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Effect of an absorbing medium on particle oscillations
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Particle oscillations in absorbing matter are considered. The approach based on the optical potential is shown
to be inapplicable in the strong absorption region. Models with Hermitian Hamiltonian are analyzed. They give
an increase of the process width in comparison with the model based on the optical potential.
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I. INTRODUCTION

In-particle oscillations in the medium absorption can play
an important role, for example, in K0K̄0 [1–4] and nn̄ [5–8]
oscillations. In this paper I consider nn̄ transitions in the
medium followed by annihilation,

n → n̄ → M. (1)

Here M are the annihilation mesons. The reason for consid-
ering this process is that the absorption (annihilation) of n̄ is
extremely strong.

In the standard approach (later referred to as a potential
model) the n̄-medium interaction is described by antineu-
tron optical potential Un̄. We have objections to this model
(Sec. II). In Sec. III the alternative models based on the
field-theoretical approach are considered. For these models
two possibilities exist: a model with bare (Sec. III A) and
dressed (Sec. III C) propagators. (In the latter case I come
to the S-matrix problem formulation.) In the models with bare
and dressed propagators I directly calculate the off-diagonal
matrix element without using the optical potential.

The results are compared in Sec. IV. The potential model
contains double counting. This has been proved in the stan-
dard S-matrix approach. This fact in particular should be
emphasized.

In Sec. V the results are summarized. The problems of
the models based on the S-matrix approach are pointed out
as well. The restriction on the free-space nn̄ oscillation time
τ critically depends on the description of absorption. In this
regard, the main goal of this paper is to consider the absorption
model itself.
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II. POTENTIAL MODEL

We consider process (1). In the standard approach [5–7]
the nn̄ transitions in the medium are described by Schrodinger
equations:

(i∂t − H0)n(x) = εnn̄n̄(x),

(i∂t − H0 − V )n̄(x) = εnn̄n(x),

H0 = −∇2/2m + Un,

V = Un̄ − Un = ReUn̄ + iImUn̄ − Un, (2)

ImUn̄ = −�/2, n̄(0, x) = 0. Here Un and Un̄ are the potential
of n and the optical potential of n̄, respectively; εnn̄ is a
small parameter with εnn̄ = 1/τ , where τ is the free-space nn̄
oscillation time, � being the annihilation width of n̄.

In the lowest order in εnn̄ the process width is [5–7]

�pot = ε2
nn̄

1

(ReV )2 + (�/2)2
�. (3)

Un̄ is the basic element of the model. In this connection the
following problems arise:

(1) The optical model was developed for the Schrödinger-
type equations. The physical meaning of ImUn̄ follows
from the corresponding continuity equation. Coupled
Eqs. (2) give rise to the following equation:[

∂2
t + i∂t (V + 2H0) − H2

0 − H0V + ε2
nn̄

]
n(x) = 0.

(4)

The continuity equation cannot be derived from (4).
(2) To get �pot, the optical theorem or condition of proba-

bility conservation are used. However, the S matrix is
essentially nonunitary.

(3) The structure and � dependence of (3) provoke some
objections. Due to this, an alternative model should be
considered.

III. FIELD-THEORETICAL APPROACH

The interaction Hamiltonian of process (1) is given by

HI = Hnn̄ + H,

Hnn̄ = εnn̄�̄n̄�n + H.c., (5)
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FIG. 1. (a) nn̄ transition in the medium followed by annihilation.
The annihilation is shown by a circle. The propagator is bare (b)
nn̄ transition in the medium followed by decay (c). The same as in
(a) but the antineutron propagator is dressed (see text).

where Hnn̄ and H are the Hamiltonians of nn̄ conversion
and the n̄-medium interaction, respectively. The background
neutron potential is included in the neutron wave function:

n(x) = �−1/2 exp(−ipx), (6)

p = (ε, p), ε = p2/2m + Un.

A. Model with a bare propagator

The nn̄ conversion comes from the exchange of Higs
bosons with mH > 105 GeV. The n̄ annihilates in a time τa ∼
1/�. We deal with a two-step process with a characteristic
time τa.

