.1 MeV), leading to an uncertainty about 0.5 and 2.1 MeV,
respectively.

Besides the above results we have obtained from the
QCDSR, a few interesting issues that are closely related to our
present work should be pointed out and need further explo-
ration in the future QCDSR calculations on dense nucleonic
matter, i.e., as follows:

(1) In this work as well as in many conventional QCDSR
calculations [99], the four-quark condensates’ effects are
incorporated by the effective parameter f , i.e., using (1 −
f )〈qq〉2

vac + f 〈qq〉2
ρ,δ to account for the four-quark conden-

sates at finite densities. In this work, the f is found to largely
influence several quantities, such as the EOS of PNM and the
E0(ρ), and the value of f is essentially determined by the
En(ρ) at the very low density ρvl ≈ 0.02 fm−3 in the present
work. From the more fundamental viewpoint, it is important
to explore the density behavior of the four-quark condensates,
in order to make further progress in applying QCDSR to dense
nucleonic matter calculations. For instance, in Ref. [263],
more phenomenological parameters are introduced into the
QCDSR equations, and they are determined by nuclear quan-
tities and/or other information from, e.g., hadronic physics.
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(2) The three-body forces (TBFs) are found to be important
for the saturation properties of SNM, e.g., in Brueckner-
Hartree-Fock (BHF) calculations (see, e.g., Ref. [264]) and
in the phenomenological approach. For instance, in the SHF
model, a traditional two-body force contributes a term pro-
portional to ρ to the EOS, and a ρ1+α term emerges once
the effective three-body force is considered [73] with α

the parameter characterizing the three-body force. Recently,
three-body forces and even the four-body forces have been
included in the QCDSR calculations for nucleonic matter
[92–94], and it is really also interesting and important to
see how these many-body forces influence, for example, the
En(ρ) and/or the nuclear symmetry energy. Investigations
on these problems will help us better understand the origins
of the uncertainties on the symmetry energy and/or the dif-
ficulties to produce reasonable saturation properties of the
symmetric matter, and they are also important for making
further progress in the nucleonic matter calculations, such as
to explore the incompressibility property of the ANM with
any isospin asymmetry, and/or the single nucleon optical
potential [265–268]. It is also interesting to investigate the
three-body force and its connection to the higher order density
terms in the chiral condensates.

(3) The Borel transformation with the Borel mass M as
a real parameter is the standard treatment in QCDSR to deal
with the high order states including the continuum excitations.
Recently, a generalization to the complex-valued Borel mass
M was introduced in Ref. [269] (see also Ref. [270]). It was
demonstrated that the complex-valued sum rules approach
allows one to extract the spectral function with a significantly
improved resolution, and thus provides a useful tool to study
more detailed structures of the hadronic spectrum [269]. To
our purpose, it would be interesting to investigate whether
the complex-valued Borel transformation could improve the
calculations on the EOS of dense nucleonic matter in the high
density region where the high mass-dimensional condensates
and continuum effects are important.

(4) Finally, the neutron matter at subsaturation even to very
low densities composed of spin-down and -up neutrons with a
large s-wave scattering length shows several universal proper-
ties [271], such as the simplicity of its EOS characterized by
a few universal parameters [61,272–275]. Moreover, the high
momentum tail above the Fermi surface of the single nucleon
momentum distribution function in cold PNM is also found to
be very similar to that in ultracold atomic Fermi gases [276]

although the magnitude of the density in the two systems
differs by an amount about 25 orders [277]. Naturally, the cold
PNM at low densities provides a perfect testing bed to explore
novel ideas in the unitary region [278,279], helping to find
deep physical principles behind these quantum many-body
systems in this so-called unitary region [280]. Recently, the
sum rule approach with the help of the maximum entropy
(ME) method was applied to investigate the imaginary part
of the particle self-energy in the unitary Fermi gas [281,282].
Thus it is interesting to explore, e.g., the imaginary part of
the neutron self-energies in PNM under the QCDSR+ME
method, which will be extremely useful for exploring the
transport properties of the PNM, or even to generalize the
method to a general isospin asymmetric nucleonic matter to
better understand the quantum many-body properties of the
system.

Our results in the present work have demonstrated that the
QCDSR approach can be used to explore the properties of
ANM in a quantitative manner, at least in the lower density
region. The QCDSR approach establishes a bridge connecting
the EOS of ANM and the nonperturbative QCD vacuum, and
thus provides a useful way to understand the properties of
dense nucleonic matter from nonperturbative QCD vacuum.
These studies are helpful to investigate the QCD origins
about the uncertainties of nucleonic matter properties, e.g.,
the uncertainties of the symmetry energy. On the other hand,
the exact knowledge on the EOS of ANM extracted from
experiments, observations, and model-independent calcula-
tions is also very useful for understanding the quark/gluon
condensates in the nuclear medium, which can provide im-
portant information on the chiral symmetry restoration phase
transition in nuclear matter as well as the in-medium effects
of hadron properties.
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