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Light vector mesons (ω, ρ, and φ) in strong magnetic fields: A QCD sum rule approach
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The mass modifications of the light vector mesons (ω, ρ, and φ) are investigated in asymmetric nuclear matter
in the presence of strong magnetic fields, using a quantum chromodynamics (QCD) sum rule approach. These
are computed from the medium modifications of the nonstrange and strange light quark condensates as well as
scalar gluon condensate. The quark and gluon condensates are calculated from the medium changes of the scalar
fields (nonstrange and strange) and a scalar dilaton field in the magnetized nuclear matter, within a chiral SU(3)
model. The scalar dilaton field within the model breaks the scale invariance of QCD and simulates the gluon
condensate. The anomalous magnetic moments for the nucleons are also taken into account in the present study.
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I. INTRODUCTION

The study of properties of hadrons under extreme con-
ditions, e.g., high densities and/or temperatures, is an im-
portant topic of contemporary research in strong interaction
physics. The subject is of relevance to ultrarelativistic heavy
ion collision experiments, where the experimental observ-
ables of these high energy nuclear collisions are affected
by the medium modifications of the hadrons. Furthermore,
the heavy colliding nuclei have large isospin asymmetry as
the number of the neutrons is much larger than the number
of protons of these nuclei. It is thus important to study the
effects of isospin asymmetry on the hadron properties. The
estimation of huge magnetic fields being created in noncentral
ultrarelativistic heavy ion collision experiments necessitates
the study of magnetic field effects on the properties of the
hadrons. The medium modifications of the hadrons have been
studied extensively in the literature. The different formalisms
for these studies are the effective hadronic models, e.g.,
quantum hadrodynamics (QHD) model [1], the QCD sum rule
(QCDSR) approach [2,3], the quark meson coupling (QMC)
model [4], the chiral effective models, as well as using the
coupled channel approach. The models like the Nambu Jona
Lasinio model, which simulate the spontaneous chiral sym-
metry breaking of QCD (through four fermion interactions),
have been extensively used in the literature [5–9] to study
the strongly interacting matter. The AdS/CFT correspondence
and the conjecture of gravity/gauge duality [10] have also
been used to study the hadrons [11].

The in-medium masses of the light vector mesons (ρ, ω,
and φ) are studied in the present work using a QCD sum
rule approach [12–23], in asymmetric nuclear matter in the
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presence of strong magnetic fields. The medium modifications
are because of the changes of the light quark condensates
and gluon condensate in the magnetized isospin asymmet-
ric hadronic matter, which are calculated within mean field
approximation, from the changes in the expectation values
of nonstrange (σ ) and strange (ζ ) scalar-isoscalar fields, the
third component of a scalar isovector field (δ), and a dilaton
field (χ ) from their vacuum values, within a chiral SU(3)
model [24,25]. The quark condensates are obtained from
the explicit symmetry breaking term within the chiral SU(3)
model, in terms of the scalar fields, σ , ζ , and δ, and the gluon
condensate is related to the dilaton field χ , which mimics the
scale symmetry of QCD, through a logarithmic potential. The
model has been used to describe nuclear matter [24], finite
nuclei [25], and the bulk properties of (proto) neutron stars
[26]. Using the chiral SU(3) model, the vector mesons have
also been studied [27], accounting for the Dirac polarization
effects [28]. The model has been used to study the kaons and
antikaons in isospin asymmetric nuclear (hyperonic) matter
[29–32]. The model has been generalized to the charm and
bottom sectors and the in-medium masses of open charm
[33–37], open bottom mesons [38,39], charmonium [36,40],
and bottomonium states [41]. Using the mass modifications
of the charmonium states and the open charm mesons, the
partial decay widths of the charmonium states to the DD̄
pair in the hadronic medium have been studied using the
3P0 model [36,42,43]. The in-medium partial decay widths
of the charmonium (bottomonium) to DD̄ (BB̄) [44,45] have
also been studied using a field theoretic model for composite
hadrons, from the mass modifications of these heavy flavor
mesons calculated within the chiral effective model. The
effects of magnetic fields on these heavy flavor mesons (D, B,
charmonium, and bottomonium states) in asymmetric nuclear
matter have also been studied [46–50], by including the cou-
pling terms with the electromagnetic field to the baryons in the
Lagrangian density of the chiral effective model. The masses
of these heavy flavor mesons have been studied accounting
for the effects of the anomalous magnetic moments of the
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nucleons. The light vector mesons (ω, ρ, and φ) in strange
hadronic matter have been studied using a QCD sum rule
approach [51], using the medium-dependent quark and gluon
condensates, calculated within the chiral SU(3) model. In the
present investigation, we compute the medium modifications
of these vector mesons in asymmetric nuclear matter in the
presence of strong magnetic fields using the QCD sum rule
approach, with the quark and gluon condensates obtained
from the scalar fields and dilaton field within the chiral model.

