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Magnetized Taub adiabat and the PT characteristics of magnetic neutron stars
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In this study, we derive the magnetized Taub adiabat (TA) equation from the hydrodynamic conservation
conditions. For the conversion of one phase to other the combustion adiabat (CA) equation is the same as the
TA equation, only the equation of state (EoS) of the upstream phase is different from that of the EoS of the
downstream phase. We employ the magnetized CA equations to study the evolution of a magnetized neutron star
to a magnetized quark star. The pressure of the burnt quark matter has a maximum, which indicates a bound on
the maximum mass of the quark star. The central density of the neutron star and the angle between the rotation
axis and the magnetic axis (defined as the tilt angle) are seen to be significant in determining the magnetic field,
and the tilt of the quark star. The magnetic field and the tilt of the quark star can have important observational
significance and can help in understanding the physics at high density and strong magnetic field.
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I. INTRODUCTION

Shock fronts are generally depicted by a discontinuous
change in the characteristics of the medium propagating faster
than the speed of sound in that medium. In most plasmas,
the width of the shock front is very thin, and it is usually
considered to be a one-dimensional plane of discontinuity [1].
Taub [2] was the first to study the relativistic hydrodynamic
shocks. He used the mass, momentum, and energy conser-
vation laws to derive the relativistic Rankine-Hugoniot (RH)
conditions. De Hoffmann and Teller [3] first performed the
theoretical treatment of hydrodynamic shocks in the presence
of a magnetic field, which was immediately followed by an
avalanche of theoretical studies [1,4]. However, the relativistic
treatment of magnetized hydrodynamic shocks was first done
by Lichnerowicz [5,6]. Other important works in this field
were successively carried out by Appl and Camezind [7],
Majorana and Anile [8], and Ballard and Heavens [9] to name
a few.

The interaction between hydrodynamic motion and mag-
netic field in conducting plasmas are essential in the area of as-
trophysics, high-energy collision, and geophysics. Two indi-
vidual cases of magnetohydrodynamic frequented in physics
are; the hydrodynamic shock and the electromagnetic wave.
As the electromagnetic waves travel at the speed of light,
we need to treat the problem relativistically. De Hoffmann
and Teller [3] did the same while treating the conducting
fluid to be having infinite conductivity. It was achieved by
transforming the shock to a frame where the flow velocity
is parallel to the magnetic field. This assumption prevents
the self-induction of the magnetic field if the fluid is at rest.
The infinite conducting fluid assumption is well suited for
astrophysical scenarios as the discontinuity interface of the
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shock is quite small compared to the total radial distance of
the star.

The standard technique of writing the jump conditions
is to set the divergence of the stress-energy tensor to be
zero and use the Gauss’s theorem to get the jump conditions
across the shock front. The conditions give the general mass,
momentum, and energy continuity equations across the front.
The three nonmagnetized hydrodynamic equations can be
expressed as a single equation known as the Taub adiabat
(TA) equation [2,10]. The equation connects the thermody-
namic variables of one side of the front with variables on the
other side and is deprived of any velocity term. A consistent
covariant calculation including the timelike shocks (shocks
with a timelike normal vector) was first derived by Csernai
[11]. The covariant description also accounts for the shock
process including combustion and detonation and their energy
release in both spacelike and timelike shocks. In the heavy-ion
collision, the hadronization of quark matter can be seen as
an example of timelike transition, which has been verified
experimentally [12–17].

The astrophysical problem, which frequently deals with
hydrodynamic equations, is the phase transition (PT) from a
neutron star (NS) to a quark star (QS). It was conjectured that
at the center of NSs where supranuclear densities are believed
to be present, ordinary hadronic matter (HM) is not the stable
state of matter [18–20]. At such densities HM is vulnerable to
quark matter (QM) (quark being their constituent particles).
Therefore, it is likely that a PT occurs taking the strongly
interacting confined phase (HM) to a deconfined phase (QM).
If the QM prevails over a substantial region at the core of
an NS, it is referred to as a hybrid star, and if the entire star
consists of deconfined quarks, it is known as a strange star.

Such PT or conversion in NS is likely to liberate a sig-
nificant amount of gravitational energy, which can power
γ -ray bursts [21,22] and can have gravitational wave signals
[23,24]. The initiation of this PT can be due to a variety of
reasons: starting from cosmological quark nugget [25], mass
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accretion [25] to pulsar glitches [26]. The process of PT is
also widely debated in literature: whether it is detonation or
deflagration. One of the most usual ways of studying the PT
is by employing the hydrodynamic equations. Cho et al. [27]
were probably the first ones to use the hydrodynamic jump
conditions to argue that weak detonation is a possible mode
of combustion. However, Tokareva et al. [28] and Lugones
et al. [29] argued that the possible mode of combustion could
even be fast detonation. Bhattacharyya et al. [30,31] proposed
that it can be a detonation or a deflagration depending on
the density, whereas Drago et al. [32] demonstrated that it is
always a deflagration if the process is exothermic. A detailed
discussion on such a scenario can be found in a recent paper
by Furusawa et al. [33].

Most of the studies discussed above employ the relativistic
and nonrelativistic RH equations, however, the TA equation
is not much studied. The magnetized counterpart of the TA is
still to be derived and analyzed. The combustion adiabat (CA)
equations are similar to the TA equations only the equation of
state (EoS) of, the initial and the final state of matter differs
due to the difference of chemical energy. The CA equation is
therefore well suited to study the PT where the initial state
represents the HM, and the final state represents the QM. In
this paper, we calculate the magnetized version of the CA
equation and employ them to study the astrophysical scenario
of PT. The usefulness of this equation lies in the fact that
they do not involve matter velocities and only deals with the
thermodynamic variables of state such as pressure, density,
and energy.

The paper is arranged as follows. In Sec. II, we define
our problem and the special frame in which we would solve
our problem. In Sec. III, we calculate the magnetized TA
equations from the conservation equations. Section IV is
dedicated to our results, and finally, in Sec. V we summarize
our work and draw our conclusions from them.

