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The equation of state (EOS) of infinite nuclear matter with a small proton or neutron fraction is a crucial input
to determine the properties of neutron stars and compare model predictions to astronomical observations. The
so-called symmetry energy is the part of the EOS accounting for the difference in the number of neutrons and
protons. Numerous experiments have been devised to assess the symmetry energy and constrain its functional
dependence with the nucleon density. Further constraints follow from a stellar modeling using the EOS to
reproduce astronomical observations such as neutron star masses and radii. The recent detection of gravitational
waves emitted from neutron star mergers and the nucleosynthesis ensuing from these events caused a surge of
interest for such studies. Several types of nuclear reactions have been proposed to study the symmetry energy part
of the EOS. Some of them consist in determining the neutron skin in nuclei and exploit its correlation with the
slope parameter of the symmetry energy. In this article, we explore a particular set of reactions using high-energy
(Elab ∼ 1 GeV/nucleon) neutron-rich projectiles. We explore measurements of all reaction fragments (a) in
the same isotopic chain, i.e., only by removal of neutrons, (b) in all charge-changing channels, and (c) total
interaction cross sections. Using Hartree-Fock-Bogoliubov (HBF) predictions for neutron and proton densities
with Skyrme interactions, we explore the sensitivity of these cross sections with the neutron skin in nuclei.
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I. INTRODUCTION

Neutron and proton distributions within a nucleus are
expected to have slightly different radii. Evidences for this
were accumulated from electron scattering off nuclei, which
yields information on their charge distribution [1], and from
hadronic probes, e.g., proton, pion, or antiproton scattering
[2], which are sensitive to the total nucleon distribution. The
nucleus tends to builds up a small neutron skin as its number
of neutrons N increases. This neutron skin in a nucleus is often
quantified in terms of the difference between its neutron and
proton distribution rms radius, i.e.,

�rnp = 〈
r2

n

〉1/2 − 〈
r2

p

〉1/2
. (1)

Theoretical values for this quantity are deduced from mi-
croscopic models for the nucleus such as Hartree-Fock-
Bogoliubov theories using Skyrme or Gogny interactions [3].
The neutron skin size predictions range from zero for light
stable nuclei, with N ≈ Z , up to about 0.3 fm for heavy
nuclei with large neutron excess [4–10]. However, using all
experimental techniques presently available, it has not yet
been possible to determine the neutron skin accurately enough
in order to discern the best microscopic theories for proton and
neutron distributions [11].

The neutron excess in a nucleus leads to a corresponding
neutron pressure larger than that for the proton component.
Such nucleon pressure is closely related to the energy per
nucleon, ε = E/A, which is a function of the nuclear density
and its nucleon asymmetry. For a given set of neutron N ,

proton Z , and mass A = N + Z numbers, the energy per
nucleon around N = Z is given by

εA(ρ, δ) = εA(ρ, 0) + SA(ρ)δ2 + · · · , (2)

where δ = (N − Z )/A is the asymmetry coefficient and SA is
known as the symmetry energy. In neutron stars, an “infinite“’
nuclear matter environment, with A ≈ 1057 → ∞, one usu-
ally drops the index A for the physical quantities above and
the asymmetry coefficient is described in terms of the neu-
tron, proton, and total densities, δ = (ρn − ρp)/ρ. The density
dependence of S around the nuclear matter saturation density
ρ0 � 0.16 fm−3 is obtained from a Taylor expansion,

S(ρ) = J + Ł

3

ρ − ρ0

ρ0
+ · · · , (3)

where J = S(ρ0) is the bulk symmetry energy and L =
3ρ0dS(ρ)/dρ|ρ0 determines its slope. At the saturation den-
sity, ρ0 = 0.16 fm−3, the binding energy per nucleon is
ε(ρ0, 0) � −16 MeV. There is strong experimental evidence
that the value of J ≈ 30 MeV is compatible with theoretical
predictions.

The pressure in homogeneous nuclear matter, determin-
ing the equation of state (EOS), is given by p(ρ, δ) =
ρ2dε(ρ, δ)/dρ. From Eqs. (2) and (3), the EOS is therefore
strongly dependent on the symmetry energy, S. In fact, for
pure neutron matter, δ = 1, and for ρ close to ρ0, one has p =
Lρ0/3, emphasizing the importance of the slope parameter
L. The quantity L is poorly determined experimentally with
its value varying within 0 and 150 MeV, theoretically [8,9].
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For finite nuclei, the competition between the two terms in
Eq. (3) influences the thickness of the surface region where
the neutron contribution is dominant for N > Z . Therefore,
we expect that studies of neutron skin in nuclei will reveal
the details of the EOS needed to perform calculations for the
structure of neutron stars, with δ = 1. The EOS of nuclear
matter is also needed to describe the explosion mechanism of
core-collapse supernovae [12–18].

