
PHYSICAL REVIEW C 100, 024003 (2019)

Three-body breakup in deuteron-deuteron collisions at 160 MeV including quasifree scattering
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A set of differential cross section of the three-body 2H(d, d p)n breakup reaction at 160-MeV deuteron beam
energy is presented for 147 configurations covering a wide kinematical region around quasifree scattering. The
experiment was performed at KVI in Groningen, the Netherlands, using the BINA detector. The cross-section
data have been normalized to the 2H(d, d )2H elastic-scattering cross section. The data are compared to the results
of recent single-scattering approximation (SSA) calculations for three-cluster breakup in deuteron-deuteron
collisions. This comparison shows that SSA provides the correct order of magnitude of the cross sections.
The studied energy is probably too low to meet the SSA assumptions which prevents better accuracy of the
description.
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I. INTRODUCTION

After a long quest lasting several decades for three-nucleon
force (3NF) effects in three-nucleon systems (3N) at interme-
diate energies, the attention is nowadays directed to heavier
systems composed of four nucleons (4N).

In the past decades, various final states of N-d and d-N
scattering were under extensive investigations delivering high-
precision data for elastic-scattering, breakup, and radiative
capture reactions covering wide ranges of energy and phase
space [1–3]. Together with rigorous Faddeev calculations for
the 3N system the data provide a sensitive tool to study
dynamics of nuclear systems. Among all the reactions studied,
the breakup leading to a final state with three free particles
offers the richest phase space with continuum of the final
states and is the leading channel at intermediate energies.
A large amount of possible kinematic configurations makes
possible a systematic study of various dynamical effects like
3NF, Coulomb force between protons, or relativistic effects,
which manifest themselves locally with different strength.
These features make the breakup reaction a very sensitive
and simultaneously strict tool for validation of the theoretical
models.

The present-day models of nucleon-nucleon (NN) forces
are based on the meson-exchange theory, which stems from
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Yukawa’s idea [4]. The new generation NN potentials like
Argonne V18 (AV18) [5], CD Bonn (CDB) [6], and Nijmegen
I and II [7] reproduce the NN data with extremely high
precision, expressed by χ2 per degree of freedom very close to
1. These so-called realistic NN forces are used in 3N Faddeev
equations [8] together with current models of 3NF like Ur-
bana IX [9], Tucson-Melbourne [10], and a coupled-channels
potential CD Bonn + � [11,12] with a �-isobar degree of
freedom, delivering an exact solution of the 3N-scattering
problem. These studies are complemented by calculations
based on chiral perturbation theory (ChPT) [13,14], which are
expected to provide in the future a consistent description of
2N, 3N (4N, etc.) forces.

While the NN potentials supplemented with the 3NF
models give a better agreement between the proton-deuteron
cross-section data and the calculations [15–18], there exist
many problems in the spin observables [19,20]. This leads
to a conclusion that the spin part of 3NF is still not under
control in the theoretical models. It seems that at intermediate
and higher energies the inclusion of 3N forces is neces-
sary [2,3,15,16,18–21] but available models are not sufficient.
At lower energies persistent discrepancies exist such as the Ay

puzzle or the space-star anomaly [1].
The 4N systems constitute another large and important

basis for studies of the 3N forces. Naively, one can expect
the 3NF effects to be larger in the 4N system due to the
fact that the number of 3N combinations with respect to 2N
combinations gets larger with increasing number of nucleons.
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However, due to expected short range of 3NF, for large nuclei,
the saturation of 3NF effects sets in very quickly. The 4N
systems are very suitable to study the 3NF dependence on
spin and isospin in the low-energy regime due to the existence
of numerous resonance states of different spin and isospin
structure. Moreover, they reveal extra sensitivity toward NN
force models and can help to understand the isospin sym-
metry of NN P waves [22,23]. This, in turn, is important for
solving the deuteron analyzing power puzzle or the space-star
anomaly [1]. The 4N systems are also suitable to test vari-
ous nuclear potentials in an isospin-dependent way [24,25].
This makes the experimental studies attractive; however, the
theoretical treatment of 4N scattering at medium energies
(well above the breakup threshold) is much more complicated
and challenging than for 3N systems. The developments in
the calculations where four nucleons are involved are mainly
due to the work of three groups: Pisa [22,26], Grenoble-
Strasbourg [23,27], and Lisbon-Vilnius [12,28,29]. Only the
Lisbon-Vilnius group calculates observables for multichannel
reactions above the breakup threshold and with the Coulomb
force included. They use the momentum space equations of
Alt, Grassberger, and Sandhas (AGS) [30] for the transition
operators in contrary to the two other groups which use the
coordinate-space representation.

Recently, the calculations were extended for higher en-
ergies, above the four-cluster breakup threshold, up to an
energy of 35 MeV. The following models were utilized
in the calculations: CD Bonn [6] and Argonne V18 [5]
potentials, the inside-nonlocal outside-Yukawapotential by
Doleschall [31], potential derived from ChPT at next-to-next-
to-next-to-leading order [13], and the two-baryon coupled-
channels potential CD Bonn + � [11]. The last model yields
effective three- and four-nucleon forces [12], but their effect
is of moderate size at most. The sensitivity to the force model
in the energy range studied reached 30% in the cross-section
minimum. The predictions have been made for observables
in p-3He [32], p-3H, and n-3He [28] elastic-scattering and
transfer reactions. Recent progress in calculations for the
d + d system is presented in Refs. [29,33,34].

The first estimate calculations for the d + d system at
higher energies are currently feasible and were performed
in the so-called single-scattering approximation (SSA) for
the three-cluster breakup and elastic scattering [33]. In this
approximation, instead of solving the full AGS equations, the
4N operators are expanded in Neumann series in terms of
3N transition operators and only the first-order contribution
is retained. This simplification could be expected to give
reasonable predictions only near quasi-free-scattering (QFS)
kinematics and with high-enough relative n-d and n–p ener-
gies that imply relatively high beam energies.

