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SE1 factor of radiative α capture on 12C in cluster effective field theory
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The SE1 factor of radiative α capture on 12C is studied in effective field theory up to next-to-leading order
(NLO), and a modification of the counting rules for the radiative capture amplitudes is discussed. I find that
only two unfixed parameters remain in the amplitudes up to NLO, and those two parameters are fitted to the
experimental SE1 data. A value of the SE1 factor is calculated at the Gamow-peak energy as SE1 = 59 ± 3 keV b,
and the result is found to be about 30% smaller than the estimates reported recently. An uncertainty of the
estimate in the present work is also discussed.
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I. INTRODUCTION

The radiative α capture on carbon-12, 12C(α, γ )16O, is
one of the fundamental reactions in nuclear astrophysics,
which determines the C/O ratio created in the stars [1]. The
reaction rate, equivalently the astrophysical S factor, of the
process at the Gamow peak energy, EG = 0.3 MeV, however,
cannot be determined in experiment due to the Coulomb
barrier. A theoretical model is necessary to be employed in
order to extrapolate the reaction rate down to EG by fitting
model parameters to experimental data typically measured at a
few MeV.

In constructing a model for the study, one needs to take
account of excited states of 16O [2], particularly, two excited
bound states for lπ

ith = 1−
1 and 2+

1 just below the α-12C breakup
threshold at E = −0.045 and −0.24 MeV,1 respectively, as
well as two resonant (second excited) 1−

2 and 2+
2 states at

E = 2.42 and 2.68 MeV, respectively. The capture reaction
to the ground state of 16O at EG is expected to be E1 and E2
transition dominant due to the subthreshold 1−

1 and 2+
1 states,

while the resonant 1−
2 and 2+

2 states play a dominant role
in the available experimental data at low energies, typically
1 � E � 3 MeV. The main part of the S factor, therefore,
consists of SE1 and SE2 from the E1 and E2 transitions
along with a small contribution, Scasc, from so-called cascade
transitions. During the last half century, a lot of experimental
and theoretical studies for the reaction have been carried out.
See Refs. [2–5] for review.

Theoretical frameworks employed for the study are mainly
categorized into two [5]: the cluster models using general-
ized coordinate method [6] or potential model [7] and the
phenomenological models using the parametrization of Breit-
Wigner, R matrix [8], or K matrix [9]. A recent trend of the
study is to rely on intensive numerical analysis, in which a
larger amount of the experimental data relevant to the study
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1The energy E denotes that of the α-12C system in the center of

mass frame.

are accumulated, and a significant number of parameters of
the models are fitted to the data by using computational power
[5,10,11]. In the present work, to the contrary, we discuss
another approach to estimate the S factor at EG; we employ
a new method for the study and discuss a calculation of the
SE1 factor at EG based on an effective field theory.

Effective field theories (EFTs) provide us a model inde-
pendent and systematic method for theoretical calculations.
An EFT for a system in question can be built by introducing
a scale which separates relevant degrees of freedom at low
energies from irrelevant ones at high energies. An effective
Lagrangian is written down in terms of the relevant degrees
of freedom and perturbatively expanded by counting the
number of derivatives order by order. The irrelevant degrees
of freedom are integrated out, and their effect is embedded
in coefficients appearing in the Lagrangian. Thus, a transi-
tion amplitude is systematically calculated by writing down
Feynman diagrams, while the coefficients appearing in the
Lagrangian are fixed by experiment. For review, one may
refer to Refs. [12–15]. For last two decades, various processes
essential in nuclear astrophysics have been investigated by
constructing EFTs: p(n, γ )d at big bang nucleosynthesis en-
ergies [16,17] and pp fusion [18–21],3He(α, γ )7Be [22,23],
and 7Be(p, γ )8B [24,25] in the Sun.