The general definition of the antineutron annihilation am-
plitude Ma is given by

〈M0|T exp

[
−i

∫
dxH(x)

]
− 1|0n̄p〉

= N (2π )4δ4(p f − pi )Ma. (7)

Here |0n̄p〉 is the state of the medium containing the n̄ with
the four-momentum p = (ε, p); 〈M| denotes the annihilation
mesons and N includes the normalization factors of the wave
functions. The antineutron annihilation width � is expressed
through Ma:

� = N1

∫
d
|Ma|2, (8)

where N1 is the normalization factor.
The amplitude of process (1) M1 is given by

〈M0|T exp

{
−i

∫
dx[Hnn̄(x) + H(x)]

}
− 1|0np〉

= N (2π )4δ4(p f − pi )M1. (9)

In the lowest order in Hnn̄ for the process amplitude M1

one obtains [see Fig. 1(a)]

M1 = εnn̄G0Ma, (10)

G0 = 1

εn̄ − p2
n̄/2m − Un + i0

, (11)

where G0 is the antineutron propagator. Since pn̄ = p, εn̄ =
ε, then G0 ∼ 1/0. Ma contains all the n̄-medium interactions
followed by annihilation, including antineutron rescattering in
the initial state. So in this case the antineutron propagator is
bare.

When dealing with infrared singularity, for solving the
problem a field-theoretical approach with a finite-time interval

has been proposed [9]. The process (1) probability was found
to be [10]

W (t ) ≈ Wf (t ) = ε2
nn̄t2, (12)

where Wf is the free-space nn̄ transition probability. Equation
(12) leads to a very strong restriction on the free-space nn̄
oscillation time: τ = 1016 yr.

B. Absorption in the intermediate state

Starting from (5) and (6) I have drawn the singular am-
plitude M1. To gain a better understanding of the problem,
I consider the nn̄ transitions in the medium followed by β+
decay:

n → n̄ → p̄e+ν. (13)

The neutron wave function is given by (6). The interaction
Hamiltonian is

HI = Hnn̄ + HW + V �̄n̄�n̄, (14)

where V is defined by (2) and HW is the Hamiltonian of the
decay n̄ → p̄e+ν. The process amplitude is nonsingular [see
(15) below] and I use the S-matrix approach. In the lowest
order in Hnn̄ the amplitude M2 [see Fig. 1(b)] is given by

M2 = εnn̄GMd ,

G = 1

εn̄ − p2
n̄/2m − Un̄ + i0

= 1

ε − p2/2m − (Un + V ) + i0
= − 1

V
, (15)

where Md is the amplitude of the β+-decay and G is the
antineutron propagator.

The process width �2 is

�2 = ε2
nn̄

|V |2 �d , (16)

where �d is the width of the β+ decay. The propagator is
dressed due to the additional field V . There are no questions
connected with Un̄ since G is the propagator of Schrodinger
equation.

C. Model with a dressed propagator

We return to process (1). I compose a model with a dressed
propagator. By analogy with (14) in the Hamiltonian H [see
(5)] I separate out the scalar field V1:

H = V1�̄n̄�n̄ + Ha, (17)

where Ha is the annihilation Hamiltonian. Now the antineu-
tron annihilation amplitude Man is defined through Ha:

〈M0|T exp

[
−i

∫
dxHa(x)

]
− 1|0n̄p〉

= N (2π )4δ4(p f − pi )Man. (18)

The interaction Hamiltonian is given by

HI = Hnn̄ + V1�̄n̄�n̄ + Ha. (19)
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In the lowest order in Hnn̄ the amplitude of process (1) is

Ms = εnn̄Gd Man,

Gd = G0 + G0V1G0 + · · ·
= 1

(1/G0) − V1 + i0
= − 1

V1
. (20)

The antineutron propagator Gd is dressed. V1 plays the role of
antineutron self-energy 
. Ms corresponds to the first order in
Hnn̄ and all the orders in V1 and Ha. Compared to (7), Man is
calculated through the reduced Hamiltonian Ha instead of H;
otherwise, V1 = 0 and I arrive at the amplitude (10).

The process width �s is

�s = N1

∫
d
|Ms|2 = ε2

nn̄

|V1|2 �an,

�an = N1

∫
d
|Man|2. (21)

The amplitude Ms is nonsingular because the propagator is
dressed. The antineutron self-energy 
 = V1 appears due to
separation of the field V1. This procedure seems to be artificial
and unjustified as well as definition of the Man. There are no
similar problems for process (13) since the self-energy and
decay of n̄ are generated by different fields HW and V . This
point should be given particular emphasis. In any case �an ∼
�, and so

�s ∼ �an ∼ �. (22)

IV. COMPARISON WITH POTENTIAL MODEL

A. Double counting in the potential model

First, I compare the potential model with the model with a
dressed propagator. In (21) I have to take the same parameters
as in the potential model: V1 = V and �an = �. Then I get

�s = ε2
nn̄

1

(ReV )2 + (�/2)2
�. (23)

Equation (23) coincides with (3): �s = �pot. By means of the
model with a dressed propagator I have obtained �pot. The
antineutron annihilation width � is involved in the propagator
[see (20), where V1 = V ] as well as vertex function which
means double counting.