Two types of calculations were performed. The first one,
the so-called one-term (1t) SSA, refers to a situation in
which the target deuteron breaks due to its proton interaction
with the deuteron beam. In this case the differential cross
section is peaked at the neutron spectator energy En = 0.
The second one, the so-called four-term (4t) SSA, on top
of the one-term SSA contains other three contributions, one
of them corresponding to the case in which not the target
proton but the neutron interacts with the beam deuteron. Two

further contributions arise from exchanging the target and
beam deuterons, i.e., they correspond to the breakup of the
beam deuteron. Since the Coulomb force and interaction in
two of three pairs of three final clusters d , p, and n are
neglected, the relative energy between those clusters should be
high enough to reduce the effects of the final-state interaction.
An agreement between one-term and four-term calculations
indicates that the one-term reaction mechanism dominates in
the scattering. The disagreement is a hint of a more compli-
cated reaction mechanism and behavior beyond SSA.

To investigate the reliability of the SSA calculations, a
similar approximation was applied to p + d breakup. The
SSA calculations were compared with the exact ones. The
total p + d breakup cross section calculated precisely is lower
than the one obtained in SSA by 30% at 95 MeV and by
20% at 200 MeV. The authors of Ref. [33] conclude that the
SSA should provide correct orders of magnitude for total and
differential cross sections for d + d and p + d breakup (near
quasifree region) and elastic scattering.

Since n-3He experiments are difficult, the p-3He and d +
d reactions dominate in measurement for the 4N system.
The theoretical calculations for the p-3He system are the
simplest, since only elastic and breakup channels exist. On
the other hand, the most serious complication arises from
the Coulomb interaction between protons, which is treated
using the method of screening and renormalization [32]. The
database for the 4N systems consist of few measurements
for the elastic [35–38], breakup [39–44], and transfer chan-
nels [45,46]. In the breakup sector the existing data are usually
limited to low energies and only very few selected configu-
rations. The new-generation data covering large phase space
were measured at Kernfysisch Versneller Instituut (KVI) at
130 [38,47] and 160 MeV (this paper). The data evaluation
was focused on QFS, with neutron acting as a spectator.
The breakup analyzing power data for the 2H(d ,d p)n at
130 MeV were compared with the elastic d-p scatter-
ing [38,47]. Recently, the data have been also compared to
the SSA calculations and large discrepancy of a factor 1000
was observed for differential cross section [33], indicating a
need to revise both theory and data.

In this paper a rich set of the 2H(d ,d p)n differential cross
section near the QFS region at 160-MeV deuteron beam
energy is presented. The data are compared with the SSA
calculations.

II. EXPERIMENTAL TECHNIQUE

The experiment was carried out at KVI in Groningen,
the Netherlands. The deuteron beam was provided by the
superconducting cyclotron Accelerator Groningen ORsay at
kinetic energy of 160 MeV and was impinging on a liquid
deuterium target with the nominal thickness of 6.0 mm. Low
beam current (about 5 pA) was used in order to keep the level
of accidental coincidences as low as reasonable. The reaction
products were detected using big instrument for nuclear polar-
ization analysis (BINA) [48,49], designed to study few-body-
scattering reactions at medium energies. The BINA setup
allows us to register coincidences of two-charged particles in
a nearly 4π solid angle, making possible studies of breakup
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FIG. 1. A schematic view of the BINA detector.

and elastic-scattering reactions. The detector is divided into
two main parts, the forward wall and the backward ball. A
schematic view of the detection system is presented in Fig. 1.

A. Forward wall

The forward wall is composed of a three-plane multiwire
proportional chamber (MWPC) and an array of an almost-
square-shaped �E -E telescopes formed by two crossed layers
of scintillator hodoscopes (vertically placed thin transmission-
�E strips and horizontally placed thick stopping E bars). The
forward wall covers polar angles θ in the range of 10◦–35◦.
MWPC is used to determine the position of the passing
particle. Taking into account the target and beam sizes, the
accuracy of the angle reconstruction is 0.3◦ for θ and between
0.6◦ and 3◦ for ϕ. �E and E detectors are used for measuring
the energies of the charged reaction products and facilitating
particle identification. The energy resolution is about 2%.
MWPC and the hodoscopes have a central hole to allow for
the passage of beam particles to the beam dump.

For BINA the electronic, read-out, and data acquisition
systems were adopted from its predecessor, the Small-Angle
Large-Acceptance Detector (SALAD) [50]. The data were
collected with various trigger conditions to selectively en-
hance coincidences from the studied reaction channels. The
trigger conditions were based on hit multiplicities in left-
side photomultipliers (PMTs) of the E detectors, right side
PMTs of the E detectors, and PMTs of the ball. Three types
of events were registered: wall-wall coincidences, wall-ball
coincidences, and single-type events with at least one particle
detected in the whole setup. The single-type events were
strongly downscaled.

The results presented in this paper were obtained only on
the basis of the data registered in the wall part of the detector.

III. DATA ANALYSIS

A. Reconstruction of particle trajectories

The tracks were built for each event, starting from hits in
MWPC. Their correspondence with the �E and E detectors
was checked in a track reconstruction procedure. Only events
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FIG. 2. Example of the �E -E identification spectrum drawn
for one selected telescope. Proton and deuteron branches are well
contained within the applied cuts which are depicted as black solid
and dashed lines.

with the consistent information in all three detectors forming
the track are likely to represent charged particles. In the analy-
sis two kinds of tracks were considered to estimate the system-
atic errors related to the reconstruction: the so-called complete
and weak tracks with the three and two responding MWPC
planes, respectively. For complete tracks the reconstruction
of angles has been improved, in comparison to the previous
approaches [15,16,20], by taking into account also an active
wire in the U plane. Consequently, the position resolution
was improved by a factor of 1.5. In the case of the weak
tracks based on information from the U plane, the position
resolution in either horizontal or vertical direction worsen by
a factor of 1.2 as compared to the tracks reconstructed on the
basis of X and Y planes. Two classes of events were accepted
for further analysis: single-track and two-track events. Tracks
with missing MWPC or �E hits, but with a hit in E, were
used to calculate detector efficiencies. Knowing the crossing
point of the responding MWPC wires and distances between
the target and the wire planes and assuming particle emission
from the pointlike target, the polar (θ ) and azimuthal (ϕ)
scattering angles in the laboratory frame (LAB frame) were
reconstructed.

