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Hybrid neutron stars in the Thomas-Fermi theory
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The baryon-quark phase transition is studied for the equation of state (EOS) of neutron star (NS) matter.
The Thomas-Fermi (TF) approximation is employed in a semiclassical mean-field (MF) model for the EOS of
baryonic matter including hyperons. The EOS of quark matter is also extracted from the Nambu–Jona-Lasinio
(NJL) model. The phase transition from baryons to quarks is considered in the NS structure under the Maxwell
and Gibbs constructions. Our findings for the maximum mass of NSs, as compared with the almost 2M� pulsars
J1614 − 2230 and J0348 + 0432, indicate that a region of baryon-quark mixed phase can exist in the inner core
of NSs, while the existence of a pure phase is not allowed.
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I. INTRODUCTION

Neutron stars (NSs) are basic laboratories for the physics
of dense matter. These compact objects can be formed at
the last stage of the gravitational collapse in massive stars
with 8M�–20M� [1–4]. It is generally understood that a
thin solid crust and a thick liquid core constitute the main
structure of an NS. Approaching the center of an NS, the mass
(energy) density ranges from about the nuclear saturation
value eo � 2.68 × 1014 g

cm3 (150 MeV fm−3) to several times
higher. Thus, the equation of state (EOS) of baryonic matter
has a key role in understanding the structure and composition
of NSs [5–7]. On this basis, enormous efforts have focused on
the baryonic EOS for NS modeling over the last few decades.
The EOS of such matter has been investigated either by
microscopic models, which are based on realistic interactions
extracted from nucleon-nucleon scattering data [8–11], or by
phenomenological models, where the parameters of interac-
tions are fixed to fulfill the saturation properties of normal nu-
clear matter [12–15]. However, it is an advantage for a model
to provide the simplest possible procedure for determining the
baryonic EOS. Hence, such a significant advantage can be
found in the Thomas-Fermi (TF) approximation as an efficient
many-body approach when used in a semiclassical mean-field
(MF) model [16–23]. To this purpose, the EOS of NS matter
has been investigated successfully in Refs. [14,15]. In the
previous work [15], the role of β-stable strange matter in a
stiff enough EOS, required for a 2M� NS, was investigated by
using generalized baryon–baryon interactions in phase space.
However, a comprehensive understanding of the structure and
composition of NSs is far from being achieved. It is expected
that NS matter could undergo a phase transition from baryonic
matter to quark matter in the interior of NSs [24–39]. In gen-
eral, the existence of hyperon and quark degrees of freedom at

*Corresponding author: ghazanfari@kashanu.ac.ir

high baryonic densities softens the EOS and lowers the max-
imum mass of NSs. Therefore, since the recent observations
of 2M� pulsars [40–42] have imposed a severe constraint on
the maximum mass of NSs, investigating the baryon-quark
phase transition is considered to be a challenging issue in
astrophysics.

In this research, the baryon-quark phase transition in NS
matter is studied by using the TF model for baryonic mat-
ter and the Nambu–Jona-Lasinio (NJL) model [43,44] for
quark matter. Based on this idea, the paper is organized as
follows. In Sec. II, the formalism for the EOS of baryonic
and quark matter is presented on the basis of the TF and
NJL models, respectively. Furthermore, the Maxwell and
Gibbs constructions are illustrated for the baryon-quark phase
transition. Section III is devoted to the discussion about the
results obtained for the baryon-quark phase transition in NS
matter, and finally, the summary and conclusions are given in
Sec. IV.

II. FORMALISM

The baryonic EOS of NS matter is described in the TF
approximation by using a semiclassical MF model. In a semi-
classical approach, the state of each particle is specified by its
momentum and position in phase space. This approximation
is suitable when the MF potential has a smooth behavior [45].
In this section, the EOS of quark matter is also described
by the NJL model. Furthermore, our attention is paid to the
baryon-quark phase transition under the Maxwell and Gibbs
constructions.