In the previous works [26–28], I have constructed an
EFT of the radiative capture reaction, 12C(α, γ )16O, derived
the counting rules for the reaction at EG, and fitted some
parameters of the theory to the binding energies of the ground
and excited states, 0+

1 , 0+
2 , 1−

1 , 2+
1 , and 3−

1 (lπ
ith) states of

16O and the phase shift data of the elastic α-12C scattering
for l = 0, 1, 2, and 3 channels. (The counting rules for the
radiative capture reaction are reviewed in the following sec-
tions.) When fitting the parameters to the phase shift data, I
have introduced resonance energies of 16O as a large scale
of the theory. As suggested by Teichmann [29], below the
resonance energies, the Breit-Wigner-type parametrization for
resonances can be expanded in powers of the energy, and one
obtains an expression of the elastic scattering amplitude as
the effective range expansion. In addition, I have included the
effective range parameters up to third order (n = 3 in powers
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of k2n) for the l = 0, 1, 2 channels and up to fourth order
(n = 4) for the l = 3 channel because of the modification of
the counting rules discussed in Ref. [27]. Though the phase
shift data below the resonance energies are reproduced very
well by using the fitted parameters, I find that significant
uncertainties in the elastic scattering amplitudes remain when
interpolating them to EG.

In the present work, I apply the calculation method of EFT
to the study of the SE1-factor of the radiative capture process
up to next-to-leading order (NLO). Inclusion of the photon
field into the present formalism is straightforward because
a photon field abides in covariant derivatives in the terms
of the effective Lagrangian. In the standard counting rules,
one approximately has three structures (momentum depen-
dence) in the radiative capture amplitudes after fitting the
effective range parameters to the phase shift data of the elastic
scattering for l = 1. I discuss a modification of the standard
counting rules because of an enhancement effect of the p-
wave composite 16O propagator. After taking the modification
into account, one has two structures, which are represented by
two unknown constants, in the radiative capture amplitudes.
The two constants are fitted to the experimental SE1 data, and
I calculate an SE1 factor at EG. I find that the result is about
30% smaller than the other estimates reported recently, and
then discuss an uncertainty of the result of the present work
from higher order terms of the theory.

The present paper is organized as follows. In Sec. II,
the counting rules of EFT and the effective Lagrangian for
the reactions are briefly reviewed, and the radiative capture
amplitudes for the initial p-wave state and the formula of the
SE1 factor are displayed in Sec. III. In Sec. IV, a modification
of the counting rules is discussed, and numerical results are
presented in Sec. V. Finally, in Sec. VI, results and discussion
of the present work are presented.

II. EFFECTIVE LAGRANGIAN

In the study of the radiative capture process, 12C(α, γ )16O,
at EG = 0.3 MeV employing an EFT, one may regard the
ground states of α and 12C as point-like particles whereas
the first excited states of α and 12C are chosen as irrelevant
degrees of freedom, from which a large scale of the theory
is determined [26]. Thus the expansion parameter of the
theory is Q/�H ≈ 1/3, where Q denotes a typical momen-
tum scale Q ≈ kG; kG is the Gamow peak momentum, kG =√

2μEG � 41 MeV, where μ is the reduced mass of α and
12C. �H denotes a large momentum scale �H � √

2μ4E(4)

or
√

2μ12E(12) ≈ 150 MeV where μ4 is the reduced mass
of one and three-nucleon system and μ12 is that of four
and eight-nucleon system. E(4) and E(12) are the first excited
energies of α and 12C, respectively. By including terms up
to next-to-next-to-leading order, for example, one may have
about 10% theoretical uncertainty for the amplitude.

The inclusion of the ground state of 16O, one may think,
could cause a problem because the binding energy of 16O
from the α and 12C breakup threshold is B0 = 7.162 MeV,
which is larger than the energy of the first excited (2+

1 )
state of 12C, E(12) = 4.440 MeV. However, almost all of the

energy released through the capture reaction is carried away
by the outgoing photon, and thus the initial and final nuclear
states remain in the states at the typical energies. After the
photon is emitted, the large momentum scale appears in the
intermediate state in the α-12C propagation, but because the
binding energy is far below the α-12C threshold, its physical
effect to the α-12C propagation is small. In the present work,
I do not introduce the 16O ground state as a dynamical degree
of freedom but a source field because the 16O ground state
appears only in the final state.