The same conclusion has been done in Ref. [8]. It was
shown that double counting leads to full cancellation of the
leading terms. However, in Ref. [8] the consideration was
qualitative and performed on the finite-time interval. Equation
(23) reproduces (3) exactly.

B. Model with Hermitian Hamiltonian

As proved earlier, the model with dressed propagator is
unjustified. Nevertheless, the correction of the type (17) can-
not be excluded. As an alternative to the model with bare
propagator I consider the model with dressed propagator
[see Fig. 1(c)]. The model is simple: Un and Un̄ are the
real potentials of n and n̄, respectively; annihilation included
in the vertex function only; energy gap ReV leads to the

process suppression. As with model with bare propagator, the
Hamiltonin is Hermitian.

In (21) I take V1 = ReV (in this case the Hamiltonin is
Hermitian), and �an = �. The process width �s is

�s = ε2
nn̄

(ReV )2
�. (24)

The model described above is the most realistic variant of the
model with dressed propagator.

Therefore, �s ∼ �. For the K0K̄0 transitions in the medium
followed by decay and regeneration of the K0

S component an
identical � dependence takes place [11,12]. In the potential
model �pot ∼ � only at light absorption. Indeed, if �/2 �
|ReV |, then

�pot = ε2
nn̄

(ReV )2
�

[
1 −

(
�

2ReV

)2
]
. (25)

In the first approximation (25) coincides with (24). This
agreement was expected since the dominant role was played
by ReUn̄.

If �/2 	 |ReV |, then

�pot = 4ε2
nn̄

�
. (26)

�pot ∼ 1/�, whereas �s ∼ �.
The difference in the results is seen from the ratio

r = �s

�pot
= 1 +

(
�

2ReV

)2

. (27)

If |ReV | = �/2, then r = 2. If |ReV | = �/4, then r = 5.
When |ReV | decreases, �s and r increase.

To conclude: (1) The smaller the |ReV | (antineutron self-
energy), the greater the difference in the results. It is a max-
imum for the model with a bare propagator. (2) In the strong
absorption region �pot ∼ 1/�, whereas �s ∼ �. (3) The po-
tential model contains double counting. These conclusions are
also true for the model with bare propagator since it is the
limiting case V1 → 0. These conclusions do not depend on
the specific models of the blocks Ma and Man.

For the realistic parameters � = 100 MeV and |ReV | =
10 MeV, the lower limit on the free-space nn̄ oscillations time
is τ = 1.2 × 109 s. When V1 = 0, the model with a dressed
propagator converts to the model with a bare propagator. It
gives τ = 1016 yr. On the basis of this one can accept that
the lower limit on the free-space nn̄ oscillations time is in the
range 1016 yr > τ > 1.2 × 109 s.

Finally, in the strong absorption region the model with
an optical potential is inapplicable. In the models I calculate
directly the off-diagonal matrix element. The optical potential
is not used. (Note that in the case of Hermitian Hamiltonian
the optical theorem is applicable.)

V. CONCLUSION

The model based on the optical potential compared with di-
rect calculation of off-diagonal matrix element. The potential
model is applicable only in the case of slight absorption.
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If absorption is strong, then the potential model is inappli-
cable: (1) It contains double counting. (2) The � dependence
of the result is inverse: �pot ∼ 1/�, whereas �s ∼ �. (3) The
physical meaning of ImUn̄ is uncertain. (4) The using of
the optical theorem or condition of probability conservation
contradicts the fact that the S matrix is essentially nonunitary.

The field-theoretical approach is free from drawback men-
tioned above. Two variants of the models have been consid-
ered: the model with bare and dressed propagators. (In the
latter case I come to the S-matrix problem formulation.) If
the scalar field V1 → 0 (the antineutron self-energy 
 → 0),
then the model with a dressed propagator converts to the
model with a bare propagator and so the results are valid for
the model with bare propagator as well. In both variants the
optical potential is not used. The amplitudes of annihilation
Ma and Man are defined through Hermitian Hamiltonians.

The chief drawback in the model with a dressed propagator
is that the procedure of separation of V1 (or ReV ) is artificial
and unjustified. There are a lot of arguments in favor of the
model with a bare propagator [10]. The only objection to this
model is that it gives the result which essentially differs from
the result of the potential model. The potential model has been
considered above.

In my opinion the model with a bare propagator is prefer-
able. The model with the dressed propagator has been consid-
ered for the study of the process since the problem is of a great
importance. It also gives the conservative limit τ = 1.2×109 s.

In the oscillation of other particles the difference between
�s and �pot is less; however, this difference can be essential
for the problem under study. Specifically, for the K0

S regener-
ation, the model with Hermitian Hamiltonian [13] gives the
reinforcement as well.
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