There has been several nuclear physics experiments and
astronomical observations aimed at studying the EOS of
nuclear matter and the role of the symmetry energy. As a
subset of these, the measurement of neutron skins in nuclei
has also attracted large experimental interest [11,19–21]. The
width of the neutron skin can also be studied with different
experimental techniques, although an accurate measurement
is still lacking. Electromagnetic probes of the nucleus can
infer their radial charge distribution rather well, but the de-
termination of its matter distribution is still difficult. Recently,
experimental efforts were proposed to deduce the neutron skin
from accurate measurements of fragmentation reactions using
inverse kinematic collisions and light targets such as carbon
and proton targets [11]. Inverse kinematics with radioactive
beams allows one to use nuclear projectiles with varying
neutron number along an isotopic chain. This technique is
crucial, because many of the nuclei along the chain are short-
lived, requiring their use as projectiles. For example, one can
measure charge-changing cross sections σ�Z , i.e., the total
cross sections for the production of fragments with one or
multiple protons removed from the projectile. Another pos-
sibility is to measure neutron-changing cross sections, σ�N ,
accounting for all fragments with at least one neutron removed
[11].

At high projectile energies, it is often considered a good as-
sumption that the fragmentation reaction occurs in two steps.
In the first step, primary fragments are produced by scrapping
nucleons off the projectile, and a second step occurs when the
energy deposited in the fragments leads them to undergo a
nuclear decay with the emission of γ , α particles, nucleon
evaporation, etc. This is a purely theoretical assumption since
there is no accurate experimental procedure to separate the
two steps. Moreover, the second step is also theoretically
difficult to calculate accurately. It is frequently modeled using
statistic models, such as the Hauser-Feshbach theory [22,23].
This theory needs several input parameters such as level
densities and barrier transmission probabilities, which are still
under intense scrutiny.

The first step in the reaction, as mentioned above, is easier
to model with help of methods like the Glauber model for
nuclear collisions [23–26]. The Glauber model is not free of
uncertainties either, but it contains a much smaller number
of assumptions and has been used to describe with success
an enormous number of experiments on high-energy hadronic
reactions. That is exactly why a measurement of σ�N or
σ�Z is advantageous: One avoids the need for a theoretical
description of all possible nucleon evaporation decays in the
reaction second step. Another possibility is to measure the
total interaction cross section σI = σ�N + σ�Z defined here
as the cross section for the removal of at least one nucleon,
irrespective if they are protons or neutrons.

The purpose of this work is to study the sensitivity of σI ,
σ�N , and σ�Z on the neutron skin of nuclei and consequently
on the most uncertain part of the symmetry energy, namely
its slope parameter defined in Eq. (3). In the next sections,
we will present a summary of the assumptions we employ to
obtain nucleon removal cross sections and the contributions
from several different mechanisms. After that, we present our
numerical results followed by our conclusions.

II. THEORETICAL MODELING OF NEUTRON-
AND CHARGE-CHANGING REACTIONS

The Glauber model has been widely adopted in calcula-
tions of numerous processes in high-energy nuclear collisions
[23–26]. Here, we will employ it to calculate the cross sec-
tion to produce a primary fragment with charge and neutron
number (ZF , NF ) in the collision of a projectile nucleus with
charge and neutron number (ZP, NP ) with a nuclear target. The
cross sections are deduced from [11,25,26]

σ (ZF , NF ) =
(

ZP

ZF

)(
NP

NF

) ∫
d2b[1 − Pp(b)]ZP−ZF

× PZF
p (b)[1 − Pn(b)]NP−NF PNF

n (b), (4)

where b is the impact parameter in the collision. The binomial
coefficients take into account all possible ways that ZF protons
can be removed from the ZP initial protons of the projectile.
A similar counting is made for the neutrons. Pp (Pn) are the
probabilities for the survival of a single proton (neutron) of
the projectile and the factors containing (1 − P) account for
the removal probability of the other protons (neutrons). Pp and
Pn are given by [25,26]

Pp(b) =
∫

dzd2sρP
p (s, z) exp

[
−σppZT

∫
d2sρT

p (b − s, z)

− σpnNT

∫
d2sρT

n (b − s, z)

]
, (5)

where the charge and neutron number of the target is denoted
by (ZT , NT ), and ρp (ρn) is the proton (neutron) density of
projectile and target, normalized to unity. σnp and σpp are
the neutron-proton and proton-proton (without Coulomb) total
cross sections. At high energies, it is assumed that medium
effects are small and the nucleon-nucleon cross sections are
taken from a fit of experimental data of free nucleon scatter-
ing at energies in the range Elab = 500 to 5000 MeV [27].
Similarly, for Pn we use