A. TF model for baryonic matter

Based on the Myers and Swiatecki (MS) interactions
[16,17], the generalized interactions GTF(90) and GTF(96)
[15] are used for the EOS of baryonic matter in which
baryons are in β equilibrium with relativistic electrons and
muons. Within these generalized Yukawa interactions, the
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baryon-baryon interactions are given as follows [15]:
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Here, r12 = | �r1 − �r2| and p12 = | �p1 − �p2| are the position
and relative momentum for each pair of baryons in phase
space, respectively. The mean density ρ̄ is also defined as a
function of ρ1 and ρ2, which are the densities of each pair of
baryons at the positions �r1 and �r2, respectively. Clearly, the
strength of these Yukawa-type interactions depends explicitly
on the momentum and density. The seven flexible parameters
(a, ξ , ζ , α, β, γ , σ ) in GTF(90) [GTF(96)] are fixed to repro-
duce the saturation properties of normal nuclear matter as well
as the coefficients of the Weizsacher-Bethe semiempirical
mass formula [16,17]:

a = 0.59542 (0.59294) fm, α = 3.60928 (1.94684),

β = 0.37597 (0.15311), γ = 0.21329 (1.13672),

σ = 1.33677 (1.05), ξ = 0.44003 (0.27976),

ζ = 0.59778 (0.55665). (3)

The saturation density and Fermi momentum of normal
nuclear matter are incorporated into these interactions by
the coefficients ρ0 = ( 4

3πr3
0 )−1 and pb = h̄( 3

2π2ρ0)
1
3 , respec-

tively. Here, r0 = 1.13 (1.14) is the nuclear matter radius for

GTF(90) [GTF(96)] and Tb = p2
b

2m̄ = 37.679 (37.021) MeV is
the associated kinetic energy with the average nucleonic mass
m̄ = 938.903 MeV/c2. In order to make a distinction among
the interactions between pairs of baryons, the upper sign
for like and the lower sign for unlike particles are assigned.
Choosing ξ �= ζ gives an improved description of asymmetric
nuclear systems especially for higher asymmetry parameters.
The saturation mechanism is handled through the competition
between the attractive terms having α and γ coefficients and
the repulsive terms having β and σ coefficients. In general,
repulsive interactions are expected to dominate the EOS at
high baryonic densities. Thus, without loss of generality, the
repulsive effects of β and σ coefficients are amplified by the
phenomenological factor χ̄ = ( ρB

ρ0
)

2
3 [15] instead of χ̄ = 1

TABLE I. Hyperon-nucleon and hyperon-hyperon coupling con-
stants in the GTF(90) and GTF(96) interactions.

Coupling constant GTF(90) GTF(96)
Tb = 37.679 MeV Tb = 37.021 MeV

G�,N
Tb

5.25
Tb

5.14

G�,N − Tb
5.25 − Tb

5.14

G,N
Tb

8.75
Tb

8.57

G,, G�,�
Tb

2.12
Tb

2.17

G�,�, G�,�, G,�
Tb

4.24
Tb

4.35

G�,, G,� , G�,, G�,�
Tb

3.24
Tb

3.15

in the MS interactions [16,17]. Here, GB1,B2 is the coupling
constant of each baryon-baryon interaction, e.g., GN,N = Tb

is the one for the nucleon-nucleon interaction. According to
the available hypernuclear experimental data, � hyperon gets
the best-known adjustable potential well U (N )

�
∼= −30 MeV

at the saturation density of normal nuclear matter [46]. In
addition, unlike the �-N interaction, the other hyperonic
potential wells cannot be firmly estimated, since the related
hypernuclear experimental data are scarce and ambiguous. By
introducing U (b′ )

b as the potential felt by the bth baryon at the
saturation density of type b′th baryonic matter, the following
values U (N )

�
∼= +30 MeV and U (N )


∼= −18 MeV [47] and the

following relations [33,48] can be generally admitted:

U ()


∼= U ()
�

∼= U ()
�

∼= U (�)
�

∼= U (�)


∼= U (�)
�

∼= 2U (�)
�

∼= 2U (�)


∼= 2U (�)
�

∼= −10 (MeV). (4)

Consequently, according to the above constraints, the cou-
pling constants GB1,B2 can be adjusted to the values reported
in Table I.