To calculate configurational efficiency of the E or �E de-
tectors for coincident events, discussed further in Sec. III C 2,
so-called particular tracks were reconstructed. Exactly two
sets of X-Y-U hits in the three MWPC planes matching with a
single E bar (or a single �E strip) were required.

B. Particle identification and energy calibration

In order to select the events of interest, proton-
deuteron pairs from the breakup reaction, the �E -E particle
identification (PID) technique was applied for each telescope.
The protons and deuterons were selected by graphical cuts
which define an arbitrary area (“banana” gate), wide enough
to avoid significant losses of events. A sample identification
spectrum is presented in Fig. 2.

After introducing PID into the analysis, the energy calibra-
tion was performed for each type of particles. In the case of
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the wall detector only the stopping E detector was calibrated.
Each E bar is equipped with two PMTs on its two ends
(left-PMT and right-PMT). When a charged particle hits the
E detector, in an ideal situation both left and right PMTs
respond, giving two pulse height values (CL, CR). The gains of
PMTs were well matched, so the difference between CL and
CR is mainly due to different light attenuation along the path in
the scintillator. To perform the energy calibration for a given
E bar, a nearly position independent CLR variable was obtained
as a geometric mean of CL and CR, i.e., CLR = √

CL × CR.
The exponential attenuation component cancels in the CLR

value. The central two E detectors were partially cut in the
middle to accommodate beam line and in this case a sum of
the two signals, i.e., CLR = CL + CR was used. To calibrate the
detectors the positions of the peaks corresponding to protons
originating from the d-p elastic-scattering process measured
in dedicated runs with the energy degraders were used [51,52].
They were compared with the results of simulations taking
into account energy losses of particles along their trajectory.
In the first step a nonlinear function was fitted to the relation
of the deposited energy versus pulse height. Such a nonlinear
character (below 40 MeV) is caused by the quenching effect in
the scintillating material (described with Birk’s formula [53]).
The calibration functions were obtained at each polar angle for
left- and right-half sides of a given E detector. In the next step
of the calibration the relation between the energy deposited
by protons (or deuterons) in the E detector and their energy
at the reaction point was found with the use of the dedicated
GEANT4 (GEometry ANd Tracking) simulations of the en-
ergy losses in the BINA setup. Due to different scintillation
light output for protons and deuterons, additional corrections
were introduced to the deuteron calibration which were based
on a well-known light output to energy deposit relations [54].

C. Detector efficiency

To extract the absolute values of the cross section, it is
necessary to take into account the inefficiency of the detectors.
In the case of the BINA setup, the largest inefficiency was
related to the detection of particles in MWPC. During the
experiment certain channels were malfunctioning or ceased to
function at all (“dead” wires) decreasing the overall efficiency.
Dependence of the MWPC efficiency on the energy deposition
(Eloss) of a particle in this detector was observed and taken into
account.

1. MWPC efficiency

In order to correct the number of registered proton-
deuteron coincidences from the breakup reaction and elas-
tically scattered deuterons, energy-loss-dependent efficiency
maps were constructed, see also Ref. [46]. The detector accep-
tance was divided into bins in azimuthal and polar angles and
efficiency was calculated for each cell with the use of the reg-
istered single particle events (protons and deuterons). Protons
and deuterons were treated together to increase the precision
of efficiency, and their energy loss Eloss were recalculated per
unit distance according to the formula:

Eloss = Q2 αm

T
, (1)

 [arb. units]E
2 4 6 8 10 12 140

1000

2000

3000

1

2

3

310×

FIG. 3. The energy-loss Eloss distribution for the charged par-
ticles registered in the BINA setup. The three ranges in the Eloss

variable in which the MWPC efficiency maps were obtained are
depicted.

where Q is proton or deuteron charge, m is the mass of the
particle, T is its kinetic energy, and α is an arbitrary constant
factor. The efficiency maps were calculated for three ranges in
the Eloss variable shown in Fig. 3. The active part of MWPC
contains three planes: X, Y, and U, respectively with vertical,
horizontal, and inclined by 45◦ wires. The position-sensitive
efficiency of each plane was obtained using the information
from the remaining two others [46,55] and combined with the
information from the scintillator hodoscopes. The probability
of registering a particle in a given MWPC plane, e.g., in the X
plane, for a given angular bin (θ , ϕ) and Eloss range is given
as:

εx(θ, ϕ, Eloss ) = Nxyu(θ, ϕ, Eloss )

Nyu(θ, ϕ, Eloss )
, (2)

where Nxyu(θ, ϕ, Eloss ) is the number of tracks registered in
this angular bin with at least one wire hit in each of X, Y,
and U planes, whereas Nyu(θ, ϕ, Eloss ) is the number of tracks
with at least one wire hit in plane Y and one in plane U. The
efficiencies of Y and U planes were calculated in a similar
way. The overall MWPC efficiency for registration of tracks
in three planes was obtained as a product of the particle
registration probabilities in the individual planes:

εxyu = εxεyεu. (3)

The MWPC efficiency presented in a form of θ , ϕ maps for
the three Eloss ranges are presented in Fig. 4. The efficiency
is the highest for the slowest particles which lose more energy
in the detector so the signal is well above the applied thresh-
olds. The difference in the total efficiency between the two
maps is about 10%.

A similar map was created for the so-called weak tracks
which allowed for one plane without hit. They were found to
be much less sensitive to the energy loss of the particles. In
this case the MWPC efficiency was calculated for the whole
range of Eloss according to the formula:

εweak
xyu = εxyu + εxεy(1 − εu) + εyεu(1 − εx )

+ εuεx(1 − εy). (4)
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FIG. 4. The efficiency maps of MWPC for the three Eloss ranges
defined in Fig. 3. The top map (a) refers to the lowest values of
Eloss (the fastest particles, range 1), whereas the bottom one (c) is
constructed for the highest Eloss (the slowest particles, range 3). The
elliptic-like structures (light gray areas) correspond to “dead” or
malfunctioning wires.