II. HOFFMANN-TELLER FRAME

For relativistic shocks, the shock jump conditions in the
presence of a magnetic field are considerably difficult to solve.
The problem becomes more traceable if we write the Rankine-
Hugoniot conditions in the de Hoffmann-Teller (HT) frame
[3] as done by Ballard and Heavens [9], Kirk and Heavens
[34], and Summerlin and Baring [35]. The HT frame is a
shock rest frame in which �v × �B = 0. This frame can be
obtained starting from a local fluid frame by boosting along
B [9] or by two successive boosts [35]. We describe both the
local fluid frame and HT frame in detail here.

In our actual problem, we have a spherical symmetric neu-
tron star having a poloidal magnetic field, undergoes a phase
transition from hadronic matter to quark matter. The shock
position at the instant of time is shown in Fig. 1 (blue dot-
dashed circle). In this problem, we are assuming a spacelike
shock propagating through the medium of NS and converting
NS to QS. Let us first assume that the magnetic field is zero
in the star. In the local fluid frame, the matter velocities are
normal to the shock surface, as shown in Fig. 2(a). Due to the
spherical symmetry of our problem, the local fluid frame is
also the normal incidence frame (NIF). The quantities in the

radially outward
Shock Wave 

r

θ

Angle  between magnetic field
direction and direction of shock

t

φ

’
1

P

t~

FIG. 1. The evolution of the shock in a magnetized (poloidal
field) static star is demonstrated. As the shock grows it moves
towards the surface. The shock normal (thin black line) and the
magnetic field (red dash curve) are not aligned. The angle between
them varies between 0–π/2 depending on the position of the star.
The θ ′

1 is therefore can vary between 0–π/2. Here t and t̃ represent
the shock front at different instant of time. r is position of shock at
time t at a point P and φ is latitude of P.

local fluid NIF frame is represented by primed superscript,
whereas the HT frame quantities remain unprimed. For each
r and φ, we can always represent our system by Fig. 2(a)
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FIG. 2. (a) Illustration of normal shock wave without magnetic
field. At x = 0 there is shock discontinuity. v1 and the v2 are the
flow velocities of the upstream and downstream matter, respectively.
(b) Shock normal, matter velocities, and the direction of the magnetic
field in NIF. Here θ ′

1 is the angle between the direction of matter flow
and the magnetic field B′

1 in the upstream matter. The same notations
have been followed for the downstream matter.
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because our system is spherically symmetric. Now, we go
to our actual problem where the star has a poloidal mag-
netic field. However, the shape of the star is still spherically
symmetric. The field is such that it does not produce enough
distortion, and the shape of the star remains spherical. For
each value of r and φ we have different incident angle θ ′

1 and
magnetic filed B′

1, as shown in Fig. 2(b). Here, θ ′
1 is angle

between B′
1 and upstream matter velocity. The value of θ ′

1 can
vary between 0 to π

2 depending on the position of the shock.
In the local fluid frame, the upstream matter flows normal

to the shock front, but magnetic field makes an angle θ ′
1, it is

called normal incident frame (NIF) [9,34]. The PT is brought
by a detonation front propagating from the center to surface
of the star. In Fig. 1, we show the PT in a star. The magnetic
field lines are shown by the dashed red line in Fig. 1. The
combustion front at the time instant t and a later time t̃ are
shown. Point P describes the position of combustion front
in the star at a time instant t where front normal makes an
angle θ ′

1 with the magnetic field. As discussed earlier to make
the problem solvable, we now move to the HT frame where
�v × �B = 0 is zero. To get such a frame we will give a Lorentz
boost in the y direction (vb = v′

1 tan θ ′
1), where vb is the boost

velocity and v′
1 = v′

1x is the upstream velocity in the NIF. Such
a transformation is restricted by the condition v′

1 tan θ ′
1 < 1,

the condition for subluminal shock [34]. As we would solve
our problem in this frame, we represent the variables are
unprimed in this frame. In de-HT frame we get,

�v × �B = 0 ⇒ B1x

B1y
= v1x

v1y
,

and we also assume infinite conductivity, which makes the
electric field vanish [9,34,35]. Also, the surface current, which
appears on the surface between the two phases, is not allowed.
The Maxwell condition gives

�∇ · �B = 0 ⇒ B1x = B2x.

The assumptions of infinite conductivity, no surface cur-
rent, and the alignment of flow velocities and magnetic fields
in both upstream and downstream phases result in a particular
frame, the HT frame. However, in the HT frame, only sublu-
minal shock can be treated; therefore, we restrict our problem
only to spacelike shocks. In this frame TL shock cannot
be treated as the assumption does not hold in TL shocks.
However, in general, inside a spherically nonrotating star TL
combustion can take place. However, the problem needs more
general treatment and is much involved. Therefore, to simplify
our calculation, we solve this problem in a particular HT
frame.

In Fig. 3, we show the space-time diagram of the SL shock.
In this figure, we plot the space-time diagram of the PT from
NM to QM in NS. The combustion front starts at a point
near the center of the star and is determined by the Einstein
equation, EoS, and some initial discontinuity. The velocity
of the collapsing matter is always subluminal, and therefore
the shock or the combustion is always SL. The x, y plane
is the spatial plane, and the vertical axis is the time t . The
configuration of combustion of NM to QM is shown at time

Y
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Field

Space−like

QM

Collapse

HM

FIG. 3. The space-time diagram of the combustion of NM to QM
is illustrated in the figure. Horizontal line is the spatial dimension and
the vertical line is the world time t . The configuration of combustion
of NM to QM is shown at time t . The star is assumed to be spherically
symmetric, and the magnetic field is at an angle to the x axis. The
violet (black unbroken) line indicates the surface of the shock a the
red (dashed) line indicates the combustion front where the transition
of NM to QM happens.

t . The star is assumed to be spherically symmetric, and the
magnetic field is at an angle to the x axis.