The outline of the paper is as follows : In Sec. II, we
describe briefly the chiral SU(3) model used to calculate the
quark and gluon condensates in the nuclear medium in the
presence of strong magnetic fields. The in-medium values of
these condensates are calculated from the medium changes of
the scalar fields of the explicit symmetry breaking term and
of the dilaton field, which mimics the gluon condensate of
QCD in the chiral SU(3) model. In Sec. III, we present the
QCD sum rule approach using which the in-medium masses
of the light vector mesons (ω, ρ, φ) are studied. Section IV
discusses the results of the mass modifications of the light
vector mesons (ω, ρ, and φ) in the magnetized asymmetric
nuclear matter. In Sec. V, we summarize the findings of the
present investigation.

II. THE HADRONIC CHIRAL SU(3) × SU(3) MODEL

We use an effective chiral SU(3) model [25] to obtain
the in-medium quark and gluon condensates for the study
of modifications of the masses of the light vector mesons
using a QCD sum rule approach. The model is based on
the nonlinear realization of chiral symmetry [52–54] and
broken scale invariance [24,25,27]. The concept of broken
scale invariance leading to the trace anomaly in QCD, θμ

μ =
βQCD

2g Ga
μνGμνa, where Ga

μν is the gluon field strength tensor of
QCD, is simulated in the effective Lagrangian at tree level
through the introduction of the scale breaking terms [55,56],

Lscalebreaking = −1

4
χ4ln

(
χ4

χ4
0

)
+ d

3
χ4ln

((
σ 2ζ

σ 2
0 ζ0

)(
χ

χ0

)3)
.

(1)
The Lagrangian density corresponding to the dilaton field,
χ leads to the trace of the energy momentum tensor as
[40,51,57]

θμ
μ = χ

∂L
∂χ

− 4L = −(1 − d )χ4. (2)

Equating the trace of the energy momentum tensor arising
from the trace anomaly of QCD with that of the present
chiral model given by Eq. (2), gives the relation of the dilaton
field to the scalar gluon condensate. The trace of the energy
momentum tensor in QCD is given as [58]

T μ
μ =

∑
qi=u,d,s

mqi q̄iqi +
〈
βQCD

2g
Ga

μνGμνa

〉
≡ −(1 − d )χ4.

(3)
In the above, the first term of the energy-momentum tensor,
within the chiral SU(3) model is the negative of the explicit
chiral symmetry breaking term. This relates the light quark
condensates to the values of the scalar fields σ , ζ , and δ in the

mean field approximation as [51]

mu〈ūu〉 = 1

2
m2

π fπ (σ + δ),

md〈d̄d〉 = 1

2
m2

π fπ (σ − δ),

ms〈s̄s〉 =
(√

2m2
k fk − 1√

2
m2

π fπ

)
ζ . (4)

Using the QCD β function occurring in the right-hand side
of Eq. (3) at one loop order, for Nc = 3 colors and Nf = 3
flavors, one gets the dilaton field related to the scalar gluon
condensate as〈αs

π
Ga

μνGaμν
〉

= 8

9

[
(1 − d )χ4+

(
m2

π fπσ+
(√

2m2
k fk− 1√

2
m2

π fπ
)
ζ

)]
.