The resulting efficiency map is presented in Fig. 5. The
total MWPC efficiency for weak tracks is about 98%.

Analogously to the case of MWPC, the efficiency map of
the �E hodoscope was also constructed. The accumulated
efficiency of this detector is around 95%. The efficiency of
the E detector has been assumed to be 100%.

2. Configurational efficiency

Due to the fact that the events of interest are coincidences
of two particles registered in E and �E detectors of a finite
granulation, additional losses of acceptance have to be taken
into account. The events with both particles registered in the
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FIG. 5. The MWPC efficiency map obtained for weak tracks.

same �E or E detector have to be rejected due to the lack of
particle identification and/or unknown energy. Since the �E
detector has two-times-finer granulation than the E detector
(24 scintillators compared to 10), this effect is dominated by
the E detector. Such inefficiency, in the following referred to
as the configurational efficiency, is of geometrical origin and
relevant only for coincidences. It is expected to be pronounced
at small relative azimuthal angles of the proton-deuteron pair
(ϕd p � 80◦).

To establish the configurational efficiency the data col-
lected with 160 MeV deuteron beam impinging on the proton
target [56] were used. In the d p scattering only two channels
are present: elastic scattering and ppn deuteron breakup, in
contrast to the dd scattering [46], where four-body breakup
and transfer channels also contribute. Therefore, any non-co-
planar configuration of charged particles in d p-scattering data
can be interpreted as the ppn breakup or, very unlikely, an
accidental coincidence. The ppn channel has also advantage
of low cross section at the ends of kinematical curves. The
dpn channel, on the contrary, dominated by the quasifree
process in which the events are usually gathered on the ends
of the kinamatical curves (near detection thresholds) which is
important in view of the discussion below. The configurational
efficiency was calculated with the use of the particular tracks
(defined in Sec. III A) for each geometrical configuration
(θp1, θp2, ϕ12) analyzed in this paper (see Sec. III F) with
the same angular bins of �θ = 2◦, �ϕ12 = 10◦ as applied in
the analysis of the dpn breakup. The particular tracks include
also events with one particle stopped in �E or with small
energy deposit in E detector (below the threshold). In order
to reject such events or minimize their impact, an upper limit
was set on the energy deposited in �E . Based on the ppn
breakup, angular information from MWPC (no PID available)
and energy deposited in the �E detector, the efficiency was
constructed as follows:

εconf (θp1, θp2, ϕ12)

= Nbreak (θp1, θp2, ϕ12)

Nce(θp1, θp2, ϕ12) + Nbreak (θp1, θp2, ϕ12)
, (5)

where Nce(θp1, θp2, ϕ12) denotes the number of the p-p
coincidences registered as the particular tracks, whereas
Nbreak (θp1, θp2, ϕ12) denotes the number of the coinci-
dences for the complete tracks. Nce(θp1, θp2, ϕ12) and
Nbreak (θp1, θp2, ϕ12) represent experimental values obtained by
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FIG. 6. Configurational efficiency εconf [see Eq. (7)] calculated
on the basis of the 2H(p, pp)n data for θp1 = 19◦, θp2 = 17◦ in three
cases: +ϕ12 (blue squares), −ϕ12 (black triangles), and ±ϕ12 (red
circles). Empty squares represent results from the simulations for
±ϕ12. Lines connecting points are used to guide the eye.

integrating the events over the arclength S (see Sec. III F for
definition of the S variable). In order to check our method,
the data were analyzed for the kinematical configurations
with +ϕ12 (so-called normal configurations) and −ϕ12 (so-
called mirror configurations) separately and for ±ϕ12 (nor-
mal and mirror configurations treated together). As an ex-
ample, the configurational efficiency for θp1 = 19◦, θp2 =
17◦ is presented in Fig. 6. In the case of ϕ12 = 120◦, val-
ues of εconf differ significantly between normal and mirror
configurations.

The corrections should lead to the same results for the
corresponding cross sections for the normal and mirror con-
figurations, as follows from the parity conservation. In Fig. 7
the cross sections before (a) and after (b) the efficiency correc-
tions are presented. The corrected cross sections are consistent
within statistical errors. The corrections based on experi-
mental data were compared to the GEANT4 simulations. In
the simulations, the uniform three-body breakup phase-space
distribution has been used, which is well justified in the case
of narrow angular ranges applied in defining the configuration.
The number of the breakup coincidences was counted and,
simultaneously, a fraction of the breakup coincidences with
two protons registered in the same E or �E detector was ob-
tained. In Fig. 6 the εconf values resulting from the simulations
are compared to the ones obtained on the basis of analysis of
the particular tracks. The configurational efficiency calculated
with the use of the simulations can be considered as purely
geometrical factors of probability for double hits in a single
E bar or a single �E strip. The data and the simulations agree
qualitatively and usually the differences vary between 2 to
4% for the range of ϕd p above 120◦, discussed in this paper.
The statistical uncertainties are within 10%. These differences
may lie in both simulations and the experimental data. On one
hand, the simulations are rather simplified for not including
data digitization and an ideal and realistic modeling of the
detector geometry. On the other hand, the MWPC has its own
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FIG. 7. Cross-section distributions for the 2H(p, pp)n breakup
obtained for configuration θp1 = 19◦, θp2 = 17◦, ϕ12 = 120◦ before
(a) and after (b) correction for configurational efficiency. Cross
sections are presented for three cases for +ϕ12 (blue squares), −ϕ12

(black triangles), and ±ϕ12 (red circles).

configurational efficiency, which prevents the detection of two
particles closer than the distance between two neighboring
wires (2 mm) in the plane with horizontal wires. The further
analysis relies on the corrections obtained directly from the
experimental data.

In the range of ϕd p between 140◦ and 180◦, which is
being examined in this paper, practically only the efficiency
losses due to double hits in the E detector matter. For the
�E and MWPC detectors the configurational inefficiencies
are negligible (below 1%).