Pn(b) =
∫

dzd2sρP
n (s, z) exp

[
−σppNT

∫
d2sρT

n (b − s, z)

− σpnZT

∫
d2sρT

p (b − s, z)

]
. (6)

As proposed in Ref. [11], the neutron skin and its evolution
with increasing number of neutrons of the projectiles can be
extracted by the application of the theory described above.
The idea is to study measurements of σ�N , the cross section
to produce all isotopes of the projectile by removing at least
one of its neutrons. It is obtained by setting ZF = ZP in Eq. (4)
and adding from NF = 1 up to NP. Compact equations can be
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obtained by using sums over the binomial coefficients [25],
e.g.,

σ�N =
∫

d2b[Pp(b)]ZP{1 − [1 − Pn(b)]NP}. (7)

Experimentally, one intends to exploit an isotopic chain, e.g.,
tin isotopes, and compare the measurements with calculations
employing neutron and proton density distributions based on
well-established microscopic theories [11]. To date, and for
most of the heavy nuclear isotopes, such theories are often
based on mean-field methods, e.g., Hartree-Fock or relativistic
mean-field theories [3].

Similarly to neutron changing, one could measure charge
changing, σ�Z , or total interaction cross sections, σI , to
assess information on the neutron skin of the projectiles.
The charge-changing cross sections, σ�Z , need to include the
measurement of all elements produced out of the projectile,
plus all their corresponding isotopes. The cross sections are
much larger because of the many more possibilities involved,
as deduced from Eq. (4). The interaction cross section is
obtained by summing all possibilities that at least one nucleon
is removed, σI = ∑

ZF ,NF
σ (ZF , NF ).

In the literature, the optical limit of the Glauber theory is
often used. In this limit, one assumes that P(b) � 1 so that
one can replace 1 − P(b) ≈ exp[−P(b)] [25,28]. Sometimes
Pn and Pp are also assumed to be the same. Evidently, all
these approximations are not appropriate to study the effects
of the neutron skin. We will therefore use expression (4) in
our analysis. And, since σ�Z = σI − σ�N , conclusions for
σ�Z can be easily drawn from the knowledge of the first
two cross sections. Similar studies to access information on
the neutron skin in nuclei using the Glauber theory for high-
energy scattering have been published in, e.g., Refs. [29–32].

It is worthwhile to mention that the fragmentation process
described above neglects the possibility that the projectile
remains the same nucleus after a primary interaction with the
target but is excited to a collective giant resonance. Giant
resonances lie above the nucleon emission threshold. As a
result of the Coulomb barrier, the nucleus will generally emit
neutrons, and often just one neutron. Their excitation will
thus contribute to the neutron-changing cross section, σ�N ,
and to the interaction cross section, σI . The excitation of
giant resonances will be minimized if one uses light targets
such as carbon or proton. Experimentally, one can also try to
disentangle this process from the nucleon stripping process
described above by comparing the energy dependence of the
cross sections and/or using different targets.

To estimate the cross sections for excitation of giant res-
onances (GR) we work within the first-order perturbation
theory. We also assume that Coulomb and nuclear interference
is small so that we can separate the Coulomb and nuclear
excitation cross sections. As we will show later, this is not so
relevant as the Coulomb cross sections are much smaller than
the multinucleon stripping cross sections defined via Eq. (4).
It will also be smaller than the nuclear-induced excitation
of GRs for light targets. The cross sections for Coulomb
excitation are largest for electric dipole (E1) excitations and
in particular for the isovector giant dipole resonance (GDR). It
leads overwhelmingly to neutron decay and can be calculated

as [33,34]

σ−n
C =

∫
dE

E
nE1(E )σ GDR

γ (E ), (8)

where the equivalent photon number is given by

nE1(E ) = 2Z2
T α

π

(
ωc

γ v2

)2 ∫
db b

[
K2

1 (x) + 1

γ 2
K2

0 (x)

]
�(b),

(9)

with v being the projectile velocity, γ = (1 − v2/c2)−1/2 is
the Lorentz contraction factor, α is the fine-structure con-
stant, and Kn is the modified Bessel function of nth kind,
as a function of x = ωb/γ v, where the excitation energy is
E = h̄ω. The photo-nuclear cross sections σ GDR

γ are calcu-
lated by assuming a Lorentzian shape

σ GDR
γ (E ) = σ0

E2�2

(
E2 − E2

GDR

)2 + E2�2
, (10)

where EGDR = 31.2A−1/3
P + 20.6A−1/6

P reproduces the mass
dependence of the centroid of the experimentally measured
GDR. It is a mixture of the excitation energy mass depen-
dence predicted by Goldhaber-Teller and Steinwedel-Jensen
macroscopic models [35,36]. The parameter σ0 is chosen to
reproduce the Thomas-Reiche-Kuhn (TRK) sum rule∫

dEσ GDR
γ (E ) = 60

NPZP

AP
MeV mb, (11)

which is obtained from a nearly model-independent account
of the full nuclear response to a dipole operator [37].