Within the TF model, the baryonic energy density can be
written as

eTF = 2

h3

∑
b=n0,p+,�0,�0,�−,�+,0,−

∫
d3 p1

×
(
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1
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+ 1

2
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)
�(pF,b − p1), (5)

where pF,b is the Fermi momentum of bth baryon. Here,
Vb(p1) as the MF potential of bth baryon can be expressed
as follows:

Vb(p1) = V b
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∑
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The interaction between like and unlike particles can be distinguished by l and u indices, where the minus and plus signs indicate
the like and unlike particles, respectively:

αl,u = 1
2 (1 ∓ ξ )α, βl,u = 1

2 (1 ∓ ζ )χ̄β, γl,u = 1
2 (1 ∓ ζ )γ , σl,u = 1

2 (1 ∓ ζ )χ̄σ. (8)

Finally, the baryonic energy density is specified by including the density of each baryon ρb in the following form:
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3
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According to the second law of thermodynamics, the following relations between the chemical potential of baryons and leptons
are imposed by the β-equilibrium conditions:

μp+ = μ�+ = μn − μe− , (11)

μ�0 = μ�0 = μ0 = μn, (12)

μ�− = μ− = μn + μe− , (13)

μμ− = μe− . (14)

The chemical potential of bth baryon can be explicitly obtained as follows:
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In addition, the composition of baryonic matter is constrained
by the charge neutrality condition:

yp+ + y�+ = ye− + yμ− + y�− + y− . (17)

In our notation, yi = ρi

ρB
is introduced as the relative fraction

of the ith baryon or lepton.
The chemical potential of each lepton is given by its Fermi

energy:

μl=e−,μ− =
√

(pF,l c)2 + (mlc2)2, pF,l =
(

3h3ρl

8π

) 1
3

. (18)

At a given baryonic density, the basic quantities for determi-
nation of thermodynamic properties of baryonic matter can be
self-consistently calculated through Eqs. (11)–(14). The total
energy density of baryonic matter can be calculated when the

leptonic energy density contribution is also included:

eB = eTF + eL, (19)

where

eL = 2

h3

∑
l=e−,μ−

∫ pF,l

0
d3 p

√
(pc)2 + (mc2)2. (20)

Furthermore, through the first derivative of the baryonic en-
ergy density with respect to the total density ρ = ∑

k=b,l ρk ,
the baryonic pressure can be determined as follows:

PB = ρ2 ∂ (eB/ρ)

∂ρ
= PTF + PL =

∑
k=b,l

(μkρk ) − eB. (21)
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B. NJL model for quark matter

The NJL model can successfully reproduce many as-
pects of quantum chromodynamics (QCD) such as the non-
perturbative vacuum structure and dynamical breaking of
chiral symmetry [44]. In this work, a three-flavor version of
the NJL model is adopted to describe the EOS of quark matter.
The QCD Lagrangian can be written as

LNJL = q̄(iγμ∂μ − m0)q + GS

8∑
a=0

[(q̄λaq)2 + (q̄γ5λaq)2]

−K{det[q̄(1 + γ5)q] + det[q̄(1 − γ5)q]}

−GV

8∑
a=0

[(q̄γμλaq)2 + (q̄γ5γμλaq)2], (22)

where q signifies a quark field including the contributions
of three active flavors (Nf = 3) and three colors (Nc =
3). The current quark mass matrix m0 = diag(m0

u, m0
d , m0

s )
is also included in the Lagrangian. Here, λa with a =
1, 2, . . . , 8 are the well-known Gell-Mann matrices in the
color space and λ0 = √

2/3 I3×3. In the present calculations,
m0

u = m0
d = 5.5 MeV, m0

s = 140.7 MeV, and the parameters
� = 602.3 MeV, GS = 1.835

�2 , and K = 12.36
�5 are adopted from

Ref. [49]. The vector coupling constant GV is considered as
a free parameter, due to the uncertainty in the theoretical
predictions of the ratio GV /GS [50]. However, the value of
this ratio is expected to lie in the range 0–0.5 [51].

Within the MF approximation under conditions where
GV = 0, the dynamically generated quark mass Mi and the
quark chemical potential μi are obtained by solving the gap
equation as follows [33]:

Mi = m0
i − 4GS〈q̄iqi〉 + 2K〈q̄ jq j〉〈q̄kqk〉, (23)

μi =
√(

pi
F

)2 + (Mi )2. (24)

In Eq. (23), (i, j, k) indicate any permutation of (u, d , s)
quarks. The scaler condensate Ci = 〈q̄iqi〉 is given by

Ci = − 3

π2

∫ �

pi
F

Mi√
p2 + M2

i

p2d p, (25)

where the Fermi momentum of the ith quark flavor pi
F is

related to the corresponding quark density ρi via

ρi =
(
pi

F

)3

π2
. (26)

For a neutral mixture of quarks and leptons, the β-equilibrium
conditions are specified by

μs− = μd− = μu+ + μe− , μμ− = μe− . (27)