D. Hadronic interactions

Additional losses of events took place due to hadronic
interactions inside the scintillator material. They were treated
as a background (see Sec. III F) together with events induced
by charged particles on passive material of the detector setup.
In order to correct the cross sections the losses were calculated
for the protons and deuterons in the energy range of interest
with the use of the GEANT4 framework [46]. The results of
the calculations are presented in Fig. 8.
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FIG. 8. Results of simulations of relative loss of events due to
hadronic interactions of particles stopped in the plastic scintillator.
The losses for protons, deuterons, and 3He ions are presented as a
function of initial energy at the target position.

E. Quasifree scattering

In QFS, a nucleon, or a nuclear fragment consisting of two
or more nucleons, is knocked-out of the target nucleus in kine-
matic conditions close to the corresponding free scattering.
In terms of the dynamics, QFS corresponds to a situation in
which the interaction of the spectator with the incoming and
outgoing particles is very weak or even absent. The deviation
from free scattering will give information on the reaction
mechanism and the structure of the nucleus.

The three-body QFS kinematics in the dd scattering can
be realized in four ways: the deuteron projectile is scattered
on the proton/neutron (dp/n-QFS) of the deuteron target
or the proton/neutron (p/nd-QFS) of the beam deuteron is
scattered on the deuteron target. In this paper only the dp/n-
QFS is considered since in this case both outgoing charged
particles are registered within the forward wall acceptance.
The neutron from the deuteron target acts as a spectator which
escapes practically untouched carrying the Fermi momentum
possessed at the moment of the collision (neutron almost at
rest in the LAB frame).

To learn about the dpn reaction dynamics in the QFS re-
gion one can investigate deviations from the elastic-scattering
process and compare the data to calculations performed
in the three-nucleon sector. Such studies were done at
130 MeV [38,47] near the QFS regime with the neutron
acting as a spectator (“near” d p-QFS), i.e., �d + d → d +
p + nspec. The analyzing powers were directly compared to
the �d p elastic-scattering data and theory assuming free d p
scattering. Contrary to the analysis at 130 MeV, in this paper
the dpn breakup cross sections are presented in a much wider
region around the QFS kinematics corresponding to θd and
θp (15◦–29◦) and ϕd p (135◦–185◦). Due to the limitations
of the MWPC acceptance at larger polar angles, the angular
range was narrowed down to a maximum of 29◦ that partially
removes some events originating from the “near” d p-QFS.

The QFS process is characterized by a two-body kinemat-
ics which implies a strong correlation in polar and azimuthal
(|ϕ1 − ϕ2| ≈ 180◦) angles between the two final nucleons.

]2u [(MeV/c)
760 780 800 820 840

/u
  [

c/
M

eV
]

sp
ec

p

0

0.1

0.2

0.3

0.4

0.5

0
100
200
300
400
500
600
700
800
900

FIG. 9. The studied part of the phase space corresponding to θd ,
θp (15◦–29◦) and ϕd p (135◦–185◦) presented in terms of the pspec/u
versus the u variable.

Since the spectator emerges with its initial Fermi momen-
tum, which in the deuteron is only around 80 MeV/c, it
is clear that the QFS kinematics strongly prefers low neu-
tron energies. In other words, when the momentum transfer
(Mandelstam variable u) from a beam particle (deuteron) to
a scattered one (proton) is large enough as compared to the
spectator momentum (pspec), the process could be considered
quasifree scattering. The selected range of θd , θp (15◦–29◦)
and ϕd p (135◦–185◦) corresponds to u between 760 and 860
(MeV/c)2. The range of reconstructed momenta of neutrons
in the studied part of the phase space is presented in Fig. 9 as
a ratio of pspec to u as a function of the u variable. With the
use of the PLUTO event generator [57] in which the quasifree
scattering is accomplished with a dedicated sampling model
for the deuteron wave function [58], one can study separately
the contributions from the dpn breakup (generated according
to the phase space) and d p-QFS, see Fig. 10. Clearly, the
region of low neutron momentum is dominated by the QFS,
which proves the sensitivity of the selected angular range to
the QFS kinematics. Since the SSA calculations provide only
a rough estimation of three-body breakup cross sections in
the QFS region, the experimental data are suitable to test that
approach.

F. Breakup cross section

The geometry of a coincident proton-deuteron (p-d) pair
is characterized by their polar angles θd and θp and relative
azimuthal angle ϕd p. Momentum and energy conservation
and the relation ϕd p = |ϕd − ϕp| unambiguously define the
kinematics of the 2H(d, d p)n breakup which is described
with five independent variables Ed , Ep, θd , θp, and ϕd p. The
relation between energies Ep and Ed is represented with
the kinematical curve, see Fig. 11. The energies Ep, Ed were
transformed into two new variables defined in the Ep-Ed plane
(see Fig. 11), with D denoting the distance of the (Ed , Ep)
point from the kinematical curve for the pointlike geometry
and S defining the arc-length along the kinematics with the
starting point at the minimal Ep. In the analysis, the angular
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FIG. 10. Experimental distribution of the reconstructed neutron
momentum (black points), obtained for the angular ranges of θd , θp

(15◦–29◦) and ϕd p (135◦–185◦) compared to the PLUTO simulations
for the dpn breakup (black hatched histogram) and d p-QFS (black
dotted histogram) processes. The sum of simulated distributions
is presented as a blue (gray) points. The simulated distributions
were arbitrary normalized to the experimental one so that their sum
reproduces the shape of the experimental histogram.

ranges for kinematic spectra were chosen as follows: �θd =
�θp = 2◦ and �ϕd p = 10◦ and are wide enough to reach a
good statistical accuracy. The events in each bin of �S =
4 MeV (see Fig. 11), corrected previously for efficiencies,
were projected onto the D axis. The sample distribution in a
function of the variable D is presented in the inset of Fig. 11.
The breakup events are grouped in a prominent peak with only
a very low background. Since the exact shape of the back-
ground is not known, as a first approximation, linear behavior
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FIG. 11. Ep vs. Ed coincidence spectrum of the proton-deuteron
pairs registered at θd = 20◦ ± 1◦, θp = 18◦ ± 1◦, ϕd p = 160◦ ± 5◦.
The solid line shows a three-body kinematical curve calculated for
the central values of the angular ranges. Variables arc-length S and
distance from kinematics D are presented in a schematic way. The
inset presents the D distribution of events belonging to one �S bin.
The Gaussian distribution was fitted in the range of D corresponding
to distances of Da = −3σ and Db = +3σ from the fitted peak
position.