The width � of the GDR is a more complicated issue. It
is strongly dependent on the shell structure of the nuclei. The
experimental systematics yield values for the width ranging
from 4 to 5 MeV for closed-shell nuclei up to 8 MeV for nuclei
situated between closed shells. Since most nuclei considered
in this article are not amenable to experimental investiga-
tions using photonuclear reactions, a possibility is to adopt
a microscopic theoretical model such as the random phase
approximation (RPA) [38]. Instead, we will use here a simple
phenomenological parametrization of the GDR width in the
form �GDR = 2.51 × 10−2E1.91

GDR MeV, with EGDR in units of
MeV [39].

The profile function � in Eq. (9) is given by

�(b) = exp

[
−σNN (ENN )

∫
dz

∫
d3rρP(r)ρT (|R − r|)

]
,

(12)

where R = (b, z), with z being the coordinate along the
projectile velocity and b being the coordinate perpendicular
to it. ρi (i = P, T ) are the total nucleon densities of the
projectile and target, assumed to be spherical. σNN is the
isospin-averaged nucleon-nucleon cross section, parametrized
as in Ref. [27].

The contribution of the nuclear interaction to the excitation
of giant resonances followed by neutron emission can be
obtained employing a first-order (eikonal-DWBA [distorted
wave born approximation]) reduction of the coupled-channels
treatment discussed in Ref. [40]. At high energies, only the
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nuclear excitations of the isovector giant dipole resonance
(IVGDR), L = 1, and of the isoscalar giant quadrupole res-
onance (ISGQR), L = 2, are of relevance. The cross sections
are obtained by integrating the inelastic scattering amplitude
using eikonal scattering waves [25]

fL(θ ) = ik

2π h̄v

∫
eiq·R+iχ (b)UL(R)d2bdz, (13)

where χ is the eikonal phase, k is the projectile momentum,
and q is the momentum transfer in the reaction. The potential
for the excitation of the L-type resonance is often based on the
deformed potential model [41],

UL(R) = − βL√
2L + 1

YL0(R̂)
dUopt

dR
, (14)

where βL is the deformation parameter and Uopt is the optical
potential. The deformation parameters for the IVGDR and the
ISGQR are deduced from a full exhaustion of the sum-rules
for dipole and quadrupole operators. They are [41]

β1 =
(

π h̄2

2mN

AP

NPZPEGDR

)1/2
3�rnp

2R0
(15)

and

β2 =
(

20π h̄2

3mN

1

APEGQR

)1/2

, (16)

where mN is the nucleon mass, �rnp is the neutron skin, and
R0 is the mean nuclear radius. The centroid of the ISGQR is
taken as EISGQR = 62/A1/3

P MeV.
The differential cross section is given by dσL/d� =

| fL(θ )|2. Since in high-energy collisions q � k sin θ , where
θ is the scattering angle, the solid scattering angle is given
by d� = d2q/k2 and the integration over angles can be done
trivially, yielding a δ function. The total cross section for
multipolarity L becomes

σL =
∫

d2b�(b)|uL(b)|2, (17)

where �(b) = exp {2Im[χ (b)]} is the same profile function as
in Eq. (12) and

uL = 1

h̄v

∫
UL(R)dz (18)

is a dimensionless transition potential. We have also per-
formed calculations using the coupled-channels code DWEIKO

[40] assuming only two states (IVGDR and ISGQR) located
at their centroid energies and carrying the full sum rule
strengths. The results obtained are nearly identical with those
using the formulation presented above.

One of the main sources of uncertainty in the calculation
of nuclear excitation stems from the optical potential. There
are no optical potentials extracted from experimental system-
atics to describe nucleus-nucleus scattering available for the
isotopic chains and the high energies we consider here. There-
fore, we resort to the “tρρ” optical potential, as described in
Ref. [40]. It is also worth noticing that the nuclear excitation
of the IVGDR is directly correlated with the neutron skin, as
is explicitly shown in Eq. (15). However, as we will show

later, the cross sections for the excitation of the ISGQR are
much larger and this correlation is not very useful to explore
in this context. It is also difficult from measurements of the
neutron removal reactions at relativistic energies to identify
which type of resonance contributed to the cross section.