In our calculation we have used a phenomenological mag-
netic field profile recently formulated by Dexheimer et al.
[36] where it is described as a function of baryon chemical
potential. The magnetic field profile is given by

B∗(μ) = a + bμ + cμ2

B2
c

μM , (1)

with coefficients a = −0.3, b = 7.0 × 10−3, and c = −1.0 ×
10−7. μ is given in MeV and μM the dipole magnetic moment
in Am2. The magnetic field is obtained in units of the critical
field for the electron, Bc = 4.414 × 1013 G.

In Fig. 1, we show the magnetic profile of the star. The
actual magnetic field profile can be obtained by solving the
full relativistic Einstein-Maxwell equations. However, the cal-
culation is very complicated, and to simplify our task; we use
the magnetic field profile recently formulated by Dexheimer
et al. [36]. The contribution of the energy-momentum tensor
from matter always dominates over the magnetic contribution
in a stable star. If the magnetic field strength is less than 1017 G
near the center of the star, the effect due to the magnetic field
becomes negligible. To have a sizable effect, the magnetic
field strength has to be in the range 1017–1018G at the interior
of the star. In the star, the magnetic field is poloidal along
the polar direction, as shown in the figure. In the static star,
the shock propagates spherically out of the star. Therefore, the
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angle between the shock normal and the magnetic field can
vary between 0–π/2 depending on the shock position (for a
particular radial point) with respect to the poloidal field. With
the given choice, the maximum magnetic field strength for
our calculation (corresponding to the density n = 1.5 fm−3) is
1.5 × 1018G and the minimum (corresponding to the density
n = 0.1 fm−3) is 4.5 × 1017G, which is near the surface of the
star.

As shown by Dexheimer et al., this field is consistent
with the relativistic Einstein-Maxwell equations. It replicates
the magnetic field of the star successfully as obtained from
solving the full relativistic EM equations. θ1 determines the
contribution of the Bx and B1y in the total magnetic field

(B =
√

B2
x + B2

1y) for a particular density. As seen from the

Fig. 1, θ1 can vary between 0–π/2, therefore in our calculation
we have taken three values of θ1. The Bx is kept constant
while B1y varies with change in θ1. When Bx > B1y the angle
is small, while when Bx � B1y then the angle is close to 45◦
and when Bx < B1y the angle exceeds 45◦.

We should mention here that the magnetic field can even
modify the EoS of the matter. The dependence of the mag-
netic field on the EoS is evident and telling for a heavy-ion
collision, which has been verified by the observation of λ

polarization in peripheral collision [37]. The effect of the
magnetic field through EoS in gross structure of the NS and
its macroscopic properties is not very significant if the field
strength is of the order of few times 1018 G. It has some effect
on the microscopic details, however, to keep our calculation
simple, we do not include the magnetic effect on the EoS.
This also helps to analyze only the effect of the magnetic field
coming from the CA equation.

III. MAGNETIZED TA

We start with a consistent covariant calculation [11,12] to
find the equation of the TA in the presence of a magnetic field.
Let the discontinuity surface � have a normal vector �α . So
the normalization condition of this vector given by

�α�α =
{+1 for timelike
−1 for spacelike. (2)

In the local frame we are taking �α = (1, 0, 0, 0) for timelike
and �α = (0, 1, 0, 0) for spacelike discontinuity. The energy
momentum (EM) tensor of this system is given by [38],

T αν = ωuαuν − pgαν + T αν
B , (3)

where, w is the enthalpy (w = ε + p), uα = (γ , γ v) is the
normalized four-velocity of the fluid and γ is the Lorentz fac-
tor. gαν is metric tensor having sign convention (+,−,−,−);
and T αν

B is magnetic part of EM tensor, which is given by [39],

T αν
B = 1

4π

(
FαλF ν

λ + 1

4
gανFλσ Fλσ

)
, (4)

where Fλσ is covariant electromagnetic tensor, which is de-
fined as [39]

Fλσ = ∂λAσ − ∂σ Aλ, (5)

where Aλ = (φ, �A) is the four-potential (φ scalar potential, �A
vector potential). In this paper, we use greek indices to denote
space-time coordinate (t, x, y, z).

We define a notation [...] for some quantity C across the
discontinuity surface, such as

[C] = C1 − C2,

where subscripts 1 and 2 are used for upstream and down-
stream matter, respectively. Across the discontinuity surface,
the energy, momentum, and number density will remain con-
served [11]. The conservation of number density �α is given
by

[ j] = [nα�α] = 0, (6)

where nα = nuα is the four-current density. The conservation
of energy-momentum tensor can be written as

[T μν�ν] = 0. (7)

The energy-momentum conservation along the direction of
vector �α (normal to the surface of discontinuity �), then
becomes

[T αν�α�ν] = 0. (8)

Using Eq. (3) in above equation we get,

⇒ [ω(uα�α )2] − [p]�α�α + [
T αν

B �α�ν

] = 0. (9)

Therefore, the square of the current density can be written as

j2 = [p]�α�α − [
T αν

B �α�ν

]
[

ω
n2

] , (10)

where T αν
B is the magnetic part of energy momentum tensor

given in Eq. (4).
Now we define a vector Gα normal to �α as (projection of

T μν�ν along the surface �)

Gα = Tτσ�σ Pατ , (11)

where

Pαν = gαν − �α�ν

�β�β
.

Using the Eq. (3) and the definition of Pαν we get,

Gα = ω(uν�
ν )uα − ω(uν�

ν )2�α

�β�β

+ TBλν�
νgαλ − TBλν�

λ�ν�α

�β�β
. (12)

The conservation of energy-momentum tensor normal to the
�α is given by

Gα
1 = Gα

2 ⇒ [Gα] = 0, (13)

which take the form,

[ω(uν�
ν )uα] − [ω(uν�

ν )2�α]

�β�β
+ [TBλν�

νgαλ]

− [TBλν�
λ�ν�α]

�β�β
= 0. (14)
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FIG. 4. The shock normal, the matter velocities, and the direction
of the magnetic field are shown in the (a) NIF and (b) HT frame. In
HT frame the matter velocities and the magnetic field are parallel.
The shock is propagating from right to left converting phase 1 to
phase 2. θ1 is the angle that the shock normal makes with the
magnetic field (also the same angle with matter velocity) for the
upstream phase. θ2 is the angle subtended in the downstream phase.