was assumed. To calculate the cross section in a function of
S, the Gauss function was fitted to the D distributions. To
treat all configurations consistently, the integration limits in
D variable were chosen at the values of Da and Db, see the
inset of Fig. 11, corresponding to distances of −3σ and +3σ

from the maximum of the fitted peak.
Measurements with an unpolarized beam and a detector

with axial symmetry allows for integration of events over
polar angles. The number of the proton-deuteron breakup
coincidences Nbr (S,
d ,
p) registered at given angles 
d ≡
(θd , ϕd ) and 
p ≡ (θp, ϕp = ϕd + ϕd p) and in a S arc-length
bin are given as follows:

Nbr (S,
d ,
p)

= d5σ

d
d d
pdS
(S, θd , θp, ϕd p)κ�
d�
p�S

× εd
xyu(θd , ϕd , Eloss )εp

xyu(θp, ϕp, Eloss )

× εd
�E (θd , ϕd )εp

�E (θp, ϕp)εconf (θd , θp, ϕd p), (6)

where d5σ
d
d d
pdS denotes differential cross section for the

breakup reaction for a chosen angular configuration; solid an-
gles are calculated as �
 j = �θ j�ϕ jsinθ j , j= d, p. εd

xyu and
ε

p
xyu are the MWPC efficiencies, whereas εd

�E and ε
p
�E are �E

efficiencies for registering deuteron and proton, respectively.
εconf is the configurational efficiency (see Sec. III C 2). κ is
the normalization factor defined in the next Sec. III G.

G. Cross-section normalization

The differential cross section for the 2H(d, d p)n breakup
reaction was normalized to the known d-d elastic-scattering
cross-section data. For that purpose the so-called scaling
region characterized with very weak energy dependence of
the cross section was used [46], which enables scaling of
the measured elastic-scattering rate to the data at two closest
energies (130 and 180 MeV) [37]. Such a relative normal-
ization method ensures cancellation of factors related to the
luminosity (i.e., the beam current, the thickness of the target)
and to the electronic and readout dead times which otherwise
can be a source of systematic uncertainties. The procedure
of extracting the normalization factor κ , which corresponds
to the luminosity integrated over the time of the data col-
lection, is described in detail in Ref. [46]. For the data set
presented in this paper, κ was established to be 48.4 ± 3.9
(syst.)×106 mb−1. The statistical uncertainties are negligible.

H. Experimental uncertainties

The most serious sources of the systematic uncertainties
which affect the breakup cross section are related to the PID
method, the normalization procedure, a data averaging effect
and the track reconstruction procedure. The systematic effects
related to the normalization procedure were already described
in Ref. [46], and here the systematic effects are discussed in
the context of the breakup cross section.

Protons and deuterons were identified by defining graph-
ical cuts enclosing the branches on the �E -E spectra. A
finite precision in defining such cuts may lead to mixing of
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different particle types or cutting out a part of useful events.
The systematic uncertainty associated with this process was
estimated by repeating the analysis based on broad and narrow
cuts of around 0.5σ of the original cut (σ is related to the
width of �E distributions for a selected bin energy E). Based
on this, the relative difference of the resulting cross sections
was calculated. The typical uncertainty of the final breakup
cross section related to PID do not exceed 5%.

The amount of background caused by the hadronic inter-
actions (see Sec. III D) and to a lesser extent by the acci-
dental coincidences was found low (see Fig. 11, inset), so
the uncertainty related to background subtraction can be ne-
glected. However, for a few configurations and certain S-bins
the background contribution was significant and systematic
effects connected to the background subtraction was found to
be 2 to 5%.

For some sets of configurations significant systematic
effects related to the calibration were observed. For these
geometries the shape of the experimental kinematical curves
differs from the theoretical one which influences the distri-
butions of the cross section. In Fig. 12 an example for the
θd = 28◦, θp = 26◦, ϕd p = 180◦ configuration is presented:
Figures 12(a) and 12(b) show the original and scaled proton
energy (so that to fit to the theoretical curve) distributions,
respectively. The bottom figure [Fig. 12(c)] presents the
resulting cross-section distributions. The size of the effect
related to the events migration between different S bins was
estimated to be 3 to 10%.

The experimental cross section for a given angular con-
figuration (θd , θp, ϕd p) is evaluated by taking a finite bin
width around these angles, i.e., θd ± 1

2�θd , θp ± 1
2�θp, and

ϕd p ± 1
2�ϕd p. The bin width is taken wide enough (here

�θd = �θp = 2◦ and �ϕd p = 10◦) to assure good statistical
accuracy. On the other hand, the theoretical predictions, used
for the comparison, were calculated at the central values of
these angular bins. As explained in Ref. [18], the averaging
of the calculations over the experimental bin width is quite
crucial to validate theories in a reliable way. In order to es-
timate the associated systematics the analysis was performed
with smaller bin sizes �ϕd p = 5◦ and �θp = �θd = 1◦, see
Fig. 13. The systematic error associated with this effect, in
most cases, was found to be up to 5%.

Additional loss of events is related to the so-called
crossover events [16]. Such events occur when particles pen-
etrate from one stopping detector to the adjacent one and in
this case events are lost due to distorted energy information.
In this experiment, due to improper light tightness between E
slabs, uncontrolled light leakage increased the crossovers. The
systematic effects originating from the track reconstruction
procedure and crossover losses were estimated based on the
three data sets obtained separately for complete and weak
tracks and with taking into account crossover events in the
complete tracks reconstruction, see Secs. III A and III H. Such
errors were calculated for each individual configuration. The
deviations usually reach up to 7% and the maximum one is
around 12%.

All the discussed above systematic errors are summarized
in Table I. The total systematic uncertainty composed of
systematic errors added in quadrature varies between 13 and
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FIG. 12. Ep vs. Ed kinematical relation for the θd = 28◦, θp =
26◦, ϕd p = 180◦ configuration drawn together with the theoretical
kinematical curve (a). The experimental kinematics scaled to the
theoretical relation is presented in (b). The comparison of the cross-
section distributions obtained for the above two cases (c) demon-
strating the size of the systematic effect accounted for the calibration
procedure. Lines connecting points are used to guide the eye.