In addition, the charge neutrality condition can be written as

2yu+ − (yd− + ys− ) − (ye− + yμ− ) = 0, (28)

where y(i=u,d,s) = ρi

3ρB
is introduced as the relative fraction

of the ith quark for a given baryonic density ρB = (ρu +
ρd + ρs)/3. Here ρB is employed as an input for solving the

coupled equations self-consistently. Thus, the energy density
and pressure of quark matter in β equilibrium are given by

eQ = eNJL + eL, (29)

PQ = PNJL + PL =
∑

k=u,d,s,e,μ

nkμk − eQ, (30)

where

eNJL =
∑

i=u,d,s

[
− 3

π2

∫ �

pi
F

√
p2 + (Mi )2 p2d p

]

+2GS
(
C2

u + C2
d + C2

s

) − 4KCuCdCs − e(0)
NJL. (31)

In the above relation, e(0)
NJL is included to ensure the require-

ment eNJL = 0 in the vacuum.
Finally, it is necessary to mention that the vector interaction

shifts the quark chemical potential μi and energy density eNJL

as follows [39]:

μi → μi − 4GV ρi ⇒ μi =
√

(pi
F )2 + (Mi )2 + 4GV ρi,

(32)

and

eNJL → eNJL − 2GV

∑
i=u,d,s

ρ2
i . (33)

Therefore, eNJL in the presence of the vector interaction is
obtained by including the repulsive term +2GV

∑
i=u,d,s ρ2

i in
the expression of Eq. (31).

C. Maxwell and Gibbs constructions

The Maxwell and Gibbs constructions are generally
adopted as the well-known approaches for studying the
baryon-quark phase transition. For the Maxwell construction,
a sharp phase transition between baryonic and quark matter is
formed, which leads to the disappearance of the mixed phase
region. As a local constraint, pure phases in the Maxwell
construction are independently charge neutral. Furthermore,
the phase transition conditions for the Maxwell construction
are given by

μn
[
ρ

(BP)
B

] = 2μd
[
ρ

(QP)
B

] + μu
[
ρ

(QP)
B

] ≡ μn
[
ρ

(QP)
B

]
, (34)

P
[
ρ

(BP)
B

] = P
[
ρ

(QP)
B

]
. (35)

The energy density of the mixed phase at the constant P and
μn is obtained by

e = ρBμn − P. (36)

For the Gibbs construction, the pressure of the mixed
phase is not constant. The requirement of charge neutrality
is imposed globally for the Gibbs construction. In addition,
for a given pressure P, the following conditions hold between
baryonic and quark matter in the mixed phase:

μ(BP)
n = μ(QP)

n ≡ μn, (37)

μ(BP)
e = μ(QP)

e ≡ μe, (38)

P = P(BP)[μn, μe] = P(QP)[μn, μe]. (39)
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FIG. 1. (a) Pressure and (b) baryon density as functions of the
neutron chemical potential for the GTF(90) and GTF(96) interactions
(solid lines), and the NJL model at GV = 0, 0.1GS, 0.2GS, 0.3GS

(dashed lines). The vertical dotted lines show the ranges of the
baryon-quark mixed phase, according to the Maxwell construction.

Consequently, the volume fraction χ (0 � χ � 1) occupied
by baryonic matter in the mixed phase is obtained from the
condition of global charge neutrality as follows:

χρ
(BP)
C + (1 − χ )ρ (QP)

C = 0, (40)

where

ρ
(BP)
C = ρ

(BP)
p+ + ρ

(BP)
�+ − ρ

(BP)
�− − ρ

(BP)
− − ρ

(BP)
e− − ρ

(BP)
μ− , (41)

ρ
(QP)
C = 2

3
ρ

(QP)
u+ − 1

3
ρ

(QP)
d− − 1

3
ρ

(QP)
s− − ρ

(QP)
e− − ρ

(QP)
μ− . (42)

Consequently, the baryonic density ρB and energy density e in
the mixed phase are extracted from

ρB = χρ (BP) + (1 − χ )ρ (QP), (43)

e = χe(BP) + (1 − χ )e(QP). (44)

FIG. 2. Pressure as a function of baryon density for the GTF(90)
and GTF(96) interactions (solid lines), and the NJL model at GV =
0, 0.1GS, 0.2GS, 0.3GS (dashed lines), according to the (a) Maxwell
and (b) Gibbs constructions. The dotted lines show the ranges of the
baryon-quark mixed phase.