Having written down the basic formalism in the covari-
ant form, we now go to a particular frame known as the
Hoffmann-Teller (HT) frame [3]. We do not present a general
solution to the problem, and we show our results for this
particular HT frame. In this frame, the magnetic field and the
matter velocities are aligned [3,9,34]. We also assume that
the fluid is infinitely conducting, which makes the electric
field disappear [3,9]. Also, the surface current, which appears
on the surface between the two phases, is not allowed. In
Fig. 4, we present the detailed diagram of the shock plane,
the velocity, and the magnetic field direction. The continuity
equations across the front for a magnetized shock is calculated
in detail by Mallick and Schramm [38] and Mallick and Singh
[40], and we mention only the details here.

We assume that x direction is normal to the shock plane.
The magnetic field is constant and lies in the x-y plane.
Therefore the velocities and the magnetic fields are given by
vx and vy and by Bx and By, respectively. The pressure and
energy density are denoted by p and ε, whereas the baryon
density is denoted as n. The angle between the magnetic
field and the shock normal in the HT frame is denoted by
θ (θ1 being the incidence angle and θ2 the reflected angle).
We assume that the PT happens as a single discontinuity
separating the two phases. Therefore we denote 1 as the initial
state ahead of the shock (HM or upstream) and 2 as the final
state behind the shock (QM or downstream). The shock is
propagating from right to left.

The Maxwell equation of no magnetic monopoles(in the
covariant form) is given by [39]

∂α

(
1
2εαβγ δFγ δ

) = 0, (15)

where εαβγ δ is Levi-Civita tensor. In the HT frame the equa-
tion becomes B1x = B2x = Bx, where Bx is the magnetic field
in the x direction, which is same in both the phases. B1y and
B2y are magnetic fields in the y direction in phases 1 and 2,
respectively. Since our frame is tilted slightly from the y axis,
the magnetic field in y direction is not same in two phases.

For the HT frame we have

v1y

v1x
= B1y

Bx
≡ tan θ1, (16)

v2y

v2x
= B2y

Bx
≡ tan θ2. (17)

Therefore, we can write the y component of velocity in
terms of x component as

v1y = B1y

Bx
v1x. (18)

In the HT frame we can also write the components of energy
momentum tensor for electromagnetic field

T 00
B = B2

x + B2
y

8π
, (19)

T ik
B = B2

x + B2
y

8π
δik − BiBk

4π
, (20)

where Bi (or Bk ) is ith (or kth) component of magnetic field
vector [i and k denote the spacial (x, y) component of the
vector]; and Bx and By magnetic field components in x and
y direction, respectively.

The four-velocity is defined as

u1i = v1iγ1 ⇒ u1x = v1xγ1 and u1y = v1yγ1.

The mass flux j in the x direction [from Eq. (6)] is defined as

n1u1x = n2u2x = j. (21)

The four-velocity in then defined as

u1x = j

n1
= jV1 and u2x = j

n2
= jV2, (22)

where Va’s are the specific volumes (a can represent either one
of the phases 1 or 2).

SL discontinuity in HT frame

As the HT frame is only suitable for describing the SL
discontinuity, we only analyze the SL shock. The conservation
of number density [from Eq. (6)] with �α = (0, 1, 0, 0)) can
be written as

n1γ1v1x = n2γ2v2x. (23)

Implementing Eq. (2) for the spacelike discontinuity, Eq. (9)
reduces to

[
ωγ 2v2

x

] + [p] +
[
B2

y

]
8π

= 0. (24)

The temporal component of Eq. (14) (for spacelike shocks)
can be written as

[ωγ 2vx] = 0, (25)

and the spacial component as

[ωγ 2vxvy] − Bx[By]

4π
= 0. (26)

Using Eq. (18), Eq. (26) can be rewritten as

(B1yμ1 j2V1 − B2yμ2 j2V2) = B2
x

4π
(B1y − B2y), (27)
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which can be further simplified to give

B2y = B1y
μ1V1 j2 − B2

x
4π

μ2V2 j2 − B2
x

4π

(28)

and we can find j2,

j2 = B2
x (B1y − B2y)

4π (B1yμ1V1 − B2yμ2V2)
. (29)

Using the definitions from Eq. (22), Eq. (25) can be rede-
fined as

ω1u1xγ1 = ω2u2xγ2

⇒ ω1 jV1γ1 = ω2 jV2γ2

⇒ ω1V1γ1 = ω2V2γ2,

which ultimately reduces to

μ1γ1 = μ2γ2. (30)

With the definition of modified pressure p̄a = pa + B2
ay

8π
,

where a can take values 1 and 2 for upstream and the down-
stream matter, respectively, Eq. (24) reduces to

[ωV 2] j2 + [ p̄] = 0 (31)

and the square of the mass flux j2 becomes

⇒ j2 = − [ p̄]

[μV ]
. (32)

Using the above definition of j2 in Eq. (28) we can solve for
B2y.

