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Higher derivative terms in the π�N interaction: Some phenomenological consequences
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In this paper, we implement the use of a πN�(1232) vertex interaction containing both first- and second-order
derivative terms, as required by renormalization and power-counting considerations. As was previously shown,
both interactions present quantization shortcomings but can be used in a pertubative calculation. Our results
indicate that the usual π derivative plus the spin-3/2 gauge invariant (derivative also in the � field) should be
included in amplitude calculations, as also all higher derivative interactions respecting chiral invariance. We
show that both interactions make essentially the same resonant contribution to the elastic π+ p cross section, so
changing the ratio between both coupling constants amounts to a correction of the background. The elastic π+ p
cross section up to 300 MeV changes only mildly when that ratio is changed, but the total π− p scattering, which
has poor fit within both interactions separately, can be much improved in the same energy range by tuning the
ratio between both coupling constants.
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I. INTRODUCTION

In order to treat the � (1232 MeV) within an effective
Lagrangian approach, it is rendered as the quantum of a
Rarita-Schwinger (RS) field and generic effective interactions
are proposed that respect relevant symmetries: Lorentz, elec-
tromagnetic gauge, and, in the case of strong interactions,
chiral symmetries.

The simplest interaction term for describing pion-nucleon-
� interactions is one derivative only in the pion field (named
from now on I1), which was proposed in Refs. [1,2] several
decades ago and used intensely although that interaction was
shown to lead to a nondefinite Fock space in the presence of
a nonuniform background pion field [3,4] and the RS was
already known to present signature problems in background
fields even for nonminimal electromagnetic coupling [5].
Nevertheless, perturbative series have perfect sense in ampli-
tude calculations. This interaction is known as conventional
or inconsistent coupling for the mentioned shortcomings.

In an effort to overcome these difficulties, at the turn of
the century, a new interaction was proposed [6–8] which is
derivative both in the � and π fields (named from now on I2)
and known as 3/2 gauge invariant (with the same structure
as the free Lagrangian with � mass m = 0, see below) or
consistent coupling. The formal advantage of I2 over I1 is
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that preserves it the degree of freedom counting when m → 0
independently of the interaction term, as can be seen from the
constraint analysis [9]. Also, in πN elastic scattering at tree
level, it decouples the spin-1/2 background contributing off
shell in the � propagator. Nevertheless, in radiative scattering,
the spin-1/2 background no longer decouples and one-loop
radiative corrections force us to introduce also the interaction
I1 to act as counterterm to avoid divergences [10]. It was
believed that this interaction leads to positive definite norm
states, but as we showed recently [9] this is not the case: When
background fields are present, some physical negative norm
states arise.

From another point of view, these two interaction terms
could be worked under the scheme of chiral perturbation
theory. This is an expansion tightly around the resonance
peak, and when doing so both interactions can be considered
of the same order. Indeed, each pion momentum is assigned a
contribution to the power counting in the expansion parameter
δ ∼ (m − mN )/�χPT (�χPT = 1 GeV) or δ2 ∼ mπ/�χPT ,
depending on its value, and both interactions are of the same
order since momentum coming from ∂μ�ν behaves as order 1
at the threshold [10].

So, in a perturbative calculation, one should consider both
I1 and I2 (the Lagrangians LIk depending on a coupling
constant gk together with the kinematical one Lfree, will be
defined in the next section). It is true that we have shown
that separately for the elastic π+ p scattering channel, I1 fits
the data better than I2 in the region of the resonance [11],
and contrary to what is claimed in Ref. [12], we have shown
that it is not possible to get fits of the same quality as the
ones obtained using I2 by changing the σ meson parameters.
(Recall that ρ parameters are fixed from the other low-energy
processes through vector dominance). Nevertheless, as we
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will see below, it is not possible to reproduce the π− p channel
with either I1 or I2 alone.