III. RESULTS AND DISCUSSIONS

In the general trend of this research, using the GTF(90)
and GTF(96) interactions for baryonic matter and the NJL
model for quark matter, the baryon-quark phase transition is
studied for the four values of the vector coupling constant
GV = 0, 0.1GS, 0.2GS, 0.3GS , according to the Maxwell
and Gibbs constructions.

Figure 1 displays the pressure P and baryonic density ρB as
a function of the neutron chemical potential μn for the TF and
NJL models. The intersection between the baryonic and quark
EOSs shows the coexistence point, according to the Maxwell
construction. Such an intersection is a necessary but not
sufficient condition for the Gibbs construction. Corresponding
to the intersection points, the baryonic density ranges for the
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FIG. 3. Pressure as a function of energy density (in units of e0)
for the GTF(90) and GTF(96) interactions (solid lines), and the NJL
model at GV = 0, 0.1GS, 0.2GS, 0.3GS (dashed lines), according to
the (a) Maxwell and (b) Gibbs constructions. The dotted lines show
the ranges of the baryon-quark mixed phase.

baryon-quark coexistence are shown in the lower panels of
this figure. As GV is changed from 0 to 0.3GS , the increase
of P with respect to μn becomes slower in the quark EOS.
Therefore, the intersection points are pushed to the higher
values.

Since the pressure is one of the most remarkable aspects of
the EOS for NS matter, the baryonic density and energy den-
sity dependences are displayed in Figs. 2 and 3, respectively.
As shown in these figures, the stiffness of the EOS depends
seriously on the nature of the interactions used for baryonic
and quark matter. Such a stiffness has a significant effect on
the threshold formation of the mixed phase of baryons and
quarks. Thus, since the GTF(90) interaction is more repulsive,
the baryonic EOS is stiffer than the one for the GTF(96)

interaction. It is seen that with increasing GV , the quark EOS
shows a stiffer behavior. Moreover, the width of the mixed
phase region is reduced by a stiffer baryonic EOS, while it
is slightly increased by a stiffer quark EOS. Furthermore, in
contrast to a stiffer baryonic EOS, a stiffer quark EOS shifts
the onset of the phase transition to the higher baryonic or en-
ergy densities. Unlike the Maxwell construction, the pressure
of the mixed phase in the Gibbs construction is not constant
and, therefore, is a slow increasing function of baryonic or
energy density. In Table II, the baryonic and energy density
widths of the mixed phases are listed for both Maxwell and
Gibbs constructions. It is clear that the region of the mixed
phase for the Maxwell construction is located inside that for
the Gibbs construction. In addition, the widths of the mixed
phase in the Maxwell and Gibbs constructions become closer
to each other, as GV varies from 0 to 0.3GS .

The stability of the baryon-quark mixed phase under the
Maxwell and Gibbs constructions can be studied by the Debye
screening length and the amount of Coulomb and surface en-
ergy needed for the formation of baryonic and quark structures
[52,53]. Hence, the total Coulomb and surface energy density
eCoul + esurf can be written in the context of the approach for
studying the nuclear pasta in the inner crust of NSs [54–56]:

�eσ = eCoul + esurf = 3ηd

[
πσ 2

s q2
e

(
ρ

(BP)
C − ρ

(QP)
C

)2
ϕd (η)

2d

] 1
3

,

(45)

where η, d , σs, qe are the volume fraction occupied by the
less abundant phase (i.e., η = χ for χ > 0.5 and η = 1 − χ

for χ � 0.5), geometrical dimension of Wigner-Seitz cells
(d = 1, 2, and 3 correspond to the case of slabs, rods, and
spheres, respectively), surface tension between baryonic and
quark matter, magnitude of the electron charge, and

ϕd (η) = 1

d + 2

[
η + 2 − dη1−(2/d )

d − 2

]
. (46)