(5)

The coupled equations of motion for the nonstrange scalar
isoscalar field σ , scalar isovector field δ, the strange scalar
field ζ , and the dilaton field χ , derived from the Lagrangian
density of the chiral SU(3) model, are solved to obtain the
values of these fields in the asymmetric nuclear medium in
the presence of magnetic field.

III. QCD SUM RULE APPROACH

In the present section, we briefly describe the QCD sum
rule approach used to study the properties of the light vector
mesons (ω, ρ, φ) in the nuclear medium in the presence of a
magnetic field. The study uses the values of quark and gluon
condensates in the magnetized nuclear medium obtained in a
chiral SU(3) model as described in the previous section. The
current-current correlation function for the vector meson V (=
ω, ρ, φ) is written as

�V
μν (q) = i

∫
d4xeiq·x〈0|T jV

μ (x) jV
ν (0)|0〉, (6)

where T is the time-ordered product and JV
μ is the current for

the vector meson V = ρ, ω, φ. Current conservation gives the
structure of the correlation function as

�V
μν (q) =

(
gμν − qμqν

q2

)
�V (q2). (7)

In the large spacelike region, Q2 = −q2 � 1 GeV2, the scalar
correlation function �V (q2) for the light vector mesons (ω,
ρ, and φ) can be written in terms of the operator product
expansion (OPE) as [17,19]

12π2�̃V (q2 = −Q2)

= dV

[
−cV

0 ln

(
Q2

μ2

)
+ cV

1

Q2
+ cV

2

Q4
+ cV

3

Q6
+ · · ·

]
, (8)

where �̃V (q2 = −Q2) = �V (q2=−Q2 )
Q2 , dV = 3/2, 1/6, and 1/3

for ρ, ω, and φ mesons, respectively, and μ is a scale chosen
to be 1 GeV in the present investigation [51]. The leading
term in the OPE, given by the first term, is calculated in the
perturbative QCD. The coefficients cV

i (i = 1, 2, 3) in the OPE
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contain the information of the nonperturbative effects of QCD
in terms of the quark and gluon condensates, as well as the
Wilson coefficients [14,16]. The Wilson coefficients are taken
as medium independent, with all the medium effects incorpo-
rated into the quark and gluon condensates [14,16,17,19,20].
After Borel transformation, the correlator for the vector meson
can be written as

12π2�̃V (M2) = dV

[
cV

0 M2 + cV
1 + cV

2

M2
+ cV

3

2M4

]
. (9)

On the phenomenological side the correlator function �̃V (Q2)
can be written as

12π2�̃V
phen(Q2) =

∫ ∞

0
ds

RV
phen(s)

s + Q2
, (10)

where RV
phen(s) is the spectral density proportional to the

imaginary part of the correlator,

RV
phen(s) = 12π Im�V

phen(s). (11)

On Borel transformation, Eq. (10) reduces to

12π2�̃V (M2) =
∫ ∞

0
dse−s/M2

RV
phen(s). (12)

Equating the correlation functions from the phenomenological
side given by Eq. (12) to that from the operator product
expansion given by Eq. (9), we obtain

∫ ∞

0
dse−s/M2

RV
phen(s) + 12π2�V (0)

= dV

[
cV

0 M2 + cV
1 + cV

2

M2
+ cV

3

2M4

]
, (13)

where the second term in the left-hand side of the above
equation is the contribution from scattering of the vector
meson with the baryons in the hadronic medium. In the
nuclear medium as is the case of the present work of the
study of in-medium masses of vector meson, �V (0) = ρB