Multiplying Eq. (32) by (μ1V1 + μ2V2), and with the def-

inition of j2 = u2
2x

V 2
2

= u2
1x

V 2
1

and performing a little algebra, we
have the relation

μ2
2u2

2x − μ2
1u2

1x = ( p̄1 − p̄2)(μ1V1 + μ2V2). (33)

Squaring Eq. (30) and then subtracting Eq. (33) from it, we
have

μ2
2

(
u2

2x − γ 2
2

) − μ2
1

(
u2

1x − γ 2
1

) = ( p̄1 − p̄2)(μ1V1 + μ2V2).
(34)

With the definition of u1x and γ , and adding and subtracting
v2

1y

1−v2
1x−v2

1y
, we have u2

1x − γ 2
1 = −1 − u2

1y. The above equation

can also be written in terms of magnetic fields

u2
1x − γ 2

1 = −1 − B2
1y

B2
x

j2V 2
1 . (35)

Using Eq. (29) and Eq. (35), we can write

u2
1x − γ 2

1 = −1 − B2
1yV

2
1 (B1y − B2y)

4π (B1yμ1V1 − B2yμ2V2)
. (36)

Similarly we can write

u2
2x − γ 2

2 = −1 − B2
2yV

2
2 (B1y − B2y)

4π (B1yμ1V1 − B2yμ2V2)
. (37)

Inserting Eq. (36) and Eq. (37) in Eq. (34) and defining,

μ̄2
a = μ2

a

[
1 + B2

ayV
2

a (B1y − B2y)

4π (B1yμ1V1 − B2yμ2V2)

]

μ̄2
2 − μ̄2

1 = ( p̄2 − p̄1)(μ1V1 + μ2V2) . (38)

Defining Va = 1
na

and Xa = ωa
n2

a
, then the above equation can

be rewritten as

ω2X̄2 − ω1X̄1 = ( p̄2 − p̄1)(X2 + X1) , (39)

where X̄a = Xa[1 + Y
B2

ay

n2
a

] and Y is defined as Y =
B1y−B2y

4π (B1yX1−B2yX2 ) . Here a can take values 1 and 2 for upstream
and the downstream matter, respectively.

The above equation is the magnetized Taub adiabat (MTA)
equation. The equation is independent of velocity, and only
the thermodynamic variables and magnetic field components
are present. In the limit B1y = B2y = 0 or even for equal
magnetic field B1y = B2y 
= 0 this reduces to

μ2
2 − μ2

1 = (p2 − p1)(μ1V1 + μ2V2), (40)

the general TA.
The upstream and downstream variables can be used to

calculate the matter velocities of both the region. With the
notation of m, l, k1, k2, d1, d2, and s as

l =
(

1 + B2
1y

B2
x

)
,

m =
(

1 + B2
2y

B2
x

)
.

s =
√

ω2
1 + ω2

2 − 2ω1{ω2 + 2m( p̄1 − p̄2)} + 4ω2l ( p̄1 − p̄2) + 4ml ( p̄1 − p̄2)2

k1 = ω2
1 + 2l{ω2 + m( p̄1 − p̄2)}( p̄1 − p̄2) − ω1ω2 − 2mω1( p̄1 − p̄2)

d1 = 2[ω1m − l{ω2 + m( p̄1 − p̄2)}][ω1 + l ( p̄2 − p̄1)]

k2 = ω2
2 − 2m( p̄1 − p̄2){ω1 + l (−p̄1 + p̄2)} − ω2{ω1 + 2l (−p̄1 + p̄2)}

d2 = 2[−ω1m + l{ω2 + m( p̄1 − p̄2)}][ω2 + m( p̄1 − p̄2)]
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MAGNETIZED TAUB ADIABAT AND THE PT … PHYSICAL REVIEW C 100, 015801 (2019)

the RH equations can be solved for the matter velocities in
terms of the thermodynamic variables and magnetic fields.
The velocities can be simply written as

v2
1 = k1 ± sω1

d1
; (41)

v2
2 = k2 ± sω2

d2
. (42)

In the absence of magnetic field m = l = 1 and s reduced
to

√
e1 − e2 − p1 + p2. The two roots of the velocities (v2

1 and
v2

2) in Eqs. (41) and (42) become the same and reduced to the
following form:

v2
1 = (e2 + p1)(p1 − p2)

(e1 − e2)(e1 + p2)
, (43)

v2
2 = (e1 + p2)(p1 − p2)

(e1 − e2)(e2 + p1)
, (44)

which is same as the velocity of the matter phases in the
absence of magnetic field. The two solutions (roots) for the
velocities are not surprising if we look into the RH equations
carefully. The equations are quadratic equations in the veloc-
ities (having v2

a and va term explicitly and also in the γa’s).
Therefore, it is expected that the velocities should have two
roots as obtained in this case. However, in the nonmagnetic
case, the two roots become equal.

IV. RESULTS

Our results are obtained in the HT frame, and the figures
are also drawn in the HT (unprimed) frame. Going from the
HT frame to the local frame of the fluid is trivial as the
physical variables p, n does not change but the velocity and
the angle would change by a constant factor [9,23,34].

As discussed in the earlier section, to solve the MTA
equation, we need to know the EoS of both the upstream and
downstream phases a priori. For the astrophysical calculation
related to the PT of NS, we assume that the hadronic phase
as the upstream phase and quark as the downstream phase.
For the hadronic phase, we adopt a relativistic mean-field
approach, which is generally used to describe the HM in
NSs. In our present calculation, we mostly use PLZ parameter
setting [41]; however, for comparisons, we also use NL3
parameter setting [42]. The details of the EoS can be found
in many references [24,40,41], and we do not discuss them in
detail here.

The QM is described using MIT bag model [43] along with
the quark interaction term. The grand potential of the model
is given by

�Q =
∑

i

�i + μ4

108π2
(1 − a4) + Bg, (45)

where i stands for quarks and leptons, �i signifies the poten-
tial for species i and Bg is the bag constant with a4 being
the quark interaction parameter, varied between 1 (no inter-
action) and 0 (full interaction). The second term represents
the interaction among quarks. We choose the values of B1/4

g =
140 MeV and a4 = 0.55.

1000 2000 3000 4000 5000
X [MeV fm3]

0

100

200

300

400

p 
[M

eV
/ f

m
3 ]

NL3
QN
PLZ
QP
shk
com
com-max

FIG. 5. The TA (p vs. X ) curves for HM (NL3 (thick black dotted
rightmost curve) and the PLZ (green (light gray marked with plus
marks) curve extending to the top) with their corresponding burn
state with QN and QP marked by the square red (dark gray thick
short) curve and cross blue (thin black short curve overlying the
red curve) curve are drawn. The QP curve extends much beyond the
corresponding QN curve. The upstream point lies on the black/green
curve whereas the downstream points lie on the red/blue. The
Rayleigh lines (RL) are the straight lines. The RL connecting two
points in the same hadronic (PLZ) curve is marked as shk [light blue
(gray) line]. This represents a shock or TA. The RL connecting two
points of the different curve represent the CA (marked as com and
com-max). The com-max [dash-dot brown (almost black) line] is the
RL connecting the maximum point of the downstream adiabat with
its corresponding point on the upstream curve.