20%. The systematic error was estimated separately for each
data point and the results are depicted as red bands in Fig. 14
and in Figs. 17–37 presented in the Appendix.

IV. RESULTS AND COMPARISON
TO THE SSA CALCULATIONS

The experimental cross-section data were obtained for 147
geometries of the proton-deuteron pairs from the breakup
reaction in a wide kinematical region around the d p-QFS,
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FIG. 13. Comparison of sample cross sections obtained with a
regular bin size of �ϕd p = 10◦ and �θp = �θd = 2◦ and smaller bin
size of �ϕd p = 5◦ and �θp = �θd = 1◦.

which corresponds to relative azimuthal angles ϕd p: 140◦,
160◦, and 180◦. This part of the phase space does not include
the full range of the QFS kinematics, as it was discussed in
details in Sec. III E. Nonetheless, the data are still important
for the validation of the SSA predictions around and beyond
the QFS. Polar angles θd and θp were varied between 16◦
and 28◦ with the step of 2◦. The theoretical predictions, used
for the comparison with the experimental cross sections were
calculated at the central values of the chosen angular bins.
A sample cross-section distribution is presented in Fig. 14
together with the available SSA calculations, while the results
for all individual configurations are collected in Figs. 17–37
in the Appendix.

The SSA calculations are expected to properly estimate the
experimental data near QFS kinematics (i.e., with the neutron
energy defined in the LAB frame En ≈ 0) in the center-of-
mass energies above 100 MeV. High-enough beam energy
is necessary to ensure high relative energies for all pairs of
nucleons. This, in turn, is important due to the fact that the
final-state interactions are ignored in the calculations. With
fixed beam energy these conditions can be met by considering
relatively large scattering angles θd and θp. As it was stated
in Ref. [33], SSA provides too-large cross sections and the
discrepancy decreases with increasing beam energy. The total

TABLE I. Sources and typical size of systematic effects. In cases
of large spread of values, the maximal values are given in brackets.

Source of uncertainty Size of the effect

PID 5%
Normalization 8% [46]
Reconstruction of angles 1%
Energy calibration 1% (max 10%)
Background subtraction 1% (max 5%)
Averaging effect 5%
Configurational efficiency max 5%

(for selected configurations)
Cross-section spread 7% (max 12%)
TOTAL 14% (20%)
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FIG. 14. Example of the differential breakup cross section for the
angular configuration specified in the figure. The experimental points
are marked with black dots. The systematic effects are depicted
as a red band (gray band). Various lines represent the theoretical
predictions calculated at the central values of the defined angular
bins. The black lines refer to the SSA calculations based on the CD
Bonn + � (CDB + �) potential: solid with four-term (4t) and dashed
with one-term (1t). Solid and dashed magenta (light gray) and blue
(dark gray) lines represent the similar set of the calculations but for
the CD Bonn and AV18 potentials, respectively. The solid red line
(upper line) present the dependence of the spectator neutron energy
(En) on the S variable.

p + d breakup cross section calculated in an exact way is
lower than the one obtained in SSA by 30% at 95 MeV and
by 20% at 200 MeV. In Nd systems, even with En ≈ 0, SSA
always gives higher values of the differential cross section
than the exact calculations.

The data were sorted according to the relative energy
Ed−p and the neutron energy in the LAB frame En, which
in view of the above discussion are adequate for validating
the SSA predictions. The quality of the agreement between
the calculations and the experimental cross-section data was
studied with the so-called A-deviation factor introduced in
Ref. [59] and defined as follows:

A ≡ 1

N

N∑

i=1

∣∣σ exp
i − σ th

i

∣∣
σ

exp
i + σ th

i

, (7)

where the sum runs over the number of data points in
a given bin of En. In the previous analyses of the ppn
data [15,16,18,20] the standardized χ2 was used for the
various exact calculations. The choice of the A factor instead
of χ2 is motivated by quite large discrepancies between the
data and theories due to the approximate character of the
calculations. The A factor has the advantage of its quite simple
interpretation. Values of the A factor belong to the interval
[0, 1], where zero means a perfect agreement between the data
and calculations and with the deterioration of the agreement
the A-factor approaches 1. For discrepancies small compared
to cross-section values, the approximation σ th ≈ σ exp can be
applied to the denominator and the A-factor value may be
interpreted as half of the average relative distance between the
experimental and theoretical cross sections.
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the eye.

In general one can conclude that at the lowest En the one-
term calculations perform better than those with four terms,
see Fig. 15. For En < 10 MeV the one-term calculations
describe the data well. For higher En the agreement between
the experimental and calculated cross sections deteriorates,
but the four-term calculations stay closer to the data than the
one-term ones. At highest available En the A factor evaluated
for all calculations has values close or equal to 1, which means
a failure of the theoretical description, as expected from the
model assumptions [33].

In view of the above discussion on validity of SSA
two-dimensional relations Ed−p vs. En were also investigated
and are presented in Fig. 16, with the z axis representing the A
factor for three sets of the calculations: CDB, CDB + �, and
AV18 for the one- and four-term versions. Since the A factor
does not account for statistical errors, the bins representing
poor statistical accuracy are not shown. In the case of CDB +
� the calculations were performed for three relative angles
(140◦, 160◦, and 180◦), therefore much more data points
contribute, as seen in Figs. 16(c) and 16(d). For CDB and
AV18 the theoretical calculations are available only at 180◦.

The one-term predictions better describe the data for En <

10, with the exception of combination of En < 5 MeV and
Ed−p > 40 MeV, as seen in Fig. 16, where also four-term
predictions are in agreement with the data. For En < 2 MeV,
CDB and AV18 perform better than CDB + �.