Another sort of reaction mechanism can contribute to
the charge-changing and neutron-changing reactions, namely,
charge-exchange reactions. At high projectile energies, the
isospin-dependent part of the NN interaction induces a change
by one or more units of charge in the projectile accompanied
by the opposite sign change in the target. Microscopically, this
can be viewed as the exchange of a charged pion, or a charged
ρ. The cross sections for this process are rather small, no more
than a few millibarns, and will not be considered here [25].

III. PROTON AND NEUTRON DENSITIES
AND THE EOS OF NUCLEAR MATTER

Numerous theoretical methods exist to obtain nucleon den-
sity distribution in nuclei. We will only consider Skyrme in-
teraction models together with the Hartree-Fock-Bogoliubov
(HFB) theory. For a review, see, e.g., Ref. [3]. The Skyrme
interactions are contact interactions with several terms ac-
counting for coordinate, spin, and isospin dependence. With
them, rather simple numerical procedures have been devel-
oped to calculate the binding energy of nuclei and several
other nuclear properties. As a by-product, the energy density
functional E [ρ] is obtained. From this density dependence of
the nuclear energy, one can try to infer many of the properties
of neutron stars [12].

We have considered a sufficiently large collection of
Skyrme interactions to test the dependence of the cross sec-
tions on the neutron skin of nuclei, but, in contrast to many
previous studies, there is no intent here to check if one
interaction does a better job than another. To each of the
interactions, we added a mixed pairing interaction of the form

v(r, r′) = v0

(
1 − 1

2

ρ

ρ0

)
δ(r − r′), (19)

where ρ(r) = ρn(r) + ρp(r) is the isoscalar local density, the
pairing strength adopted is the same for neutrons and protons,
v0 = −131.6 MeV, and the saturation density is fixed at ρ0 =
0.16 fm−3. Our calculations were performed with the code
HFBTO [42]. The zero-range character of the pairing force
requires the introduction of a cutoff energy in the quasiparticle
space, and we have chosen Ecut = 60 MeV.

We have used parameters for the Skyrme interactions avail-
able on the Compose (Compstar) repository [43]. We have
included the following Skyrme interactions: SIII [44]; SKA
and SKB [45]; SKM* [46]; SKP [47]; UNE0 and UNE1 [48];
SKMP [49]; SKI2, SKI3, SKI4, and SKI5 [50]; SLY230A
[51]; SLY4, SLY5, SLY6, and SLY7 [52]; SKX [53]; SKO
[54]; SK255 and SK272 [55]; HFB9 [56]; and SKXS20 [4].
The calculations for the ENE0 and UNE1 interactions were
done with the modified version of the code HFBTO code [48].

The large number of Skyrme interactions employed here
also leads to a large variation of nuclear matter properties.
This is summarized for a few of these interactions in Table I.
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TABLE I. Nuclear matter properties at saturation density associ-
ated with different Skyrme interactions. All quantities in MeV.

Skyrme K0 J L Skyrme K0 J L

SIII 355. 28.2 9.91 SLY5 230. 32.0 48.2
SKP 201. 30.0 19.7 SKXS20 202. 35.5 67.1
SKX 271. 31.1 33.2 SKO 223. 31.9 79.1
HFB9 231. 30.0 39.9 SKI5 255. 36.6 129.

The incompressibility of nuclear matter is defined as

K0 = 9ρ2
0

∂2E/A

∂ρ2

∣∣∣∣
ρ0

, (20)

and J and L have been introduced in Eq. (3). It is clear
that the least constrained EOS property is the slope of the
symmetry energy, L. Because these interactions have been
fitted to reproduce several nuclear properties, it is very hard
to judge which one would be better suited to study neutron
star properties.

In Fig. 1, we plot the neutron skin, �rnp calculated with
the 23 Skyrme interactions listed previously. Notice that the
neutron skins obtained with different Skyrme interactions tend
to diverge from each other as the neutron number increases.
A similar trend is observed for Ni and Pb isotopes. For the
stable tin isotopes with mass A = 116, 118, 120, the neutron
skin varies in the range 0.1–0.3 fm depending on the Skyrme
model adopted.

Despite these different isotopic dependencies, a linear
correlation between L and �rnp has been found for 208Pb
using both relativistic and nonrelativistic mean-field models
[8,57–59]. This correlation is therefore useful for planning
studies of neutron skins in nuclei and extracting the value
of the slope parameter L. This is again explored in Fig. 2,
where the neutrons skin, �rnp, calculated with the Skyrme
interactions listed previously are displayed as function of the
value of the slope parameter L predicted by each one of them.

FIG. 1. The points represent neutron skin �rnp calculated for tin
isotopes with the 23 Skyrme interactions listed in the text. Each one
of the lines corresponds to one of the interactions and is also a guide
to the eyes.