In this calculation we consider a combustion front gener-
ated at the center of the star and spreading radially outward in
a spherically symmetric star. The combustion front converts
HM in the star to QM. Ideally, both spacelike and timelike
transition can occur; however, in this calculation, we are
only concentrating on the SL transition. We are solving our
problem in a particular frame known as the HT frame. In
this frame, the magnetic field has a considerable effect on the
SL transition; however, the TL transition does not have any
magnetic effect. Therefore, we are analyzing the SL CA and
its implication in the astrophysical scenario of a neutron star.

For the case of MTA, both the initial and final state belongs
to the same EoS (same functions of pressure, energy density,
and density) hence lying on a single curve. However, the form
of the equation still holds if the initial and final states are
from different EoS. As the EoSs of the initial and final state
are different the final-state curve shifts from the initial-state
curve due to the difference of the chemical energy, there is
combustion from the initial state to the final state. The equa-
tions [Eqs. (39) and (28)] connecting the initial and final state
having different EoS are called the magnetized combustion
adiabat (MCA) equations. The curves are called MCA.

The downstream quantities (denoted by subscript 2) are
calculated from the known upstream quantities (subscript
1). For a given EoS of HM, we plot a curve in the X, p
plane indicated by NL3/PLZ in Fig. 5. The magnetic field
at that density is obtained from Eq. (1). Using these as the
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FIG. 6. p as a function of n for HM [NL3 (thick black curve
marked with circular dots extending upwards] and the PLZ [green
(thin light gray marked with plus) curve] and their corresponding
downstream QM (QN and QP marked by the square red (dark gray
thick short) curve and cross blue (thin black curve lying just above
the red curve) are illustrated in the figure. The burnt pressure cuts
their corresponding HM pressure curves at higher n values.

input values for the MCA equations [Eqs. (39) and (28)], we
calculate the corresponding QM pressure and magnetic field.
From the EoS of QM, the corresponding density and enthalpy
are also obtained. Therefore, for a given initial state of the
HM, the final burned downstream state will lie on a different
curve corresponding to the QM, indicating a burning or in our
case a PT.

The MCA equations are solved for the downstream quanti-
ties treating the upstream quantities as an input. Starting from
a point (X1, p1) (Fig. 5) in the HM curve if we encounter some
point (X ∗

1 , p∗
1) in the same curve, we have a shock denoted by

“shk” in Fig. 5 (shown only for PLZ EoS). However, with the
same starting point, if we reach a point (X2, p2) having differ-
ent EoS (in this case QP), we will either have a detonation or a
deflagration. Gradually changing the input values (X1, p1) we
generate the upstream curve. Using the points of this curve as
input and solving the two equations [Eqs. (28) and (39)] for
the QM EoS we generate the downstream curve (X2, p2).

In Fig. 6, we show the pressure of the upstream region
and the downstream region as a function of baryon density
(n = n1). The HM pressure rises monotonically. However,
the downstream or QM pressure initially increases and then
comes down. It crosses the HM curve at a larger density than
two-time nuclear density. We have shown our results for two
HM EoSs. This figure is conjugate to Fig. 5. As we proceed
upward along the upstream curve (Fig. 5) treating its points
as an input to the CA equation, we see that the downstream
curve also moves upward. However, after a certain point,
although the upstream curve rises, the downstream trajectory
does not grow but retraces its path. Hence, there is a maximum
point for the downstream pressure. This maximum point of
the downstream path coincides with the maximum of the
pressure in Fig. 6. The maximum of the pressure is related
to the maximum mass of QS and is discussed in great detail in

0 0.4 0.8 1.2 1.6
n [fm-3]

0

150

300

450

600

p 
[M

eV
/fm

3 ]

PLZ
Q, θ1 = 18.40

Q, θ1 = 44.20

Q, θ1 = 73.30

FIG. 7. p as a function of n for PLZ parameter and the burnt
pressure of the QM are drawn. The PLZ curve is the thick black
curve extending upward. The burnt curves are drawn for three θ1

values. The curve for 18.4◦ [thick red (dark gray) curve] and 73.3◦

[thin blue (almost black) curve] overlaps with each other. The curve
with θ1 = 44.2◦ [green (light gray) curve] lies just below these curves
initially. The crossing point of the hadronic pressure and quark
pressure is the same for all three θ1 values.

our recent paper [44]. We do not address them further in the
present paper.

The x component of the magnetic field does not change
in the HT frame, and the only change is in the y component.
The variation of the magnetic field along the star is poloidal
in nature as described in Eq. (1). With the given configuration,
the magnetic field strength at n = 1.5 fm−3) is 1.5 × 1018 G
while at the lowest density it is 4.5 × 1017 G. This variation
of Bx is constant, however, B1y can change with a change in
θ1 [according to Eq. (16)]. When Bx > B1y the angle is small,
while when Bx � B1y then the angle is close to 45◦ and when
Bx < B1y the angle exceeds 45◦.

In Fig. 7 we plot the pressure as a function of density for
three different θ1 values. For the two extreme cases, (θ1 
=
44.2◦) the nature of the pressure curves are quite similar.
However, for θ1 = 44.2◦, the downstream pressure is always
less than the other two, though the crossing of the hadronic
and quark pressures coincides. Beyond that, all the curves
almost overlap. We plot the CA curves in Fig. 8. The retracing
of the quark trajectory can still be seen in all the curves,
however, for the curve with θ1 = 44.2◦ it occurs from a lesser
pressure value.