An effective Lagrangian for the study of the radiative
capture reaction may be written as [26,30–33]

L = φ†
α

(
iD0 + �D2

2mα

+· · ·
)

φα + φ
†
C

(
iD0 + �D2

2mC
+ · · ·

)
φC

+
3∑

n=0

C(1)
n d†

i

[
iD0 + �D2

2(mα + mC )

]n

di

− y(1)
[
d†

i

(
φαO(1)

i φC
) + (

φαO(1)
i φC

)†
di

]
− y(0)[φ†

O(φαφC ) + (φαφC )†φO]

− h(1) y(0)y(1)

μ

[(O(1)
i φO

)†
di + H.c.

] + · · · , (1)

where φα (mα) and φC (mC) are fields (masses) of α and
12C, respectively. φO (φ†

O) is introduced as a source field
for the 16O ground state in the final (initial) state. In the
second last term in Eq. (1), for example, φO (φ†

O) destroys
(creates) the 16O ground state, and (φαφC )† [(φαφC)] fields
create (destroy) an s-wave α-12C state. The transition rate
between the 16O ground state and the s-wave α-12C state is
parametrized in terms of the coupling constant y(0), which is
fixed by using experimental data. Dμ is a covariant derivative,
Dμ = ∂μ + iQAμ, where Q is a charge operator and Aμ is
the photon field. The dots denote higher order terms. di is a
composite field of 16O consisting of α and 12C fields for l = 1
channel. The operators for the l = 1 channel are given as

O(1)
l = i

(→
DC

mC
−

←
Dα

mα

)
i

, O(1)
i = iDi

mO
, (2)

where mO is the mass of 16O in ground state. The coupling
constants, C(1)

n with n = 0, 1, 2, and 3, are fixed by using
the effective range parameters of elastic α-12C scattering for
l = 1, while the coupling constant y(1) is redundant; I set
it as y(1) = √

6πμ.2 A contact interaction, the h(1) term, is
introduced to renormalize divergence from loop diagrams.

III. AMPLITUDES AND THE SE1 FACTOR

In Fig. 1, diagrams for dressed composite propagators of
16O consisting of α and 12C for l = 1 are depicted, in which

2In the denominator of the elastic scattering amplitude, the cou-
plings appear in the form, C (1)

n /y(1)2 with n = 0, 1, 2, 3, and are
fitted to the effective range parameters, 1/a1, r1, P1, Q1, for l = 1,
respectively. The y(1) coupling is redundant, and one can arbitrarily
fix its value.
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FIG. 1. Diagrams for dressed 16O propagators. A thick (thin)
dashed line represents a propagator of 12C (α), and a thick and thin
double dashed line with and without a filled circle represent a dressed
and bare 16O propagator, respectively. A shaded oval represents a set
of diagrams consisting of all possible one-potential-photon-exchange
diagrams up to infinite order and no potential-photon-exchange one.

the Coulomb interaction between α and 12C is taken into
account [26,27]. In Fig. 2, diagrams of the radiative capture
process from the initial l = 1 state to the 16O ground (0+

1 ) state
are depicted, in which the Coulomb interaction between α and
12C is taken into account as well.

The radiative capture amplitude for the initial l = 1 state is
presented as

A(l=1) = �ε∗
(γ ) · p̂X (l=1) , (3)

where �ε∗
(γ ) is the polarization vector of outgoing photon and

p̂ = �p/| �p|; �p is the relative momentum of the initial α and 12C.
The amplitude X (l=1) can be decomposed as

X (l=1) = X (l=1)
(a+b) + X (l=1)

(c) + X (l=1)
(d+e) + X (l=1)

( f ) , (4)

(a) (b)

(d) (f)(e)

(c)

FIG. 2. Diagrams for the radiative capture process from the
initial p-wave α-12C state. A wavy line denotes the outgoing photon,
a thick and thin double dashed line with a filled circle in the inter-
mediate state, whose diagrams are displayed in Fig. 1, the dressed
composite 16O propagator for l = 1, and a thick dashed line in the
final state the ground (0+

1 ) state of 16O. See the caption of Fig. 1 as
well.

where those amplitudes correspond to the diagrams depicted
in Fig. 2.