The mixed phase is energetically favorable if �eσ = e(σs) −
e(σs = 0) is less than �eM = eM − e(σs = 0) [eM and e(σs =
0) are the energy density obtained from Eqs. (36) and (44) for
the Maxwell and Gibbs constructions, respectively]. Since the
value of σs at the interface between baryonic and quark matter
is not known, �eσ from Eq. (45) can be calculated for a range
of σs, by carrying out a numerical minimization with respect
to the value of d . Within this formalism, the results of our
calculations for the mixed phase, extracted from the GTF(90)
and GTF(96) interactions, are presented in Figs. 4 and 5,
respectively. The solid and dashed lines show �eσ at different
values of σs and �eM as a function of baryonic density in the
mixed phase, respectively. As indicated, the mixed phase is
always energetically favorable for σs ∼ 2 MeV fm−2, while
by using the GTF(90) [GTF(96)] interaction, for σs in the
range ≈2–5 (2–10) MeV fm−2, the mixed phase is energeti-
cally favorable over a baryonic density region larger than the
mixed region in the Maxwell construction. In addition, for
σs � 60 (80) MeV fm−2, the Maxwell construction becomes
always energetically favorable in GTF(90) [GTF(96)]. While
enforcing the repulsive vector interaction in the quark phase,
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TABLE II. Widths of mixed phases in terms of baryonic density, and energy density (in units of e0) for the GTF(90) and GTF(96)
interactions, joined with the NJL model at GV = 0, 0.1GS, 0.2GS, 0.3GS under the Maxwell and Gibbs constructions.

GTF(90) GTF(96)

ρ (BP) − ρ (QP) e(BP) − e(QP) ρ (BP) − ρ (QP) e(BP) − e(QP)

(fm−3) (e0) (fm−3) (e0)

Maxwell:
GV = 0 0.77 − 1.19 5.82 − 9.79 0.93 − 1.42 7.17 − 12.12
GV = 0.1GS 0.85 − 1.30 6.56 − 11.21 1.02 − 1.53 8.12 − 13.59
GV = 0.2GS 0.92 − 1.39 7.30 − 12.37 1.10 − 1.63 9.10 − 15.05
GV = 0.3GS 0.98 − 1.46 8.06 − 13.52 1.19 − 1.73 10.11 − 16.60
Gibbs:
GV = 0 0.70 − 1.28 5.13 − 10.72 0.84 − 1.55 6.27 − 13.35
GV = 0.1GS 0.79 − 1.38 5.95 − 11.99 0.94 − 1.64 7.32 − 14.72
GV = 0.2GS 0.87 − 1.46 6.78 − 13.11 1.04 − 1.73 8.37 − 16.16
GV = 0.3GS 0.94 − 1.53 7.59 − 14.24 1.13 − 1.82 9.44 − 17.71

the Maxwell construction becomes energetically favorable at
higher values of σs.

Determining the EOS of NS matter in a broad range of
baryonic density helps us extract the relation between pressure
and energy density, P = P(e), as an input in the well-known
Tolman-Oppenheimer-Volkoff (TOV) equations for comput-
ing the mass of NSs in terms of their radius and central energy
density [57]:

dP(r)

dr
= −Gm(r)e(r)

r2

[
1 + P(r)

e(r)c2

][
1 + 4πr3P(r)

m(r)c2

]
1 − 2Gm(r)

rc2

, (47)

dm(r)

dr
= 4πr2e(r), (48)

where G, P, e, and m are the gravitational constant, pres-
sure, energy density, and mass enclosed within a radius r,
respectively. Thus, by solving the TOV equations, the equi-

FIG. 4. The solid lines show the baryonic density dependence
of �eσ at different values of σs. The dashed lines correspond to
�eM and the vertical lines mark the limits of the mixed region for
the Maxwell construction. The mixed phase are described by the
GTF(90) interaction for baryonic matter and the NJL model for quark
matter at GV = 0, 0.1GS, 0.2GS, 0.3GS .

librium configuration of NSs is obtained. The calculations
start from a central energy density ec up to the energy den-
sity of iron in the surface. At the medium baryonic density
0.001 � ρB � 0.08 fm−3, the EOS of Negele and Vauthrun
[58], which is based on the Hartree-Fock approach, is used
for the inner crust of NSs. For the outer crust of NSs, the
EOS of Baym et al. [59], which relies on the properties of
heavy nuclei, is employed in the low baryonic density regime
ρB < 0.001 fm−3. For all cases of NS matter, the output values
of the gravitational mass as a function of the central energy
density ec (in units of e0) and total radius R are shown in
Figs. 6 and 7, respectively. It is clearly seen from these
figures that the gravitational mass reaches a maximum value,
as reported in Table III for each case of NS matter. On the
other hand, the maximum mass must be consistent with the
PSR J0348 + 0432 (PSR J1614 − 2230) mass measurement
of 2.01M� ± 0.04M� [42] (1.928M� ± 0.017M� [41]), as an
indication that the EOS of NS matter is valid. As expected
from the behavior of the baryonic EOS, the obtained max-
imum masses in the GTF(90) interaction are greater than
the ones in the GTF(96) interaction. Furthermore, the vector