A change in the upstream angle imparts a change in the
downstream angle as illustrated in Fig. 9. For small θ1, the
downstream θ2 first rises with an increase in density and
reaches a maximum angle of 21◦ and then decreases gradu-
ally with density finally coinciding with θ1. At further large
densities θ2 becomes slightly smaller than θ1. For θ1 = 44.2◦
the initial rise in θ2 is much sharper and attains a maximum
value of 49◦ after which it gradually decreases. The nature
of the curve is similar to that of the previous case. However,
for large angles, θ2 is almost equal to θ1 and both the curves
overlap.
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FIG. 8. The CA (p vs. X ) curves for PLZ parameter (thick black
curve extending to the top) and the burnt pressure of the QM is
drawn. The curves are drawn for three angular values between the
shock front and matter velocity. All the burnt curves overlap with
each other. The burnt curve for θ1 = 44.2◦ [green (light gray) shortest
curve] retraces from lower point than the other two curves. Here
curve for θ1 = 73.3◦ is plotted before θ1 = 44.2◦ curve to emphasize
that the latter curve maximum pressure value is lower than former
curve.

The nature of θ1 and θ2 is very important in determining
B2y. In Fig. 10 we plot the ratio of B2y to B1y against baryon
number density. For the case θ1 = 18.4◦, at low densities
B2y is greater than B1y and the ratio B2y/B1y increases with
density, reaching a maximum at around n = 0.3 fm−3. The
ratio becomes 1 at n = 0.64 fm−3 and continues to be so for
some density range. Beyond n = 0.73 fm−3, B2y then becomes
smaller than B1y. For θ1 = 44.2◦, at low densities B2y is much
larger than B1y and increases further with density. The nature

0 0.4 0.8 1.2 1.6
n [fm-3]

0

20

40

60

80

θ 
[d

eg
]

θ1 = 18.40

θ2

θ1 = 44.20

θ2

θ1 = 73.30

θ2

FIG. 9. The angle between downstream velocity and the shock
perpendicular is shown for three different input angles (θ1). The input
angle for a particular analysis is constant [three straight lines, lower
black, middle green (gray) and the top light blue (gray)] whereas
the output angle θ2 [nonlinear curves, lower red (dark gray), middle
blue (almost black) and the top brown (dark gray) curves] varies with
density.
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θ1 = 18.40
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FIG. 10. The ratio of B2y/B1y as a function of n is shown. The
ratio is shown for three input θ1 values, where value 1 of the y axis
indicates B2y = B1y.

of the curve is similar to that of θ1 = 18.4◦ only differing
quantitatively. For θ1 = 73.3◦, the nature is quite different and
B2y is almost equal to B1y throughout the density range. The
change in the y component of the magnetic field is responsible
for the change in the total magnetic field of the QS concerning
that of the magnetic field of an NS. The total magnetic field is
given by

Ba =
√

B2
x + B2

ay. (46)

Solving the conservation conditions, we can find the matter
velocities of the upstream and downstream region in terms of
the thermodynamic variables and the magnetic field as derived
in Eqs. (41) and (42). In Fig. 11 we have plotted the velocity
as a function of density. Here both the roots of Eqs. (41) and
(42) contribute to the matter velocities. For the first case, (θ1 =
18.4◦) both v1 and v2 initially increase with density, but v1 is
always greater than v2. v1 rises much faster and reaches a peak
at n = 0.24 fm−3 beyond which it decreases becoming zero at
n = 0.74 fm−3. v2 also increases with density (not as steeply
as v1) and then becomes flatter beyond n = 0.25 fm−3. The
plateau region continues until n = 0.64 fm−3 beyond which
it falls steeply to zero. The velocities now become either zero
or are unphysical. At much higher densities v1 and v2 again
becomes finite. However, at such high densities, initially, the
velocity is close to 1 and decreases with an increase in density.
In this regime, v2 is always greater than v1 implying a slow
combustion process. For θ = 44.2◦, both v1 and v2 are similar
to the previous curves, only differing quantitatively.

The nature of the curve for θ1 = 73.3◦ is quite different. At
low density v1 increases with density and reaches a maximum
at n � 0.15 fm−3, and then gradually decreasing to becomes
zero at n = 0.6 fm−3. Beyond n = 0.7 fm−3 v1 takes a con-
stant value of 0.29. The v2 curve is totally an inverse of the v1

curve. Initially it decreases with density from value 1 forming
a U-shaped curve between n = 0.14 fm−3 and n = 0.53 fm−3.
Beyond that it also assumes a constant value of 0.29. In this
case v2 is always greater than v1 implying a fast detonation.
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FIG. 11. The upstream (v1) and downstream (v2) velocities are
shown as a function of n. Both v1 and v2 first increase till a point,
then decrease and go to zero. v1 is always greater than v2, however,
they reach the maximum point and goes to zero at same n values.
The velocities attain large non zero values at much higher densities.
v1’s are marked with black dots, square green (light gray) dots and
diamond pink (lowest darkish gray) dots. v2’s are marked with cross
red (dark gray) marks, star blue (almost black) marks and plus violet
(dark gray) marks.

The results shown here are for the HT frame. However,
our local fluid frame is NIF. Therefore, it is reasonable to
recast our results in the NIF. However, in the thermodynamic
variables are not frame dependent [9,23,34]. Therefore there is
no change in those results. We only need to transform the ve-
locities, the angle, and the x component of the magnetic field
when going from HT to the NIF frame. The transformation
equation for the velocities are [34,35]

v′
1x = v1x�b (47)

v′
1y = 0 (48)

v′
2x = �b

v2x − v2
bv2x

1 − �bvbv2y
(49)

v′
2y = v′

2xv2y − v2xvb

v2x
, (50)

where the boost velocity becomes vb = v1y and �b = 1√
1−v2

b

.