4MN

for V = ω, ρ. Further, �V (0) vanishes for the φ meson since
the φ-meson nucleon coupling is zero in the parametrization
for the vector meson-baryon interactions within the chiral
SU(3) model [25]. This is a reasonable assumption because
of the fact that the φ-meson nucleon scattering amplitude is
negligibly small as compared to the ω nucleon as well as
ρ-nucleon scattering amplitudes [13,17,59,60]. The spectral
density is assumed to be of the form of a resonance part
RV (res)

phen(s) and a perturbative continuum as [17,51]

RV
phen(s) = RV (res)

phen(s)θ
(
sV

0 − s
) + dV cV

0 θ
(
s − sV

0

)
. (14)

For M >
√

sV
0 , the exponential function in the integral of the

left-hand side of Eq. (13) is expanded in powers of s/M2 for
s < sV

0 and one obtains the finite energy sum rules (FESR)
[17] by equating the powers in 1/M2 of both sides of Eq. (13).

In the hadronic medium, the FESRs are obtained as [51]

F ∗
V = dV

(
cV

0 s∗V
0 + cV

1

) − 12π2�V (0), (15)

F ∗
V m∗

V
2 = dV

((
s∗V

0

)2
cV

0

2
− c∗

2
V
)

, (16)

F ∗
V m∗

V
4 = dV

((
s∗V

0

)3

3
cV

0 + c∗V
3

)
. (17)

The coefficient c∗
2

V contains the quark and gluon condensates
in the medium, and c∗

3
V corresponds to the four quark con-

densate, which is calculated using a factorization method [3]
along with a parameter κi, i = u, d, s which measures the de-
viation from exact factorization (κi = 1). For the nonstrange
vector mesons, ρ and ω, these coefficients are given as

c(ρ,ω)
0 = 1 + αs(Q2)

π
, c(ρ,ω)

1 = −3
(
m2

u + m2
d

)
, (18)

c∗(ρ,ω)
2 = π2

3

〈αs

π
GμνGμν

〉
+ 4π2〈muūu + md d̄d〉, (19)

c∗
3

(ρ,ω) = −αsπ
3 × 448

81
κq(〈ūu〉2 + 〈d̄d〉2), (20)

where we take κu 	 κd = κq. For the φ meson, these coeffi-
cients are given as [2,17]

cφ

0 = 1 + αs(Q2)

π
, cφ

1 = −6ms
2, (21)

c∗φ

2 = π2

3

〈αs

π
GμνGμν

〉
+ 8π2〈mss̄s〉, (22)

c∗
3
φ = −8π3 × 224

81
αsκs〈s̄s〉2. (23)

Solving the FESR for the vector meson V (ρ, ω, φ) in vacuum,
assuming the vacuum mass of the vector meson, determines
the value of the coefficient κq (κs) of the four-quark conden-
sate, along with the parameters FV and sV

0 in vacuum [51].
Equations (15), (16), and (17) are then solved to obtain the
medium dependent mass m∗

V , the scale s∗
0

V , and F ∗
V for the

vector meson V , using the value of κi as determined from
the FESR in vacuum.

IV. RESULTS AND DISCUSSIONS

In this section, we study the in-medium masses of light
vector mesons (ω, ρ, and φ) in strongly magnetized nuclear
matter, using the QCD sum rule approach from the light
quark condensates and the scalar gluon condensate calculated
within a chiral SU(3) model. The broken scale invariance of
QCD is incorporated in the effective hadronic model through
a scale breaking logarithmic potential in terms of a scalar
dilaton field χ and the gluon condensate in the magnetized
nuclear matter is calculated from the medium modification
of this scalar dilaton field. In the chiral effective model, the
calculations are done in the mean field approximation. In
mean field approximation, the meson fields are treated as
classical fields. The nonstrange light quark condensates (〈ūu〉,
〈d̄d〉) and strange condensate (〈s̄s〉) in the asymmetric nuclear
matter in the presence of magnetic field are calculated within
the model from the values of the nonstrange (σ , δ) and strange
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(ζ ) scalar fields within the chiral SU(3) model. For given
values of baryon density ρB, the magnetic field and the isospin
asymmetry parameter η = (ρn − ρp)/(2ρB) (ρp and ρn are the
proton and neutron number densities, respectively), the mean
values of the scalar fields σ , ζ , δ, and χ are obtained by
solving the coupled equations of motion of these fields. In the
absence of a magnetic field, the in-medium masses of the light
vector mesons in asymmetric hadronic matter were studied
using the QCD sum rule approach and using the gluon and
quark condensates calculated within the chiral SU(3) model
[51]. In the present work, the medium modifications of the
vector meson masses are studied in the presence of a strong
magnetic field.