I follow the calculation method suggested by Ryberg et al.
[34], in which Coulomb Green’s functions are represented in
coordinate space satisfying appropriate boundary conditions.
Thus I obtain the expression of those amplitudes in center of
mass frame as

X (l=1)
(a+b) = 2y(0)eiσ1
(1 + κ/γ0)

∫ ∞

0
drrW−κ/γ0,

1
2
(2γ0r)

[
Zαμ

mα

j0

(
μ

mα

k′r
)

− ZCμ

mC
j0

(
μ

mC
k′r

)]{
∂

∂r

[
F1(η, pr)

pr

]
+ 2

F1(η, pr)

pr2

}
,

(5)

X (l=1)
(c) = +y(0)h(1)R 6πZO

μmO

eiσ1 p
√

1 + η2Cη

K1(p) − 2κH1(p)
, (6)

X (l=1)
(d+e) = +i

2

3
y(0) eiσ1 p2

√
1 + η2Cη

K1(p) − 2κH1(p)

(1 + κ/γ0)
(2 + iη)

∫ ∞

rC

drrW−κ/γ0,
1
2
(2γ0r)

[
Zαμ

mα

j0

(
μ

mα

k′r
)

− ZCμ

mC
j0

(
μ

mC
k′r

)]

×
{

∂

∂r

[
W−iη, 3

2
(−2ipr)

r

]
+ 2

W−iη, 3
2
(−2ipr)

r2

}
, (7)

X (l=1)
( f ) = −3y(0)μ[−2κH (ηb0)]

(
Zα

mα

− ZC

mC

)
eiσ1 p

√
1 + η2Cη

K1(p) − 2κH1(p)
, (8)

where k′ is the magnitude of outgoing photon momentum, and
κ is the inverse of the Bohr radius, κ = ZαZCμαE , where αE

is the fine structure constant. Zα , ZC , and ZO are the number of
protons in α, 12C and 16O, respectively. η is the Sommerfeld
parameter, η = κ/p, and γ0 is the binding momentum of the
ground state of 16O, γ0 = √

2μB0. 
(z) and jl (x) are the
gamma function and spherical Bessel function, respectively,
while Fl (η, ρ) and Wk,μ(z) are regular Coulomb function and
Whittaker function, respectively. In addition,

eiσ1 =
√


(2 + iη)


(2 − iη)
, C2

η = 2πη

e2πη − 1
,

H1(p) = p2(1 + η2)H (η) (9)

with

H (η) = ψ (iη) + 1

2iη
− ln(iη) , (10)

where ψ (z) is digamma function.
The function K1(p) contains the information about nuclear

interaction and is represented in terms of the effective range
parameters of the elastic α-12C scattering for l = 1 as3

K1(p) = − 1

a1
+ 1

2
r1 p2 − 1

4
P1 p4 + Q1 p6 , (11)

3In the previous work, I had used another parametrization, the so-
called v parameterization, to represent the effective range parameters
[35].
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where a1 is fixed by using the binding energy of the 1−
1 bound

state of 16O, and other effective range parameters, r1, P1, and
Q1, are fitted to the experimental phase shift data.