The fact that one can fit properly with an isobar model one
determined channel reaction but not others is not unique to
πN scattering. We find the same problem with the hadronic
current W +N → πN ′ in weak pion production, where the
W + p → π+ p hadronic channel can be reproduced properly
but the W +n → π+n one cannot, similar to the π+ p and π− p
problem in elastic scattering, where both W +n → π+n and
π− p → π− p reactions have the same isospin coefficients for
the pole and cross-� amplitudes at least up to a sign. To get
an improvement, other authors have invoked the equivalence

Lfree + LI1 → Lfree + LI2 (g2 = − g1

m ) + LC ( g2
1

m2 ), with LC

describing contact terms without the � field, through the
transformation �ν → �ν − g1/m(∂ν�)� (�ν,�,� are �,
pion, and nucleon fields isospin omitted, respectively).1 In
Ref. [13], the replacement LI1 + CLC → LI2 + (1 + C)LC

is proposed, with adjusting the low-energy constant C to get
a better fitting. This procedure has two limitations and/or
arbitrariness. First, the coupling of I2 results in g2 = − g1

m
fixed by the transformation, and second, the coupling constant

of the contact term is (1 + C) g2
1

m2 and not g2
1

m2 , as should come
from the field transformation. The addition of CLC is based
on the argumentation that within the ChPT framework, the
LC appearing in the LI1 ,LI2 equivalence can be added with
an arbitrary (to be adjusted) coefficient C [12].

We will approach the problem in another way, since
ChBPT expansion makes sense only around the resonance
peak and it is not the only criterion to assign an order to an
interaction term. We could consider I2 to be of higher order in
consideration of the dimension of the coupling constant and
the number of derivatives in the term, in line with Ref. [14].
In this sense, the interaction I2 could be easily seen as the
next order in derivatives from the conventional coupling [10],
and the addition of each term Ik implies the fixing of the
corresponding coupling constant gk . This criterion makes the
idea of considering both interactions together reasonable, and
we explore here some phenomenological consequences of
doing so. We will calculate the total π− p and elastic (for
which background contributions are far more relevant than in
the π+ p due to isospin coefficients) scattering cross sections.
We will show that each interaction term fits the data poorly,
while a judicious mixture of both interactions leads to a better
description of this channel while keeping a good description
of the π+ p one, without ad hoc manipulations of the back-
ground. Thus, from our point of view, the procedure followed
in Ref. [13] appears naturally in our scenario of LI1 + LI2

where LI1 + LI2 → LI1 (g1, g2) + LC (g1, g2) by �ν → �ν −
g2�∂�.

II. LAGRANGIANS

The free RS field is described by the Lagrangian

Lfree = ψμ(x)K(∂, A)μν�ν (x) (1)

1In the same way, we would make the transformation �ν → �ν −
g2�∂� to eliminate I2 and get I1 if I2 were the starting interaction
and we would make LI2 → LI1 + CLC .

where

K(∂, A)μν = R

(
−1

2
(1 + A)

)μμ′

K(∂,−1)μ′ν ′

× R

(
−1

2
(1 + A)

)ν ′ν

(2)

and

K(∂,−1)μ′ν ′ = εμ′ν ′αβ∂αγ βγ5 + imσμ′ν ′ , (3)

where σμ,ν = i
2 [γμ, γν] = iγμν, ε0123 = 1, γ5 = iγ 0γ 1γ 2γ 3,

and Rμν (a) = gμν + aγμγν .2 Note that the matrices
R(− 1

2 (1 + A)) appear because by construction the field �μ

has a spurious spin-1/2 component and as a consequence the
Lagrangians Lfree are connected by the contact transformation
�μ → Rμν�ν, A → A−2a

1+4a (A �= − 1
2 ), which change the

proportion of the 1/2 states while leaving the equations of
motion invariant.