In the present investigation, the values of the current quark
masses are taken as mu = 4 MeV, md = 7 MeV, and ms = 150
MeV. The vacuum masses of the ρ, ω, and φ mesons are taken
to be 770, 783, and 1020 MeV. The coefficients κi (i = q, s)
are solved from the FESRs in vacuum [51] and are obtained
as 7.788, 7.236, and −1.21 for the ω, ρ, and φ mesons. The
difference in the values of κq obtained from solving the FESRs
of the ω and ρ mesons are due to the difference in their
vacuum masses.

In the presence of a magnetic field, the proton has contribu-
tions from the Landau energy levels. The anomalous magnetic
moments of the nucleons are also taken into consideration
in studying the in-medium masses of light vector mesons in
nuclear matter in the presence of a magnetic field, using the
QCDSR approach. The light quark condensates and the scalar
gluon condensate are calculated from Eqs. (4) and (5), which
are then used to calculate the values of the coefficients c∗

2
V and

c∗V
3 for the vector mesons, ρ, ω, and φ as given by Eqs. (19),

(20), (22), and (23). Using the values of these coefficients, the
in-medium masses of the light vector mesons are calculated by
solving the coupled equations (15), (16), and (17) involving
the in-medium values F ∗

V , s∗
0

V , and m∗
V .

In Figs. 1 and 2, the in–medium masses of ω mesons
are plotted as functions of baryon density ρB (in units of
nuclear matter saturation density ρ0) for values of magnetic
fields eB = 4m2

π and eB = 12m2
π , respectively, with values

of isospin asymmetry parameter η taken to be 0, 0.3, and
0.5. These masses are plotted including the anomalous mag-
netic moments (AMM) of the nucleons and are compared to
the case when the AMMs are not taken into consideration.
The masses of the ω meson are also given in Table I for
the isospin symmetric (η = 0) as well as for the extreme
isospin asymmetric case of η = 0.5 for magnetic fields eB =
4m2

π , 8m2
π , 12m2

π , (a) without, and (b) with the anomalous
magnetic moments (AMM) of nucleons taken into account.
The ω meson mass is observed to have an initial drop with
increase in density for subnuclear densities. This is due to
the fact that the contribution of the scattering term, which is
proportional to baryon density ρB, is small at low densities,
and the medium modification of the ω meson mass is dom-
inated by modifications of the light quark condensates in the
medium, which leads to a drop in the mass of the ω meson. As
the density is further increased, the effects of the scattering of
the vector meson ω from the nucleons become appreciable,
leading to a rise in the ω meson mass. This observed behavior
can be understood from the first two FESRs. The effective
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FIG. 1. The mass of ω meson plotted as a function of the baryon
density in units of nuclear matter saturation density for magnetized
nuclear matter (for η = 0, 0.3, 0.5) with eB = 4m2

π .

mass squared of the vector meson V is obtained as dividing
Eq. (16) by (15) as

m∗
V

2 =
( (s∗V

0 )2cV
0

2 − c∗
2

V )
(
cV

0 s∗V
0 + cV

1

) − (1/dV )12π2�V (0)
, (24)

where, as was already mentioned, �V (0) = ρB/(4MN ), for
V = ω, ρ, and �V (0) vanishes for the φ meson as φ-nucleon
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FIG. 2. The mass of ω meson plotted as a function of the baryon
density in units of nuclear matter saturation density for magnetized
nuclear matter (for η = 0, 0.3, 0.5) with eB = 12m2