The transformation of the incident and the reflected angle are
given by

tan θ ′
1 = tan θ1

�b
(51)

tan θ ′
2 = tan θ2

�b
. (52)

We see that although the angles are frame dependent, the
ratios of them are not. Finally, the transformation equation for
the magnetic field are given by

B′
ax = Bax�b (53)

B′
ay = Bay, (54)
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v2
v1, NIF
v2

FIG. 12. The upstream and downstream velocities are shown as
a function of density for both the HT and the NIF local fluid frame.
The HT frame curves are marked with black circular dots (v1) and
square red (gray) dots (v2). The NI frame curves are marked with
plus green (light gray) marks and cross blue (almost black) marks.
The results is shown for θ1 = 18.4◦.

where a can take values either 1 or 2. The y component of
the magnetic field does not suffer any change and only the x
component of the field changes, however, the ratios are still
invariant. Therefore, there is no change in Fig. 10. The final
HS magnetic field also does not change considerably.

In Fig. 12 we plot the velocities of the HT frame and NIF
frame for θ1 = 18.4◦. The change in the velocities are very
nominal, and also the form of the curve remains the same.
The change of the velocities for the other two different values
of theta is also similar. Finally in Fig. 13 we plot the upstream
and downstream angles in the HT and NIF frame. The change
in the incident angle is negligible, and we can safely assume
that the incident angle in our local fluid frame is also close to
θ1 = 18.4◦ and is almost constant. There is a minimal change
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FIG. 13. The incident upstream and the downstream angles are
shown as a function of n for both the HT and NIF frame. The
nomenclature of the curve remains similar as that of the previous
curve. The results is shown for θ1 = 18.4◦.
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in the downstream angle (by a maximum of half a degree) but
the nature of the curve remains the same. The nature of the
curve remains similar to the other two angles as well.

Therefore, we can safely assume that in a star, the incident
angle is the same for HT and NIF. Therefore, diagram 1 still
remains valid. Going from the HT to NIF the frame, which
is the local fluid frame, our conclusion does not change, and
there is negligible quantitative change while the qualitatively
our results remain the same. Although we have solved in the
particular HT frame, our results remain valid even for the
local fluid frame. For our spherically symmetric star, our local
fluid frame is also the NIF frame. Therefore, we only have to
give one boost to go to the HT frame and solve our problem.
However, in an axisymmetric star, the local fluid frame may
not be the NIF frame and we may need two boosts to go
to the HT frame. However, for our calculation in spherically
symmetric star, the initial NIF frame is entirely satisfactory.

V. SUMMARY AND CONCLUSION

In this paper, we have derived the MTA/MCA equation in
the HT frame, which was never realized before. The HT frame
applies only to the SL shocks, and in this frame, the problem
becomes relatively manageable. This equation is different
from the general conservation equations since the velocity
terms are absent. The matter velocities can be calculated from
the thermodynamic variables and magnetic fields.

QM CA shows a retracing nature even in magnetized
plasmas. The pressure curve obtained from solving the MCA
equations has a peak, which is evident from the retracing
nature of the CA of QM. The retracing nature of the CA and
the maximum value of pressure of QM indicates a mass bound
to the QSs assumed to be formed by first-order PT [44].

The angle between the matter velocities and the shock front
along with the density of the NS is critical in determining
the magnetic field of the burnt star and the downstream
shock velocity angle. This can have a significant observational
consequence as it could determine whether the PT to a QS
would result in a star, less or more magnetic than the initial
NS. The initial tilt angle (angle between the rotational axis
and the magnetic axis) is also the angle between the shock
front and matter velocity, assuming that the shock spreads
spherically in the star. The final tilt of the QS can be different
from the initial inclination of the NS. For instance, if an NS
of about 1.2–1.4 solar mass with small tilt angle suffers a PT
the magnetic field of the QS would be larger than the initial
NS. However, if the tilt angle is large, the QS has similar field
strength as that of the NS. The situation is different for a more
massive star, where a PT with a small tilt angle would result
in a QS whose magnetic field is less than the NS.

The burning mechanism of the star is dependent on the
magnetic field, the tilt angle, and the density of the NS. A star

of about 1.2–1.5 solar mass with a moderate tilt angle is likely
to undergo a detonation (v1 > v2); however, a massive star of
about 1.8–2 solar mass with a small tilt angle is expected to
experience a PT via a deflagration process. There are some
stars that are not prone to PT as the velocities become zero for
such PT. On the other hand, a small-sized star with high tilt
angle is likely to undergo a PT via deflagration mechanism.

The mass limit of the combusted star depends mostly on the
matter properties of the CA equation, whereas the magnetic
field and the tilt angle of the combusted star depend on
the magnetic field properties of the CA. The change in the
magnetic field and the tilt angle can have a significant effect
on the observation and detection of an NS or a QS. We should
mention that the results are obtained for the particular HT
frame where magnetic and flow velocities are parallel both
in the upstream and downstream. Also, the surface current
is not allowed to appear in the transition surface between
HM and QM. The HT restricts the problem to be solvable
only for the spacelike shock. However, in general, inside a
spherically symmetric nonrotating star, TL combustion can
take place. The magnetic field, in general, can also affect the
TL combustion (not in HT frame), but a general covariant
calculation is complicated. Therefore, to simplify our calcu-
lation, we assume a particular HT frame. The general solution
to this problem can be interesting and we are in the process
trying to address the problem.

Finally, we have transformed our results from the HT frame
to the NIF frame, which is also the local fluid frame for a
spherically symmetric star. We find that our results do not
change much, going from the HT to the local fluid frame. We
should mention here that for a nonspherical star, the local fluid
frame may not be the NIF frame, and we need two boosts to go
into the HT frame. This may bring some quantitative change
in the results, but the qualitative nature is expected to remain
the same as only the velocities and the incident and reflected
angle change going from local to HT frame. However, we are
in the process of solving our problem in an axisymmetric star.

To summarize, the MCA equations can be a tool to study
PT in magnetized NSs. The mechanism and the equations are
valid for any hydrodynamic system and can be well suited
for earth-based relativistic heavy-ion collision. We are in the
process of further analyzing this mechanism and studying
other general features of the MCA.
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