Using the properties of R matrices in Lfree at Eq. (2), we
can write the general propagator in terms of the propagator
for A = −1 (which renders the calculations simpler) as

G(p, A)μν = R−1

(
−1

2
(1 + A)

)μ

α

G(p,−1)αβ

× R−1

(
−1

2
(1 + A)

)ν

β

, (4)

where G(p,−1)μν can be put in terms of the well-known

projectors P3/2, P1/2
11,22, P1/2

21 , and P1/2
12 (see Appendix A) as

G(p,−1)μν = −
[

/p + m

p2 − m2
P3/2

μν − 2

3m2
(/p + m)

(
P1/2

22

)
μν

+ 1√
3m

(
P1/2

12 + P1/2
21

)
μν

]
. (5)

The derivative first-order (in kπ ) interaction term involving
the �, nucleon, and pion fields respecting chiral invariance
and which dominates at small energies [1] can be written as
(T are the N → � isospin excitation operators)

LI1 = g1ψ̄∂μφ† · TR

(
1

2
(1 + 4Z1)A + Z1

)μν

�ν + c.c., (6)

and it is also invariant (at the level of the equations
of motion and the amplitudes) under contact transforma-
tions, since it can be shown that R( 1

2 (1 + 4Z1)A + Z1)
μν =

R(− 1
2 (1 + A))

μα
R(− 1

2 (1 + 2Z1))
ν

α
. It is clear that the A de-

pendence cancels in any physical amplitude and that the
factor R(− 1

2 (1 + A)) can be dropped, but dependence on
Z1 persists. Z1 is thus a free parameter of the interaction
[11]. As already stated, this interaction was shown to lead to
negative probabilities [3]. However, this term can be used to
get low-energy amplitudes since it is the most general first-
derivative Lagrangian which respects covariance and chiral
symmetry and admits a nonproblematic perturbative order-
by-order approach for the amplitude [15]. Another concern
about � interaction amplitudes, the existence of the so-called
spin-1/2 background, has been proved baseless since lowest

2These are Bjorken and Drell conventions.
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FIG. 1. Amplitude of pion (π )–nucleon (N) scattering split in s
or pole (left) and u or cross (right) contributions for � resonance.

spin representation contributions are present in other cases
[16].

The next interaction in number of derivatives and chiral
invariant is

LI2 = − g2 �̄∂μφ† · Tεμνρβγβγ5R

(
1

2
(1 + 4Z2)A + Z2)

) η

ν

× ∂ρ�η + c.c., (7)

and it is important to note that this interaction term is the
most general second-order interaction containing a derivative
on the pion field, which is necessary for chiral invariance, and
a free parameter Z2. Provided that all free parameters Zk are
set such that Lagrange multiplier fields of the free theory do
not acquire dynamics due to the interaction, as explained in
Appendix A and Ref. [16], is used to fix Z1 = 1/2 for I1 as in
Ref. [1], and dropping R(− 1

2 (1 + A)) or equivalently putting
A = −1 everywhere gives

LI1 = g1ψ̄∂μφ† · TR(−1)μν�ν + c.c.. (8)

For I2, it leads to Z2 = −1/2, which for A = −1 corresponds
to the interaction

LI2 = −g2∂μφ† · Tεμνρβγβγ5∂ρ�ν + c.c., (9)

originally proposed in Ref. [6]. This is called a spin-3/2
gauge-invariant interaction since it remains unchanged under
the transformation �μ → �μ + ∂μχ , where χ is an arbitrary
spinor that leaves invariant Lfree(m = 0).

III. PION-NUCLEON AMPLITUDE

We first calculate the tree-level pion-nucleon amplitude
involving the � from the Lagrangian in Eqs. (1) with
A = −1, (8), and (9) as already adopted in Refs. [1]
and [6]:

L� = ψμ{εμναβ∂αγβγ5 + [imσμν ≡ mR(−1)μν]}�ν

+g1ψ̄∂μφ† · TR(−1)μν�ν + g1�̄μR(−1)μν∂νφ · T†ψ

−g2 ψ̄∂μφ† · Tεμναβ∂αγβγ5�ν + g2∂αψμεμναβγβγ5∂νφ · T†ψ, (10)

and with the propagator in Eq. (5), we can calculate the resonant amplitude contribution(RπN ) as shown in Fig. 1. By omitting
the nucleon spinors and isospin factors and letting the incoming and outgoing pions momentum be noted as k and k′ respectively
and the � momentum as p, the s amplitude reads