π .
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TABLE I. In-medium masses for the ω meson in magnetized
nuclear matter for densities of ρ0 and 2ρ0, asymmetric parameter
η = 0 and 0.5, and for magnetic fields eB/m2

π as 4, 8, and 12,
(a) without and (b) with the anomalous magnetic moments of the
nucleons taken into account. These masses are compared with the
in-medium masses of ω meson for zero magnetic field.

eB/m2
π η = 0 η = 0.5

ρB = ρ0 ρB = 2ρ0 ρB = ρ0 ρB = 2ρ0

0 777 953.7 788.8 965.6

4 (a) 773.4 950 787.24 964.2
(b) 775.7 953.4 792.5 967.56

8 (a) 772.8 947.8 787.24 964.2
(b) 775.6 952.4 793.74 972

12 (a) 772.34 947.3 787.24 964.2
(b) 775.87 953.34 795.3 974.1

coupling is assumed to be zero in the present work. The scat-
tering term for the nonstrange vector mesons, being propor-
tional to the density, becomes appreciable at higher densities.
This leads to a smaller value for the denominator and hence
to an increase in the mass of ω meson at high densities. This
behavior of the ω mass with density was also observed for
the case of zero magnetic field in Ref. [51]. The effects of the
magnetic field, which are through the light quark and gluon
condensates, are observed to be much smaller as compared
to the density effects. The values of the ω meson mass (in
MeV) at densities ρ0(2ρ0), for the values of the isospin
asymmetric parameter η = 0, 0.3, and 0.5 are observed to
be 773.4 (950), 781.55 (956.86), and 787.24 (964.2) at the
value of the magnetic field as eB = 4m2

π , when the anomalous
magnetic moments (AMM) of nucleons are not considered,
and, 775.7 (953.4), 785.2 (960), and 792.5 (967.56), when
AMMs are taken into consideration. The isospin asymmetry
effects are observed to be larger for the higher value of the
magnetic field, eB = 12m2

π , plotted in Fig. 2. The contribution
of the scattering term which is the dominant contribution to
the mass of the ω meson at high densities, being proportional
to ρB, is independent of the isospin asymmetry. This leads to
lessening of the isospin asymmetry effects at higher densities,
as is evident from Figs. 1 and 2. The isospin asymmetry
effects on the ω meson mass are observed only at densities,
of around 0.5ρ0 to about 2 ρ0, above which these effects are
seen to be diminished as the scattering effects start becoming
important. The isospin asymmetry effects are observed to be
more appreciable for the higher value of the magnetic field,
eB = 12m2

π , as can be seen from Fig. 2.
The density isospin asymmetry effects on the masses of

the ρ meson are illustrated in Figs. 3 and 4 for the values of
eB as 4m2

π and 12m2
π , respectively. The in-medium ρ meson

masses are given in Table II, for typical values of the magnetic
field, density, and isospin asymmetry parameters, which are
calculated (a) without and (b) with the anomalous magnetic
moments (AMM) of the nucleons. The ρ meson mass in
the presence of a magnetic field is observed to drop with
baryon density, similar to the case of zero magnetic field
studied previously [51]. The contribution of the scattering of
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FIG. 3. The mass of ρ meson plotted as a function of the baryon
density in units of nuclear matter saturation density for magnetized
nuclear matter (for η = 0, 0.3, 0.5) with eB = 4m2

π .

the ρ meson from the nucleons in the nuclear matter is small
because of the factor (1/dV ) in this term, which makes the
contribution of the Landau scattering term 9 times smaller
than that of the ω meson, as (1/dρ )/(1/dω ) = 1/9. The effects
of the isospin asymmetry are observed to be large at high
densities, as was seen for the case of zero magnetic field
[51]. The effects of magnetic fields as well as of anomalous
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FIG. 4. The mass of ρ meson plotted as a function of the baryon
density in units of nuclear matter saturation density for magnetized
nuclear matter (for η = 0, 0.3, 0.5) with eB = 12m2