FIG. 5. Same as Fig. 4 but for the GTF(96) interaction.
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FIG. 6. The gravitational mass of NSs (in units of M�) as
a function of the central energy density (in units of e0) for
the GTF(90) and GTF(96) interactions, joined with the NJL
model at GV = 0, 0.1GS, 0.2GS, 0.3GS under the (a) Maxwell and
(b) Gibbs constructions. The upper (lower) horizontal band shows
the observational constraint from PSR J0348 + 0432 (PSR J1614 −
2230) mass measurement of 2.01M� ± 0.04M� [42] (1.928M� ±
0.017M� [41]).

interaction in the NJL model has a significant influence on
the maximum mass of NSs. An important outcome of the
vector interaction is the possibility of forming quark degrees
of freedom in the inner core of NSs, since the maximum
masses increase effectively with GV . As seen in Table III,
the maximum masses of NSs for the different EOSs are
in the range 1.824M�–2.017M� (1.808M�–2.011M�) under
the Maxwell (Gibbs) construction. The maximum masses
for the Maxwell construction are slightly larger than those
for the Gibbs construction, but both of them become closer to
each other with rising GV . It can be understood from Fig. 7

FIG. 7. Mass-radius diagrams for the GTF(90) and
GTF(96) interactions, joined with the NJL model at
GV = 0, 0.1GS, 0.2GS, 0.3GS under the (a) Maxwell and
(b) Gibbs constructions. The dotted lines indicate the pure quark
phase in the inner core of NSs. The upper (lower) horizontal
band shows the observational constraint from PSR J0348 + 0432
(PSR J1614 − 2230) mass measurement of 2.01M� ± 0.04 M� [42]
(1.928M� ± 0.017 M� [41]). The regions on the top-left of each
panel are excluded by causality [2].

that the presence of a pure quark phase in the inner core
indicates an unstable hybrid NS against radial oscillations,
because the corresponding gravitational mass lies to the left
of the respective mass peak in the mass-radius diagram [38].
Hence, our results show that a stable hybrid NS cannot be
formed under the Maxwell construction, since the existence
of a pure quark phase in the inner core is ruled out [37].

According to the Gibbs construction, the composition of
NS matter can be investigated by considering the baryon-
quark mixed phase. The relative fraction of particles yi as a
function of the baryonic density ρB are displayed in Figs. 8
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TABLE III. Maximum masses of NSs (in units of M�) for the GTF(90) and GTF(96) interactions, joined with the NJL model at GV =
0, 0.1GS, 0.2GS, 0.3GS under the Maxwell and Gibbs constructions. ec and Pc are the corresponding central energy density (in units of e0) and
pressure, respectively. R is the total radius of NSs.

GTF(90) GTF(96)

ec Pc Mmax R ec Pc Mmax R
(e0)

(
1035 dyn

cm2

)
(M�) (km) (e0)

(
1035 dyn

cm2

)
(M�) (km)

Maxwell:
GV = 0 5.82 − 9.79 3.95 1.908 11.36 7.17 − 12.12 5.08 1.824 10.75
GV = 0.1GS 6.56 − 11.21 4.99 1.960 11.16 8.12 − 13.59 6.50 1.861 10.50
GV = 0.2GS 7.30 − 12.37 6.16 1.994 10.27 9.10 − 15.05 8.18 1.884 10.27
GV = 0.3GS 8.06 − 13.52 7.51 2.017 10.74 10.11 − 16.60 10.13 1.896 10.01
Gibbs:
GV = 0 8.30 4.18 1.893 11.33 9.30 5.23 1.808 10.73
GV = 0.1GS 8.80 5.14 1.949 11.15 10.00 6.53 1.850 10.53
GV = 0.2GS 9.30 6.23 1.986 10.95 10.60 8.01 1.877 10.30
GV = 0.3GS 9.80 7.47 2.011 10.77 11.20 9.71 1.892 10.09

FIG. 8. Relative fractions of baryons, leptons, and quarks for
the GTF(90) interaction, joined with the NJL model at (a) GV = 0,
(b) GV = 0.1GS , (c) GV = 0.2GS , and (d) GV = 0.3GS . The areas of
the mixed phase are highlighted. The dashed vertical lines show the
central baryonic density of NSs ρc with the baryonic volume fraction
χ , corresponding to the maximum gravitational masses under the
Gibbs construction.