Regarding the divergence from the loop diagrams, the
loops of the diagrams (a) and (b) in Fig. 2 are finite, while
those of the diagrams (d) and (e) lead to a log divergence in
X (l=1)

(d+e) in the limit, r → 0. I introduce a short range cutoff rC

in the r integral in Eq. (7), and the divergence is renormalized
by the counter term, h(1). The loop of the diagram (f) diverges
and is renormalized by the h(1) term as well. Thus I obtain

h(1)R = h(1) − μ
mO

ZO

(
Zα

mα

− ZC

mC

)[
Idiv
(d+e) + Jdiv

0

]
, (12)

where Idiv
(d+e) is the divergence term from the diagrams (d) and

(e) and Jdiv
0 is that from the diagram (f); I obtain

Idiv
(d+e) = −κμ

9π

∫ rC

0

dr

r
,

Jdiv
0 = κμ

2π

[
1

ε
− 3CE + 2 + ln

(
πμ2

DR

4κ2

)]
, (13)

where, to derive the expression of Jdiv
0 , the dimensional reg-

ularization in 4 − 2ε space-time dimensions has been used;
CE = 0.577 . . . and μDR is a scale factor from the dimen-
sional regularization. h(1)R is a renormalized coupling constant
which is fixed by experiment.

From the loop diagram (f), when the Coulomb interac-
tion is ignored, the large momentum scale γ0 � 200 MeV
is picked up in the numerator of the amplitude. It causes
the emergence of a term which does not obey the counting
rules.4 In the present case, the large momentum scale γ0

from the ground state energy of 16O appears as a ratio κ/γ0,
due to the nonperturbative Coulomb interaction, where κ

is another large momentum scale, κ � 245 MeV. The finite
term −2κH (ηb0) in X (l=1)

( f ) from the loop of the diagram (f)
where ηb0 = κ/(iγ0) is reduced to a typical momentum scale,
−2κH (ηb0) = 25.8 MeV.

The SE1 factor is defined by

SE1(E ) = σE1(E )Ee2πη , (14)

where the total cross section is

σE1(E ) = 4

3

αEμE ′
γ

p(1 + E ′
γ /mO)

|X (l=1)|2 (15)

with

E ′
γ � B0 + E − 1

2mO
(B0 + E )2 . (16)

4A method to renormalize a term which does not obey counting
rules in an EFT (manifestly Lorentz invariant baryon chiral per-
turbation theory) is known as the extended on mass shell (EOMS)
scheme [36,37]; one can renormalize the term proportional to γ0

in the counter term, h(1)R, even when the Coulomb interaction is
ignored.

IV. MODIFICATION OF THE COUNTING RULES

Before fitting the parameters to available experimental
data, I discuss a modification of the standard counting rules
for the radiative capture amplitudes. An order of an amplitude
from each of the diagrams is found by counting the number
of momenta of vertices and propagators in a Feynman di-
agram. Thus one has a leading order (LO) amplitude from
the diagram (c), because the contact γ -di-φO vertex of the
h(1)R term does not have a momentum dependence, and NLO
amplitudes from the other diagrams in Fig. 2. One may
notice a large suppression factor, Zα/mα − ZC/mC , appearing
in X (l=1)

( f ) ; (mO/ZO)(Zα/mα − ZC/mC ) � −6.5 × 10−4. Simi-

lar suppression effect can be found in X (l=1)
(a+b) and X (l=1)

(d+e) as
well; I denote those amplitudes as X −, and when changing the
minus sign to the plus one in the front of the spherical Bessel
function j0(z) in Eqs. (5) and (7), I do them as X +. I thus
find |X (l=1)−

(a+b) /X (l=1)+
(a+b) | � 8.7 × 10−4 and |X (l=1)−

(d+e) /X (l=1)+
(d+e) | �

3.6 × 10−4 at the energy range, E = 0.9 − 3 MeV, at which
I fit the parameters to the experimental SE1 data in the
next section. The suppression effect is common among those
amplitudes, thus it does not alter the order counting of the
diagrams.