π .
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TABLE II. In-medium masses for ρ meson in magnetized nu-
clear matter for densities of ρ0 and 4ρ0, asymmetric parameter η = 0
and 0.5, and for magnetic fields eB/m2

π as 4, 8, and 12, (a) without
and (b) with the anomalous magnetic moments of the nucleons taken
into account. These masses are compared with the in-medium masses
of ρ meson for zero magnetic field.

eB/m2
π η = 0 η = 0.5

ρB = ρ0 ρB = 4ρ0 ρB = ρ0 ρB = 4ρ0

0 622.2 391 636.3 473.3

4 (a) 618 374.9 634.5 468.5
(b) 620.7 398 640.85 477.5

8 (a) 617.26 335.8 634.5 468.5
(b) 620.65 411.7 642.3 502.8

12 (a) 616.68 315.8 634.5 468.5
(b) 620.9 433.7 644.2 527.6

magnetic moments are observed to be appreciable at high
densities, as can be seen in Table II. Accounting for the
anomalous magnetic moments (AMM) of the nucleons, the
values of the ρ meson mass for symmetric nuclear matter
(η = 0) at densities ρ0(3ρ0) are 620.7 (445.4) and 620.9
(455.9) for eB = 4m2

π and eB = 12m2
π , respectively. These

values are modified to 632.1 (468.9) and 634.85 (500) at
η = 0.3 and 640.85 (508.7) and 644.2 (545.36) at η = 0.5,
for the same magnetic fields. The drop in the ρ meson mass
is observed to be smaller when the AMMs of the nucleons
are taken into consideration. The isospin asymmetry effect
is observed to be much larger for the larger magnetic field,
eB = 12m2

π , especially at higher densities, as can be seen in
Fig. 4. In Table II, the values of the ρ meson mass in the
presence of magnetic field for the symmetric nuclear matter
as well as for asymmetric nuclear matter with η = 0.5, at
densities ρ0 and 4ρ0, are compared with the values obtained
for zero magnetic field in Ref. [51]. As can be seen from
Table II, in the absence of a magnetic field, the in-medium ρ

mass calculated at the nuclear matter saturation density ρ0 in
symmetric nuclear matter is 622.2 MeV [51], which is similar
to the value obtained in Ref. [12], using the linear density
approximation. The mass of ρ meson at ρ0 at zero magnetic
field, may be compared with the value of 670 MeV obtained
using the QCD sum rule approach in Ref. [19] and, of around
530 MeV, in an improved QCD sum rule calculation [15].
In the present work, the effects of magnetic field on the ρ

meson mass in isospin asymmetric nuclear matter have been
investigated.

The φ meson masses in the magnetized nuclear matter are
presented in the Table III, for given values of density, isospin
asymmetry parameter and the magnetic field, (a) without and
(b) with the anomalous magnetic moments of the nucleons
being taken into consideration. The in-medium masses of the
φ meson, plotted in Figs. 5 and 6 for the values of eB as
4m2

π and 12m2
π , respectively, are observed to decrease sharply

with density up to a density of around ρ0, above which there
is observed to be very less modification in the mass of the
φ meson. There is no contribution to the φ meson mass
from the scattering term. This is because of the fact that

TABLE III. In-medium masses for φ meson in magnetized nu-
clear matter for densities of ρ0 and 4ρ0, asymmetric parameter η = 0
and 0.5, and for magnetic fields eB/m2

π as 4, 8, and 12, (a) without
and (b) with the anomalous magnetic moments of the nucleons taken
into account. These masses are compared with the in-medium masses
of φ meson for zero magnetic field.