The predicted 3NF effects in the QFS regions are small
and having the approximate SSA calculations, no solid con-
clusions can be drawn about the interaction models. The SSA
provides correct magnitude of the cross-section data; however,
it seems that the deuteron beam energy of 160 MeV is still too
low for SSA to provide more accurate results.
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FIG. 16. Quality of the description in terms of the A factor given
by SSA calculations with various potentials: CDB [(a) and (b)],
CDB + � [(c) and (d)], and AV18 [(e) and (f)]. Left and right
columns correspond to one- and four-term calculations, respectively.

V. SUMMARY AND OUTLOOK

The differential cross-section distributions for the three-
body 2H(d ,d p)n breakup reaction have been obtained for 147
proton-deuteron geometries at 160-MeV deuteron beam en-
ergy. The analyzed part of the phase space covers a wide kine-
matical region around the d p-QFS and only partially includes
the “near” d p-QFS. Despite these limitations, the obtained set
of cross sections is still valuable for validating the recent 4N
calculations. The cross sections have been compared to the
calculations based on the single-scattering approximation for
4N systems at higher energies [33]. The system dynamics is
modeled with AV18, CD Bonn, and CD Bonn + � potentials.
The calculations are still not exact, but they provide a correct
order of magnitude for the cross section close to the QFS
region. In this region the SSA cross sections are usually higher
than the experimental ones, roughly by a factor of 2 or 3, with
the exception of a very limited region in a Ed−p vs. En plane,
where the description of the data is satisfactory.

From the SSA calculations one could expect much better
agreement between experimental and theoretical cross section
at the lowest neutron spectator energies, but this picture may
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be disrupted due to too-low beam energy and not negligible
final-state interactions.

The data measured at KVI at the deuteron beam energy
of 130 MeV seem not to confirm the SSA results for the cross
section [33,38,47]. So far the data were only published for one
sample configuration (θd = 15◦, θp = 15◦, ϕd p = 180◦) [60].

The development of models involving 4N systems is on-
going, though exact numerical calculations for breakup am-
plitudes are still distant in time given the complexity of the
problem. Current experimental efforts are focused on further
development of the 4N database, which is very poor especially
for the breakup channels. In particular, an emphasis is placed
on investigations of proton-3He scattering [61,62] since this
system is the simplest one where the 3NFs in the channels
of total isospin T = 3/2 can be studied [63]. Such isospin
dependence studies of 3NFs are crucial for understanding of
nuclear systems with larger isospin asymmetry like neutron-
rich nuclei, neutron matter, and neutron stars [64,65].

ACKNOWLEDGMENTS

This work was supported by the Polish National Sci-
ence Center under Grants No. 2012/05/E/ST2/02313 (2013–

2016) and No. 2016/21/D/ST2/01173 (2017–2020) and
by the European Commission within the Seventh Frame-
work Programme through IA-ENSAR (Contract No. RII3-
CT-2010-262010). A.D. acknowledges the support by the
Alexander von Humboldt Foundation under Grant No. LTU-
1185721-HFST-E.

APPENDIX: BREAKUP CROSS-SECTION
DISTRIBUTIONS FOR INDIVIDUAL CONFIGURATIONS

This Appendix contains the cross sections of the three-
body 2H(d, d p)n reaction at 160 MeV. The results, presented
in Figs. 17–37, were obtained for the deuteron-proton co-
incidences registered at given θ1, θ2, and ϕd p angles, with
the ranges of �θd = �θp = 2◦ and �ϕd p = 10◦. The results
are compared with a set of theoretical predictions, which are
presented in the figures as color lines listed in the included
legend. The experimental results and theoretical calculations
are presented as a function of the arc-length S along the
kinematical curve. In the figures the error bars represent the
statistical uncertainties, whereas the systematic point-to-point
errors are depicted as red (gray) bands.
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FIG. 17. Differential cross section distributions for the 2H(d, d p)n reaction obtained for the set of kinematic configurations characterized
by θd = 16◦, ϕd p = 180◦, and θp as specified in the panels. The dashed lines represent the one-term (1t) and solid lines four-term (4t)
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FIG. 18. Same as Fig. 17 but for θd = 18◦.
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FIG. 19. Same as Fig. 17 but for θd = 20◦.
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FIG. 20. Same as Fig. 17 but for θd = 22◦.
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FIG. 21. Same as Fig. 17 but for θd = 24◦.
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FIG. 22. Same as Fig. 17 but for θd = 26◦.
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FIG. 23. Same as Fig. 17 but for θd = 28◦.
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FIG. 24. Differential cross-section distributions for the 2H(d, d p)n reaction obtained for the set of kinematic configurations characterized
by θd = 16◦, ϕd p = 160◦, and θp as specified in the panels. The dashed black lines represent the one-term (1t) and solid black lines four-term
(4t) calculations based on the CD Bonn + � potential, as described in the legend. The red (upper gray) line and the scale on the right-hand
side present the dependence of the spectator neutron energy (En) on the S variable.
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FIG. 25. Same as Fig. 24 but for θd = 18◦.
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FIG. 26. Same as Fig. 24 but for θd = 20◦.
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FIG. 27. Same as Fig. 24 but for θd = 22◦.
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FIG. 28. Same as Fig. 24 but for θd = 24◦.
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FIG. 29. Same as Fig. 24 but for θd = 26◦.
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FIG. 30. Same as Fig. 24 but for θd = 28◦.
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FIG. 31. Differential cross section distributions for the 2H(d, d p)n reaction obtained for the set of kinematic configurations characterized
by θd = 16◦, ϕd p = 140◦, and θp as specified in the panels. The dashed black lines represent the one-term (1t) and solid black lines four-term
(4t) calculations based on the CD Bonn + � potential, as described in the legend. The red (upper gray) line and the scale on the right-hand
side present the dependence of the spectator neutron energy (En) on the S variable.
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FIG. 32. Same as Fig. 24 but for θd = 18◦.
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FIG. 33. Same as Fig. 32 but for θd = 20◦.
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FIG. 34. Same as Fig. 32 but for θd = 22◦.
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FIG. 35. Same as Fig. 32 but for θd = 24◦.
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FIG. 36. Same as Fig. 32 but for θd = 26◦.
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FIG. 37. Same as Fig. 32 but for θd = 28◦.
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