The strong suppression effect mentioned above is well
known; the E1 transition is strongly suppressed between
isospin-zero (N = Z) nuclei. This mechanism is recently
reviewed and studied for α(d, γ )6Li reaction by Baye and
Tursunov [38]. In the standard microscopic calculations with
the long-wavelength approximation, the term proportional to
Z1/m1 − Z2/m2 vanishes because of the standard choice of
mass of nuclei as mi = AimN where Ai is the mass number of
ith nucleus and mN is the nucleon mass. I have strongly sup-
pressed but nonzero contribution above because of the use of
the physical masses for α and 12C. The small but nonvanishing
E1 transition for the N = Z cases has intensively been studied
in the microscopic calculations and can be accounted by two
effects: one is the second order term of the E1 multipole
operator in the long-wavelength approximation [39], and the
other is due to the mixture of the small T = 1 configura-
tion in the actual nuclei [40]. In the present approach, the
first one may be difficult to incorporate for the point-like
particles while the second one could be introduced from a
contribution at high energy: At E � 5 MeV and 8.5 MeV
above the α-12C breakup threshold, p-15N and n-15O breakup
channels, respectively, are open, and T = 1 resonant states
of 16O start emerging (along with the T = 1 isobars, 16N,
16O, and 16F). I might have introduced the p-15N and n-15O
fields as relevant degrees of freedom in the theory. The p-15N
and n-15O fields, then, appear in the intermediate states, as
p-15N or n-15O propagation, in the loop diagrams (d), (e),
(f) in Fig. 2 instead of the α-12C propagation. One may
introduce a mixture of the isospin T = 0 and T = 1 states in
the p-15N or n-15O propagation, and the strong E1 suppression
is circumvented in the loops. (The contribution from the p-15N
and n-15O channels for the 12C(α, γ )16O reaction has already
been studied in the microscopic approach [41].) In the present
work, however, the p-14N and n-15O fields are regarded as
irrelevant degrees of freedom at the high energy and integrated
out of the effective Lagrangian. Its effect, thus, is embedded in
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the coefficient of the contact interaction, the h(1)R term, in the
(c) diagram while the h(1)R term is fitted to the experimental
SE1 data in the next section.

I now discuss an enhancement effect which modifies the
counting rules for the amplitudes due to the p-wave dressed
16O propagator in the diagrams (c), (d), (e), and (f). The
p-wave dressed 16O propagator is enhanced due to large
cancellations between the effective range terms and terms
generated from the Coulomb self-energy term H1(p), as
discussed in Ref. [27]. In the standard counting rules, the
order of the propagator is assigned to Q−3, while because
of the inclusion up to the Q1 p6 term in the effective range
expansion it should be counted as Q−7. Thus the enhancement
factor will be (Q/�H )−4 ≈ 100. To check the magnitude of
the enhancement effect, I calculate a ratio of the amplitudes
and have |(X (l=1)

(c) + X (l=1)
(d+e) + X (l=1)

( f ) )/X (l=1)
(a+b) | ≈ 380 − 30 at

E = 0.1–3 MeV after fixing h(1)R to the SE1 data. (Here, we
have used a value of h(1)R at rC = 0.1 fm.) One can see
that the nonpole amplitude X (l=1)

(a+b) is significantly suppressed
compared to the other amplitudes (while one may notice that
the counting rules are applicable at EG = 0.3 MeV).

V. NUMERICAL RESULTS

Five parameters to fit to the data remain in the radiative
capture amplitudes; three parameters, r1, P1, Q1, are fitted to
phase shift data of the elastic scattering and the other two pa-
rameters, h(1)R and y(0), are to the experimental SE1 data. The
standard χ2 fit is performed by employing a Markov chain
Monte Carlo method for the parameter fitting.5 The phase
shift data for l = 1 are taken from Tischhauser et al.’s paper
[43], and the experimental SE1 data are from the literature
summarized in Tables V and VII in Ref. [5]: Dyer and Barnes
(1974) [44], Redder et al. (1987) [45], Ouellet et al. (1996)
[46], Roters et al. (1999) [47], Gialanella et al. (2001) [48],
Kunz et al. (2001) [49], Fey (2004) [50], Makii et al. (2009)
[51], and Plag et al. (2012) [52].