FIG. 2. Neutrons skin, �rnp, calculated with the Skyrme interac-
tions listed in the text displayed as function of the value of the slope
parameter L predicted by each one of them. The lines are guides
to the eyes. Each curve corresponds to a different lead isotope with
neutron number N .

The lines are guides to the eyes. Each curve corresponds to a
different value of the neutron number. One notices that, except
for a few kinks, there is indeed a nearly linear relation between
L and �rnp even for different isotopes of lead. If the interac-
tions predicting L ∼ 45 MeV values are neglected, a better
linear correlation would become evident. However, we will
not use this sort of argument to discriminate against any of
the interactions and we will keep all listed interactions in our
numerical calculations of the fragmentation cross sections.

IV. NUMERICAL RESULTS

A. Coulomb excitation followed by neutron emission

We now discuss what could be considered as “small”
corrections to the nucleon removal cross sections σ�N and
σI . We start with the Coulomb excitation of giant resonances
followed by neutron emission. In Fig. 3, we show our results

FIG. 3. Cross sections in millibarns for the Coulomb excitation
of the IVGDR in nickel, tin, and lead projectiles incident on carbon
targets at 1 GeV/nucleon, as a function of the asymmetry coefficient
δ = (N − Z )/A of the projectile.
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for the cross sections for the excitation of the IVGDR in
nickel, tin, and lead projectiles incident on carbon targets
at 1 GeV/nucleon, as a function of the asymmetry coefficient
δ = (N − Z )/A of the projectile. The Coulomb cross section
has little dependence on the neutron skin, except for the cutoff
at small impact parameters through the function �(b) appear-
ing in Eq. (12), but the cross section depends strongly on the
asymmetry coefficient δ, mainly because of the photo nuclear
cross-section isotopic dependence, a legacy of Eq. (11). Also
important is the mass dependence of the centroid energy of
the resonance because the virtual photon numbers nE1 vary
strongly with the excitation energy.

As seen from Fig. 3, the cross sections increase almost
linearly with (N − Z )/A. For nickel and tin isotopes, they
are very small and can be neglected compared to the neutron
changing and interaction cross sections, as we will show
later. However, for lead projectiles the cross sections are
not so small if one uses carbon targets. Since the Coulomb
cross sections are nearly proportional to the square of the
charge of the target, for proton targets the cross sections
are smaller than for carbon targets by about a factor of
30–40 and are therefore negligible. Hence, by comparing
experimental results with carbon and proton targets, one can
easily eliminate the Coulomb cross sections’ contributions to
the fragmentation cross sections. More elaborate theories for
Coulomb excitation followed by neutron evaporation can also
be employed if one wants to use a light target such as carbon.
The comparison with experimental data has been shown to
be nearly perfect [34]. There exists a large variation of the
Coulomb cross sections with bombarding energy, as shown in
Ref. [33], which also helps disentangle their contribution from
the other processes.

B. Nuclear excitation followed by neutron emission

In Fig. 4, we plot the cross sections for the nuclear
excitation of the ISGQR (GQR) and IVGDR (GDR) in
nickel, tin, and lead projectiles incident on carbon targets at
1 GeV/nucleon, as a function of the asymmetry coefficient
δ = (N − Z )/A of the projectile. The upper curves in each
panel are for the excitation of ISGQR and the lower ones for
the excitation of IVGDR multiplied by 20 for visualization
purposes. For example, with 208Pb projectiles, the cross sec-
tions are 43.27 and 1.11 mb for the ISGQR and the IVGDR,
respectively.

One notices that the IVGDR cross sections are basi-
cally zero for N = Z , where one expects a negligible neu-
tron skin. Nickel exhibits a non-negligible proton skin for
light isotopes, and as a consequence one sees a reversing
trend of the IVGDR excitation cross section around δ = 0.
However, the cross sections for the IVGDR excitation are
at least a factor of 20 smaller than those for the ISGQR
and therefore negligible for the purposes of extracting the
neutron skin at these bombarding energies. However, this
method has been used at lower energies, around and below
100 MeV/nucleon, by using differential cross sections which
are able to discern markedly between the L = 1 and L = 2
angular distributions and the energy dependence of the cross
sections [60].

FIG. 4. Cross sections for the nuclear excitation of the ISGQR
(GQR) and IVGDR (GDR) in nickel, tin, and lead projectiles in-
cident on carbon targets at 1 GeV/nucleon, as a function of the
asymmetry coefficient (N − Z )/A of the projectile. The upper curves
in each panel are for the excitation of ISGQR and the lower ones
for the excitation of IVGDR multiplied by 20 for visualization
purposes.

The ISGQR cross sections decrease along an isotopic chain
as the neutron numbers increase. This can be understood as
due to the decrease of the deformation parameter β2 with the
increase of the ISGQR centroid energy with mass number, as
inferred from Eq. (16).