Rs
πN = g2

1k′
μRμαGαβ (p)Rβνkν + g2

2k′
μ(−i)�μα (p)Gαβ (p)(−i)�βν (p)kν

−g1g2k′
μRμαGαβ (p)(−i)�βν (p)kν − g1g2k′

μ(−i)�(p)μαGαβ (p)Rβνkν, (11)

where �μν (p) = εμναβγβγ5 pα , R ≡ R(−1), and where we have used ∂μψ, φ,�ν ∼ iqμψ, φ,�ν . The u-channel contribution is
obtained by simply replacing p by p − k − k′ and k by k′ in the former expression.

Observe that the first two terms correspond to the first- and second-order (in derivatives) contributions to the Lagrangian,
respectively, while the last two can be construed as interference terms between them. Let us analyze first the amplitude for I1. If
g2 = 0, we get the s amplitude

Rs,g2=0
πN = −(g1)2 /p + m

p2 − m2
P3/2

μν kμk′
ν − (g1)2

m2

[
2(/p + m)P1/2

11 μν + m
√

3
(
P1/2

12 + P1/2
21

)
μν

]
kμk′

ν, (12)

where the relations

Rμν = Pμν
3/2 −

√
3
(
P1/2

12 + P1/2
21

)μν − 2
(
P1/2

11

)μν
,

(pμγ ν − γ μ pν ) =
√

3 � p(P1/2
12 + P1/2

21

)μν = −
√

3
(
P1/2

12 + P1/2
21

)μν � p,[
P3/2

μν , � p] = γ μP3/2
μν = P3/2

μν γ ν = 0 (13)

were used. The second term in Eq. (12) is the so-called spin-1/2 background, but what is relevant for the asymptotic behavior
of the amplitude is that it represents a nonpole (without a pole) contribution which grows with p, since the projectors go as p0
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(see Appendix B). On the other hand, if g1 = 0, the I2 amplitude can be expressed (in the s-channel p2 �= 0) also as a pole and
well-behaved term at p2 = m2 as

Rs,g1=0
πN = −(g2)2m2 /p + m

p2 − m2
P3/2

μν kμk′
ν

−(g2)2(/p + m)P3/2
μν kμk′

ν, (14)

where we have used Eqs. (13) and that −i�(p)μν = − � pRμν − (pμγ ν − γ μ pν ) = −Rμν � p + (pμγ ν − γ ν pν ). Observe that,
except for the dimensions of the coupling constants, the pole terms for both amplitudes are identical in form. Additionally,
there is also a term as poorly behaved asymptotically as the nonpole term in Eq. (12). This term should be treated together with
the pole one in the u channel since p2 could be zero in P3/2

μν .
When we put both interactions together, the amplitude reads

RπN =
(

g1 + mg2

m

)2

k′
μ

{
−p2 � p + m

p2 − m2
Pμν

3/2

}
kν +

[(
g1 + mg2

m

)2

− g2
2

]
k′
μ{( � p + m)Rμν + (pμγ ν − γ μ pν )}kν − 2g1g2k′

μRμνkν

(15)

= −(g1 + mg2)2k′
μ

{ � p + m

p2 − m2
Pμν

3/2

}
kν −

(
g1 + mg2

m

)2

k′
μ

{
2( � p + m)

(
P1/2

11

)μν + m
√

3
(
P1/2

12 + P1/2
21

)μν}
kν

+ g2
2k′

μ

{
2( � p + m)

(
P1/2

11

)μν + m
√

3
(
P1/2

12 + P1/2
21

)μν}
kν − g2

2k′
μ( � p + m)Pμν

3/2kν

− 2g1g2k′
μ

(
Pμν

3/2 − 2
(
P1/2

11

)μν −
√

3
(
P1/2

12 + P1/2
21

)μν)
kν .