I fit the effective range parameters to the phase shift data
for l = 1 at Eα = 2.6–6.0 MeV and have

r1 = 0.415272(9) fm−1 , P1 = −0.57473(9) fm ,

Q1 = 0.02018(3) fm3 , (17)

where the number of the data is N = 273 and χ2/N = 0.74.
The uncertainties of the fitted values stem from those of the
experimental data. The scattering volume a1 is fixed by using
the condition that the denominator of the elastic scattering
amplitude vanishes at the binding energy of the 1−

1 state,
E = −0.045 MeV. Using the relation in Eq. (6) in Ref. [27]
and the values of the fitted effective range parameters, one has

a1 = −1.658 × 105 fm3 . (18)

In Fig. 3, a curve of the phase shift δ1 calculated by using
the fitted effective range parameters is plotted as a function
of Eα , where Eα is the α energy in laboratory frame.6 The

5I employ a PYTHON package, EMCEE [42], for the fitting.
6The center of mass energy E is related to Eα by Eα � 4

3 E .
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FIG. 3. Phase shift, δ1, plotted by using the fitted effective range
parameters, r1, P1, Q1 as a function of Eα . The experimental phase
shift data are also displayed in the figure.

experimental data are displayed in the figure as well. One can
see that the theory curve well reproduces the experimental
data at the energy range, Eα = 2.6–6.0 MeV. Because the
energy range is over the energy of 1−

2 state, E = 2.43 MeV
(Eα = 3.23 MeV) and below that of 1−

3 state, E = 5.29 MeV
(Eα = 7.05 MeV), the result indicates that the expression of
the effective range expansion given in Eq. (11) is reliable to
describe the 1−

1 and 1−
2 states up to Eα = 6.0 MeV.

I fit the parameters, h(1)R and y(0), to the experimental data
of SE1 at the energy range, E = 0.9–3.0 MeV using some
values of the cutoff rC in the range, rC = 0.01–0.35 fm, in
the r integral in X (l=1)

(d+e) in Eq. (7). The number of the data
is N = 151. In Table I, fitted values of h(1)R and y(0) along
with χ2/d.o.f and estimates of SE1 at EG are displayed. The
uncertainties of the fitted values of h(1)R and y(0) stem from
those of the experimental data. One finds a significant cutoff
dependence of the couplings, h(1)R and y(0), and the SE1 factor
at EG in the table when varying the short range cutoff, rC =
0.01–0.35 fm; as the values of rC become larger, the χ2/d.o.f.
become larger while the SE1 values become smaller. One may
also see that the variation of the SE1 factor becomes stable at
the cutoff values smaller than rC = 0.1 fm where the χ2/d.o.f
remain in stable and smaller values. In Fig. 4, a curve of SE1

TABLE I. Fitted values of the coupling constants, h(1)R and y(0),
to experimental data of SE1 at E = 0.9–3 MeV with the cutoff rC =
0.01–0.35 fm. The number of the data is N = 151. The values in
the fourth column are χ 2/d.o.f. of the fittings, and those in the last
column are our results of SE1 at EG = 0.3 MeV.

rC (fm) h(1)R×104 (MeV3) y(0) (MeV−1/2) χ 2/d.o.f SE1 (keV b)

0.01 5.2684(11) 0.253(9) 1.691 60.3(18)
0.035 2.4483(11) 0.310(11) 1.697 59.8(18)
0.05 1.5294(11) 0.347(12) 1.700 59.3(18)
0.1 −0.0695(11) 0.495(18) 1.715 57.9(17)
0.2 −1.1909(11) 0.943(34) 1.763 53.6(15)
0.35 −1.7106(12) 2.249(84) 1.926 42.1(10)
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FIG. 4. SE1 factor plotted by using the fitted parameters with
rC = 0.1 fm as a function of E . The experimental data and our
estimate of SE1 at EG are also displayed in the figure.

calculated by using the fitted parameters at rC = 0.1 fm is
plotted. The experimental data and the result of SE1 at EG to
be mentioned below are displayed in the figure as well. One
can see that the theory curve reproduces well the experimental
data.