There are much larger uncertainties in the theoretical treat-
ment of nuclear excitation in high-energy collisions than the
Coulomb excitation case described in the previous section.
The Coulomb interaction is well known while the optical
potentials entering the deformed model nuclear interaction
of Eq. (14) are not. For the results presented in Fig. 4, we
have used the “t-ρρ” interaction [40,61]. If instead we use the
M3Y interaction [62] with an equal ratio of real to imaginary
parts, we get cross sections 50% smaller, whereas if we
use the Jeukenne-Lejeune-Mahaux (JLM) interaction [63] in
the same way, the nuclear excitation cross sections become
30–40% larger. Therefore, at least a factor of 2 uncertainty
in the calculations arises due to the nuclear excitation, and
there is not much one can do to improve this scenario with
the state-of-the-art knowledge of nuclear excitation in high-
energy collisions. In fact, at relativistic energy collisions such
as 1 GeV/nucleon, one needs a four-potential to accommo-
date Lorentz covariance. For a discussion, see Ref. [64]. The
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FIG. 5. Neutron-changing cross sections in barns according to
Eq. (7), for nickel (upper panel) and lead (lower panel) isotopes and
the 23 Skyrme interactions mentioned in the text, as a function of
the neutron number. The lines are guide to the eyes and each line
represents the predictions of one of the Skyrme interactions along an
isotopic chain.

deformed potential model, as well as the Tassie model [65]
often used to describe direct nuclear reactions, should be
considered as rough approximations. The uncertainties arising
from nuclear excitation are difficult to quantify unless one
would have a much better theoretical description of nuclear
excitation followed by neutron emission in high-energy colli-
sions.

It is also worthwhile to mention that for proton targets
the deformed potential model yields cross sections that are
not much different than the ones displayed in Fig. 4. It is
difficult to use different targets to change appreciably the
nuclear excitation of giant resonances, although a notice-
able change of the Coulomb excitation might occur. Sweep-
ing the bombarding energies from 100 MeV/nucleon to
1 GeV/nucleon does not help because the nuclear excitation
cross sections remain nearly unchanged. We thus expect that
approximately 50 to 100 mb of cross sections, mainly in the
one-neutron decay channel, is hard to control systematically
without any other information than the angle integrated cross
sections.

The Coulomb and nuclear excitation of giant resonances
followed by neutron emission proceeds through the forma-
tion of a compound nucleus, which tends to decay nearly
isotropically. Therefore, despite the non-negligible magnitude
of the excitation cross sections, one can separate fragments
arising from excitation followed by decay from those by
direct nucleon removal by devising an experiment setup with
detection of fragments moving close to the beam direction.
As discussed in Ref. [11], simulations have shown that the
nuclear excitation events can be reliably separated using the
angular distribution of fragments.

FIG. 6. Same cross sections as in Fig. 5 but as a function of
the neutron skin �rnp in different isotopes and for different Skyrme
interactions. The lines are guide to the eyes and represent the
predictions of one Skyrme interaction for the neutron skin along an
isotopic chain.

C. Neutron changing and interaction cross sections

In Fig. 5, we show the neutron-changing cross sections in
barns, according to Eq. (7), for nickel (upper panel) and lead
(lower panel) isotopes and the Skyrme interactions adopted as
a function of the neutron number. For nickel, we observe a
very small dependence on the neutron number with the choice
of the Skyrme interaction. Since nickel is not much larger in
size than the carbon target, the nuclear size variation along
the isotopic chain with the Skyrme interaction are not large
enough to yield a sizable variation of the cross sections. For
the heaviest stable nickel isotope, 64Ni, the cross sections vary
within the range 337–350 mb, which is only a 4% sensitivity
to the choice of the interaction. For a heavy projectile such
as lead, the cross sections show a very interesting dependence
on the neutron number. First, for every single Skyrme inter-
action, the cross sections display a linear dependence with
the neutron number. This is a robust property that can be
employed for predictive purposes. Second, for the heaviest
stable lead isotope, 208Pb, the cross sections vary within the
range 537–576 mb, which is nearly a 7% dispersion with the
choice of the interaction. Therefore, it seems that neutron-
changing cross sections can constrain the several Skyrme
models appreciably. Moreover, the linear relation between
σ�N and the neutron number is worthwhile to explore in
experimental analysis.