= −
(

g1 + mg2

m

)2

k′
μ

{ � p + m

p2 − m2
Pμν

3/2

}
kν − g2

1

m2
k′
μ

{
2( � p + m)

(
P1/2

11

)μν + m
√

3
(
P1/2

12 + P1/2
21

)μν}
kν − g2

2k′
μ( � p + m)Pμν

3/2kν

− 2g1g2

m
k′
μ

(
2 � p(P1/2

11

)μν + mPμν
3/2

)
kν, (16)

where we have assumed that the projectors are defined for each p2. That is the case for the s-channel contribution for which
p2 > 0 always, while for the u-channel one, since p2 could be arbitrarily small, it is preferable to express the amplitude without
separating pole from nonpole terms, as in Eq. (15). As can be seen in Eq. (16), the first term corresponds to the pole contribution
both in (12) with g2 = 0 and (14) with g1 = 0, but now with a coupling constant g = (g1 + mg2). The third and fourth terms are
the corresponding backgrounds from Eqs. (12) and (14) respectively, with the last term being a background contribution coming
from the interference of both vertices. Let us rewrite the couplings in order to separate pole and background amplitudes, and let
us introduce the parameter κ so that g1 + mg2 = g and g2 = κg/m. Thus, we get

g1 = (1 − κ )g, (17)

g2 = κ
g

m
, (18)

and consider g and κ as the phenomenologically relevant coupling constants. Observe that for κ = 0 we obtain the amplitude for
pure leading first-derivative interaction, while in the limit κ = 1 we get pure second-derivative interaction. g gives the resonant
contribution g = (g1 + mg2), but κ amounts to a change in background contributions depending on the mixture of I1 and I2

interaction. We would thus expect that in a channel where background contributions are unimportant (as is the case with the
elastic π+ p dispersion due to the isospin coefficients and values for p2 ∼ m2) the fit to the data is relatively insensitive to
changes in κ . Instead, in channels where background contributions are relevant, the value of κ might become critical. In terms
of g and κ , the amplitude reads [from Eq. (15)]

RπN = −g2k′
μ

{
p2

m2

� p + m

p2 − m2
Pμν

3/2 − 1

m2
[( � p + m)Rμν + (pμγ ν − γ μ pν )]

+ κ2 1

m2
[( � p + m)Rμν + (pμγ ν − γ μ pν )] + 2(1 − κ )κ

m
Rμν

}
kν, (19)

or, putting the backgrounds in terms of projectors as [from Eq. (16)],

RπN = −g2k′
μ

{ � p + m

p2 − m2
Pμν

3/2 + (1 − κ )2

m2
g2k′

μ

[
2( � p + m)

(
P1/2

11

)μν + m
√

3
(
P1/2

12 + P1/2
21

)μν]

+ κ2

m2
( � p + m)Pμν

3/2 + 2(1 − κ )κ

m2

(
2 � pP1/2

11 + mP3/2
)μν

}
kν . (20)
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FIG. 2. Background non-resonant contributions to the πN
amplitude.

Observe that we get the same peak contribution if we assume
the same value of g ≡ fπN�

mπ
used when g2 = 0, g1 = g but

as κ, (1 − κ ) < 1 the separate backgrounds are reduced by
a smaller factor κ2, (1 − κ )2, and with an interference back-
ground (last term) coming from the last term in Eqs. (19) and
(20) of the same order since it goes as (1 − κ )κ .

IV. RESULTS

We implemented our theoretical proposal to calculate π+ p
and π− p total cross-section data. To do so, we used a minimal
realistic model for the nonresonant background including the
ρ and σ fields (Fig. 2), while the unstable character of the �

has been taken into account under the complex mass scheme
(CMS), where we make the replacement m → m + i� in the
full propagator, with � being the � width, which is supposed
to be constant (see Ref. [17] for details).3 The contribution
of the s channel to the cross section is dominant for the π+ p
case (the isospin factor being equal to 1, while it is 1/3 for the
u channel), so the parameters of the � (g, m, �) are usually
fitted to this channel data [11,17], while (due to the exchange
isospin factors between u and s channels and p2 �= m2) the
u channel becomes important for the π− p elastic case and
is so far more sensitive to the background content of the
model. Nevertheless, we analyze data for the total π− p cross
section since a model appropriate to reproduce the elastic
and charge-exchange contributions should include final-state
charge-exchange interactions to couple final π− p and π0n
states. The strategy we follow is to use the π+ p data first
to fit the � mass, width �, and coupling g. This was done
previously in Refs. [17,19,20], and this model was considered
precise enough by the Particle Data Group to publish our
determination of the � magnetic moment [21] as the most
recent one. Here, we repeat the fit since we have enlarged
the number of data points, but we conserve the same level of
precision. Then, keeping these fitted parameters, we use the
π− p data to fix the background-related κ parameter [recall the

3A more accurate procedure would be the use of the energy-
dependent � self-energy, taking into account the � mixing with πN
states at one or higher loop bubbles to all orders [18]. Nevertheless,
since we are interested in the qualitative behavior of the different
components of the πN� interaction and not in a full description of
the πN scattering data, we use the simpler CMS scheme.

FIG. 3. Elastic π+ p and π− p total and elastic cross sections.
(a) Fittings obtained with the interaction I1 (κ = 0) and I2 (κ = 1)
for π+ p and results for π− p (total and elastic), keeping the κ = 0
fitted parameters with other values of κ to improve the description.
(b) Refitting obtained with I1 + I2 (κ = 0.45) for π+ p and reproduc-
tion of π− p with the obtained parameters.

definitions of g and κ in Eqs. (17) and (18)]. Then, a refitting
of g, m, � is done until we get the same levels of precision in
both channels. This should be equivalent to fix g1 and g2. The
experimental data are taken from Ref. [22].

We show the results in Fig. 3. First, we get g = 0.32, m =
1211.41, � = 88.00 for I1 (κ = 0) with χ ≡ χ2/dof = 4.4 as
before in Refs. [17] and [21]. It would be seem that this χ

value is big, but nevertheless consider that the errors are of the
order of 1%, which is very good for any model. In addition,
the value of χ = 4.5 (considering dof = n0 data) is obtained
with the WI08 solution of Ref. [23], which confirms the relia-
bility of our model. When we repeat the fitting with I2 (κ = 1),
we get g = 0.30, m = 1210.14, � = 80.77, χ = 16.30 and
it is not possible to improve the fit by manipulating the σ pa-
rameters, as we concluded in Ref. [11]. Then, the fit with I1 is
much better, and we adopt the � parameters obtained with I1.

While we intend to reproduce the total π− p data, we get
for I1 (κ = 0) a value χ = 80.80 that is not satisfactory, as
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shown in Fig. 3. We get a similar result when use I2 (κ = 1)
with χ = 40.40. In order to test how I1 + I2 (κ �= 0, 1) can
accommodate to both data sets, we try to fix κ to improve
the total π− p description and we see that for κ = 0.45 results
improve to χ = 18. In Fig. 3, we can see how κ controls the
values for the elastic cross section where the � essentially
contributes with the u background term. Finally, we refit the
π+ p channel with I1 + I2 (κ = 0.45) and get g = 0.31, m =
1210.67, � = 84.60 with χ = 7.1 and reproduce the total
π− p data with χ = 7.2. The WI08 solutions gives results
for this channel of χ = 3.5. Then, we conclude that this
combination I1 + I2 (κ = 0.45) enables us reproduce both
channels with the same level of precision and not appreciably
less than in the initial fitting, as shown in Fig. 3.

It is important to mention that Eq. (19) with κ = 1 is
roughly equivalent to Eq. (32) of Ref. [13] with their fitted
value c = 1.1. There, the authors try to improve the νn →
μ−nπ+ description where the hadronic current W +n → nπ+
current is analogous to the elastic π− p → π− p channel (but
enlarging and not diminishing the cross section) but with
a combination of weak and strong vertices. The difference
with our point of view is that in place of adding arbitrarily
a cδP background to cancel the undesirable contributions,
we expand the πN interaction to the second derivative order,
and this cancellation mechanism appears naturally. In that
case, the result c = −1.1 seems equivalent to using only the
I2 interaction in our formalism. Nevertheless, the errors in
that reaction are of the order of 20–30%, which makes it
difficult to definitively conclude which c value fits both the
νp → μ− pπ+ and νn → μ−nπ+ channels at the same time.