and 9 for GTF(90) and GTF(96), respectively. As predicted
by various theoretical models, the neutrons have the most
abundance among the baryons. It is seen that at the lower
baryonic densities, the proton, electron, and muon fractions
increase rapidly with baryonic density, while the neutron

FIG. 9. Same as Fig. 8 but for the GTF(96) interaction.
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TABLE IV. Width of mixed phase in terms of baryonic density,
and central baryonic density ρc together with baryonic volume
fraction χ (corresponding to the maximum mass of NSs in units
of M�) for the GTF(90) and GTF(96) interactions, joined with the
NJL model at the canonical Fierz value GV = 0.5GS under the Gibbs
construction. R is the total radius of NSs.

ρ (BP) − ρ (QP) ρc χ Mmax R
(fm−3) (fm−3) (M�) (km)

GTF(90): 1.08 − 1.66 1.18 0.83 2.035 10.39
GTF(96): 1.31 − 2.00 1.29 1 1.901 9.73

fraction is a slow decreasing function of baryonic density.
The existence of hyperons has a substantial impact on the
EOS of NS matter at the higher baryonic densities. Hyperons
can constitute a considerable baryonic portion of NS matter.
The formation of hyperons is delayed up to densities of about
3.2ρ0, once the − hyperon appears. The appearance of the
− hyperon accelerates the deleptonization of NS matter,
due to the charge neutrality condition. The consequence of
more repulsive effects in GTF(90) is the earlier appearance of
hyperons in the baryonic density range than in GTF(96). In the
pure quark phase, the relation ys < yu < yd holds. In addition,
the relative fractions of u, d , and s quarks reach the plateaus
with rising baryonic density. At extremely high baryonic
densities, the relation ys ∼ yu ∼ yd ∼ 1/3 is established, due
to the restoration of chiral symmetry. The areas of the baryon-
quark mixed phase are also denoted in these figures. When the
baryon-quark phase transition occurs, the relative fractions of
quarks increase rapidly with the baryonic density. The higher
values of GV suppress the threshold formation of the mixed
phase to the higher baryonic densities. On the other hand, the
width of the mixed phase is slightly extended with increment
of GV . For the sake of clarity, the central baryonic density ρc

together with the baryonic volume fraction χ , corresponding
to the maximum gravitational mass of NSs, are presented in
these figures.

It is instructive to compare these findings with those
calculated from the canonical Fierz value GV = 0.5GS (see
Table IV). Consequently, as GV is increased, ρc is pushed

toward higher values, while unlike those presented in Ref. [39]
for the hadronic model parametrization GM1 in the standard
(local) NJL model, the region of the mixed phase shrinks in
the inner core of NSs.

IV. SUMMARY AND CONCLUSION

In this paper, we have investigated the EOS of NS matter
including the baryon-quark phase transition. Such an EOS has
a clear connection with our understanding about the structure
of hybrid NSs. The TF approximation has been employed in
a semiclassical MF model to describe the baryonic EOS by
the GTF(90) and GTF(96) interactions. The results reflect the
stiffer nature of the baryonic EOS in GTF(90) because of
being more repulsive than GTF(96). For the EOS of quark
matter, we have considered the NJL model. The deconfine-
ment phase transition in NS matter has been studied under the
Maxwell and Gibbs constructions. We have shown that the
repulsive vector interaction, specified by the vector coupling
constant GV in the NJL model, has a small (significant)
effect on the width (threshold formation) of the baryon-quark
mixed phase. In addition, with increasing GV , the Maxwell
construction becomes energetically favorable at higher values
of the surface tension between baryonic and quark matter.
Within the present research, the inner core of NSs can be
formed with a region of the baryon-quark mixed phase, but
the formation of a pure quark phase is excluded. Hence, the
Maxwell construction provides an unstable hybrid star for
both the GTF(90) and GTF(96) interactions. When the value
of GV is increased, the mixed phase region of the inner core
shrinks, since the quark EOS becomes stiffer. Evidently, the
stiffer EOSs reach the higher values of the maximum mass.
In addition, the maximum masses in the Maxwell construc-
tion are slightly larger than those in the Gibbs construction.
This approach can be extended to the finite temperatures to
investigate the baryon-quark phase transition in the interior of
protoneutron stars.
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