It is justifiable to plot the same data displayed in Fig. 5
but as a function of the neutron skin in the different isotopes.
This is shown in Fig. 6. Now a row of vertical points do
not correspond to the same isotope, but each curve along
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FIG. 7. Total interaction cross sections in barns for tin isotopes
incident on carbon targets at 1 GeV/nucleon, according to Eq. (4),
and several Skyrme interactions. The upper panel shows results as a
function of the neutron number N , whereas the lower panel displays
the same data as a function of the neutron skin �rnp.

an isotopic chain corresponds to a single Skyrme interaction.
Since �rnp and the neutron number are correlated (see Fig. 1),
there is no additional information compared to Fig. 5, but one
can use this relation to infer the accuracy needed to extract a
given �rnp. For a neutron skin value of 0.15 fm in Ni and Pb
isotopes, the cross sections vary within the ranges 0.32–0.42
and 0.47–0.52 b, respectively. These variations correspond
to sensitivities of the neutron skin with Skyrme interactions
within 20% for nickel and 10% for lead isotopes. Graphs
of the sort of Fig. 6 are only useful if a large number of
projectile isotopes are used in an experimental campaign. As
we mentioned above, the graph is a combination of theoretical
predictions in Figs. 1 and 5.

To emphasize the difference between the cross sections
displayed as function of the neutron number and those dis-
played as function of the neutron skin, we show in Fig. 7
the total interaction cross sections in barns for tin isotopes
incident on carbon targets at 1 GeV/nucleon. Calculations
are done according to Eq. (4) and for all Skyrme interactions
mentioned earlier. The upper panel shows results as a function
of the neutron number N , whereas the lower panel displays
the same data as a function of the neutron skin �rnp. It is
noticeable that the cross sections vary negligibly with the
Skyrme interaction for a given isotope. This happens because,
for a given isotope, all interactions yield nearly the same total
matter density. On the other hand, similar values for neutron
skins are obtained for different isotopes with two or more
distinct Skyrme interactions. This is evident in the lower panel
of Fig. 7, where we see a much larger variation of σI with
�rnp. Therefore, a combination of measurements of neutron-
changing and interaction cross sections can be employed to
compare to theoretical microscopic calculations of the nuclear

FIG. 8. Upper panel: Ratio between the neutron-changing cross
sections, σ�N , at 1 GeV/nucleon for tin isotopes obtained with
carbon and and with proton targets, as a function of the neutron
skin, �rnp. The set of points along a curve correspond to one of the
Skyrme interactions used. Lower panel: The same ratio, but for the
total interaction cross sections, σI .

densities. An experimental setup aiming at a 5% accuracy in
these cross sections might be enough to constrain microscopic
predictions for the neutron skins.

The major conclusions drawn in this article will not change
for different projectile bombarding energies and therefore we
do not exploit calculations for different bombarding energies.
This feature has been discussed in Ref. [11]. A systematic
study of neutron-changing cross sections as a function of the
bombarding energy might help in the experimental analysis
due to the energy dependence of the nucleon-nucleon (NN)
cross section, a crucial input in the calculations entering
Eq. (4). The NN cross section has a pronounced dip at
200 MeV and therefore a mapping of the cross sections for
several bombarding energies from 100 MeV/nucleon and up
is worth to explore experimentally.

As a final remark, we show in Fig. 8 the ratio between the
neutron-changing cross sections, σ�N , at 1 GeV/nucleon for
tin isotopes obtained with carbon and with proton targets (up-
per panel) as a function of the neutron skin, �rnp. In the lower
panel, we show the same ratio, but for the total interaction
cross sections, σI . It is clear from the figure that the cross
sections obtained with proton targets have a steeper increase
with the neutron skin than the cross sections obtained with
carbon targets. This is more visible in the ratio of interaction
cross sections. Therefore, using carbon and proton targets
will allow for a better discrimination of the various Skyrme
interactions that could reproduce the experimental data. The
measurement of both neutron-changing and total interaction
cross sections will also help in these studies.
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V. CONCLUSIONS

In summary, in this work we have studied fragmentation
reactions as a means to test several microscopic models
and their predictions of the neutron-skin thickness in nuclei
far from stability. By studying total neutron-changing cross
sections, one is free from uncertainties of statistical models
for compound nucleus decay. On the other hand, Coulomb
and nuclear excitation can also influence both total neutron-
changing cross sections as well as total interaction cross
sections.

We have shown that the nuclear excitation process followed
by neutron emission can add about 50–100 mb to the neutron-
changing cross sections. Only a dedicated experimental setup
covering angular distributions of the fragments will be able to
eliminate this cross section impurity. We have also shown that
Coulomb excitation followed by neutron emission is either

negligible or strongly energy dependent and can be controlled
by varying experimental conditions.

Different microscopic models will lead to large variations
of the neutron skin within an isotopic chain, enough for
allowing a discrimination of the best theories to explain the
experimental data. This work shows that fragmentation reac-
tions with neutron-rich projectiles at high energies can help
us understand the role of the symmetry energy in the equation
of state of nuclear matter and its extrapolation to neutron-rich
matter needed to explain the structure of neutron stars.
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