V. CONCLUSIONS

To date, publications devoted to the description of pion-
production reactions describe the πN� vertex by either us-
ing the conventional first derivative pion field Lagrangian
[Eq. (6)] or the more recent second-order derivative La-
grangian [Eq. (7)], as if they were mutually exclusive possi-
bilities. As mentioned earlier, both interaction vertexes can be
used in a perturbative approach. Within the spirit of effective
Lagrangian theories, we have developed the interaction to
a second derivative order, and in addition, both interactions
should be present when radiative corrections are introduced.
At the threshold, i.e., in the resonance region, both interac-
tions contribute with the same power counting in δ ∼ (m −
mN )/�χPT and δ2 ∼ mπ/�χPT .

As we can see in Fig. 3, using both interactions together
we can get good fits to the data in cases where the background
contributions are important, without ad hoc manipulations.
This scheme can be applied to other interactions like pion
photo or weak production.

This is just a first approach. The procedure could be
iterated to optimize the fit, the breaking of isospin symmetry
(leading to slight changes in masses and widths for �++, �+,
�0, and �−) could be taken into account, or an approach
beyond tree level (like solving the Bethe-Salpeter equation
for the self-energy as in Ref. [24]) could be used; however,
our results are of the same order as those obtained with the

model WI08. It is clear that using I1 and I2 together is not
only theoretically correct but also phenomenologically sound.
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APPENDIX A: FREE PARAMETERS IN THE I2

INTERACTION

To show the generality of the form of LI2 , observe that the
general covariant form of the coefficients to contract with pion
and a second derivative is [taking for simplicity A = −1 (see
Sec. II) and omitting isospin factors and integrating by parts]

LI2 = �̄μR
(− 1

2 − Z2
)
μ,σ

Mσαν (∂αψ )(∂νφ), (A1)

where the most general tensor structure for M is Mμαν =
z1γ

μγ αγ ν + z2gμαγ ν + z2gμνγ α + z3gανγ μ. Observe that in
the free RS Lagrangian in (1) and (2), there is no term
containing �̇0 for A = −1. So, the equation of motion for
it is a true constraint, and �0 has no dynamics. It is neces-
sary then that interactions do not change that (see Ref. [9],
Appendix A). Since LI2 contributes a �̇0 in the equation of
motion for ψ via R(− 1

2 − Z2)0
σMσαν , this condition is used

for �̇0 not appearing in the equations of motion is that this
contribution contains no time derivative of any of the other
fields of the theory. This can be realized if R is diagonally
achieved with Z2 = −1/2 and if M0α0 = M00ν = 0. This
leads to

Mμαν = [γμγαγν + gμνγα − gμαγν − gανγμ] = iεμναργργ 5,

(A2)

where we have used a property of γ matrices. Finally, if we
replace Eq. (A2) in (A1), we get Eq. (7) for A = −1.

APPENDIX B: SPIN PROJECTORS

We have introduced Pk
i j , which projects on the k = 3/2, 1/2

sectors of the representation space, with i, j = 1, 2 indicating
the subsectors of the 1/2 subspace, defined as

(P3/2)μν = gμν − 1

3
γμγν − 1

3p2
[ � pγμ pν + pμγν � p],

(
P1/2

22

)
μν

= pμ pν

p2
,

(
P1/2

11

)
μν

= gμν − P3/2
μν − (

P1/2
22

)
μν

=
(

gμα − pμ pα

p2

)
(1/3γ αγ β )

(
gβν − pβ pν

p2

)
,

(
P1/2

12

)
μν

= 1√
3p2

(pμ pν− � pγμ pν ),

(
P1/2

21

)
μν

= 1√
3p2

(−pμ pν+ � ppμγν ). (B1)
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