In the present work, I choose the results of SE1 with
χ2/d.o.f � 1.7, in the cutoff region of the stability of SE1,
for our estimate of SE1 at the Gamow-peak energy, EG =
0.3 MeV, thus, I have

SE1 = 59 ± 3 keV b , (19)

where the small, about 5%, uncertainty stems from those of
h(1)R and y(0) in Table I as well as that of the rC dependence
of SE1 within χ2/d.o.f. � 1.7. The previous estimates of the
SE1 factor at EG are well summarized in Table IV in Ref. [5].
The reported values are scattered from 1 to 340 keV b with
various size of the error bars. Nonetheless it is worth pointing
out that the result of the present work is about 30% smaller
than those reported recently: 86 ± 22 by Tang et al. (2010)
[53], 83.4 by Schurmann et al. (2012) [54], 100 ± 28 by
Oulebsir et al. (2012) [55], 80 ± 18 by Xu et al. (2013) [10],
98.0 ± 7.0 by An et al. (2015) [11], and 86.3 by deBoer et al.
(2017) [5].

Regarding the theoretical uncertainty of the present calcu-
lation, as discussed above, the nonpole amplitude X (l=1)

(a+b) is
suppressed and gives less than one percent correction to SE1

at EG. In the other amplitudes, X (l=1)
(c) , X (l=1)

(d+e) , and X (l=1)
( f ) , I

find that X (l=1)
(d+e) and X (l=1)

(c+ f )(= X (l=1)
(c) + X (l=1)

( f ) ) have different
momentum dependence and are considerably canceled with
each other. I obtain |(X (l=1)

(c+ f ) + X (l=1)
(d+e) )/X (l=1)

(c+ f )| = 0.055–0.023
at E = 0.1–3 MeV; the result is almost linearly decreasing
as a function of E = p2/(2μ). It implies that a higher order
correction at N3LO effectively exists in X (l=1)

(d+e) while those

two contributions, X (l=1)
(c+ f ) and X l=1)

(d+e), at LO + NLO and N3LO

equally play a significant role to reproduce the SE1 data.
Though I have not studied a complete set of the corrections
at N3LO, a next higher order correction appears at N5LO
(because a momentum �p is vector, but a correction should
be scalar, p2). Thus the higher order correction at N5LO
which I do not have in the present work may give a few
percent correction, (Q/�H )4 � 0.012, to the estimate of SE1

at EG.

VI. RESULTS AND DISCUSSION

In this work, I have applied a framework of EFT to the
study of radiative α capture on 12C for the first time. I
have derived the radiative capture amplitudes up to NLO
in the standard counting rules, and discussed a modification
of the counting rules for the radiative capture amplitudes
because of the enhancement of the p-wave dressed composite
propagator of 16O. I find that the nonpole amplitude X (l=1)

(a+b)
is significantly suppressed in the present study. After tak-
ing the modification into account, approximately two inde-
pendent structures (momentum dependence) remain in the
amplitudes, X (l=1)

(c+ f ) and X (l=1)
(d+e) . I also find that two unknown

parameters remain in the amplitudes. The two parameters
are fitted to the experimental SE1 data at E = 0.9–3.0 MeV,
and I find the SE1 factor, SE1 = 59 ± 3 keV b at EG. The
result of SE1 at EG is about 30% smaller than the recent
estimates, though I have not examined a convergence of the
result yet.

A unique feature of EFT is that one can control a theoreti-
cal uncertainty of a physical quantity in theory. In the present
work, however, I do not examine a convergence of the pertur-
bative expansion of the amplitudes in the estimate of the SE1

factor because I did not include a complete set of the higher
order corrections. Thus to study higher order corrections to the
radiative capture amplitude up to the Q4 order is important in
order to check the convergence of the expansion series and
estimate a theoretical uncertainty of SE1 at EG. Nonetheless,
to accurately fix additional parameters, when one includes
higher order terms, may not be straightforward due to the
present quality of the experimental data set of SE1. It might
be better studying the other quantities at low energies, such as
the β-delayed α emission spectrum of 16N or the γ angular
distribution of the radiative α capture process by employing
the present EFT approach.
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