eB/m2
π η = 0 η = 0.5

ρB = ρ0 ρB = 4ρ0 ρB = ρ0 ρB = 4ρ0

0 1001.49 998.79 1001.79 998.38

4 (a) 1001.11 998.4 1001.6 997.85
(b) 1001.28 998.08 1002.03 997.74

8 (a) 1000.9 998.9 1001.6 997.85
(b) 1001.28 997.87 1002.14 997.5

12 (a) 1001.09 999.2 1001.6 997.85
(b) 1001.22 997.63 1002.28 997.38

the nucleon-φ meson coupling is zero in the parameter set
chosen for the vector meson-baryon interactions within the
chiral SU(3) model. It might be noted here that φ → KK̄ is
OZI allowed, whereas the OZI rule forbids the decay of the φ

meson to pions. There is, however, observed to be a violation
of the OZI rule by about 5% in the φ → 3π channel [17,18].
The decay φ → 3π and the decay ω → 3π (through direct
decay as well as the two-step decay ω → ρπ followed by
ρ → 2π ) imply that there is mixing between the φ meson and
the nonstrange (ρ, ω) vector mesons. However, the decay of
φ is dominated by the OZI allowed φ → KK̄ and the mass
modification of the φ meson is predominantly due to the
change of the strange condensate in the hadronic medium.
The drop in φ meson mass is much smaller than the mass
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FIG. 5. The mass of φ meson plotted as a function of the baryon
density in units of nuclear matter saturation density for magnetized
nuclear matter (for η = 0, 0.3, 0.5) with eB = 4m2

π .
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FIG. 6. The mass of φ meson plotted as a function of the baryon
density in units of nuclear matter saturation density for magnetized
nuclear matter (for η = 0, 0.3, 0.5) with eB = 12m2

π .

drop of the ρ meson (where the scattering term has negligible
contribution) because of the large drop of the nonstrange
quark condensate as compared to the drop of the strange
quark condensate in the nuclear medium. At higher densities,
the strange condensate remains almost constant and hence
the φ meson mass changes very little with density, whereas
the nonstrange quark condensate continues to drop as density
is increased, leading to a monotonic drop of the ρ meson mass
with density. These behaviors of the ρ and φ vector meson
masses were also observed for the case of zero magnetic
field [51]. The effects of anomalous magnetic moments of the
nucleons are observed to be larger at higher densities, even
though the magnitudes of these still remain small. The strange
quark condensate as well as the scalar gluon condensate have
very small effects from isospin asymmetry, leading to the

modifications of the φ meson mass to be very similar in the
isospin symmetric and asymmetric nuclear matter.

V. SUMMARY

In summary, in the present investigation, we have calcu-
lated the masses of the light vector mesons (ω, ρ, and φ) in
the nuclear matter in the presence of a strong magnetic field,
using the QCD sum rule approach, from the modifications
of the light quark and scalar gluon condensates, calculated
within a chiral effective model. The medium modifications
are from the changes of the light quark condensates and the
scalar gluon condensate in the magnetized isospin asymmet-
ric hadronic matter, which are calculated within mean field
approximation, from the changes in the expectation values of
the scalar fields (σ , ζ , and δ) and a dilaton field (χ ) from their
vacuum values, respectively, within a chiral SU(3) model.
The masses of the ρ mesons are dominantly governed by the
nonstrange quark condensates which lead to decrease in these
masses with increase in density. For the ω meson, the drop in
the nonstrange quark condensates leads to a drop in the mass
at subnuclear matter densities, which, however, is overcome
by the ω-nucleon scattering term, leading to an increase in
the ω mass as the density is further increased. The scattering
term, which dominates for the ω meson mass at high densities,
is of the form (ρp + ρn) and is thus independent of the isospin
asymmetry of the nuclear medium. The mass of the φ meson
is dominated by the behavior of the strange condensate 〈s̄s〉
in the medium, leading to an initial drop with density and the
mass changes slightly as the density is further increased. The
isospin asymmetry effects are observed to be more for the ρ

meson as compared to the ω and φ mesons. The effects of
anomalous magnetic moments of the nucleons are seen to be
appreciable at higher densities and higher magnetic fields for
the ρ meson mass. The density effects are observed to be the
dominant medium effects on the masses of these light vector
mesons.
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