
PHYSICAL REVIEW C 100, 014913 (2019)
Editors’ Suggestion

Feed-down effect on � spin polarization

Xiao-Liang Xia,1,* Hui Li,2,† Xu-Guang Huang,1,2,‡ and Huan Zhong Huang2,3,§

1Department of Physics, Center for Particle Physics and Field Theory, Fudan University, Shanghai 200433, China
2Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China

3Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA

(Received 17 May 2019; published 31 July 2019)

We develop a theoretical framework to study the feed-down effect of higher-lying strange baryons on the spin
polarization of the � hyperon. In this framework, we consider two-body decays through strong, electromagnetic,
and weak processes and derive general formulas for the angular distribution and spin polarization of the daughter
particle by adopting the helicity formalism. Using the realistic experimental data as input, we explore the feed-
down contribution to the global and the local � polarizations and find that such a contribution suppresses the
primordial � polarization, which is not strong enough to resolve the discrepancy between the current theoretical
and the experimental results on the azimuthal-angle dependence of � polarization. Our paper may also be useful
for the measurement of spin polarization of baryons heavier than � (e.g., �−) in future experiments.
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I. INTRODUCTION

The recent measurement of the spin polarization of � and
�̄ hyperons (hereafter, “� polarization” for simplicity) pro-
vided strong evidence for the existence of large fluid vorticity
in the hot and dense matter created in noncentral relativistic
heavy ion collisions [1]. This finding, for the first time,
showed a physical connection between the fireball’s vorticity
and the spin polarization of the final-state hadrons and opened
the door to the study of various phenomena in the presence
of vorticity or rotation in the strongly interacting quark-gluon
plasma. Such phenomena include, in addition to the spin
polarization of baryons [2–6], the spin alignment of vector
mesons [7–10], the chiral vortical effect or wave [11–15], the
emergence of spin transport coefficients [16], the dissociation
of chiral condensate [17–22], and the modifications of the
QCD phase diagram [23–27].

The measurement in Ref. [1] is for the mean value of the
� polarization in the midrapidity region (dubbed the global
polarization) which reflects the space-averaged value of the
vorticity. Such a space-averaged vorticity, in turn, reflects
the global angular momentum of the colliding system. In
addition to this, more detailed measurements were performed
very recently [28–30], exhibiting � polarization as a function
of the transverse momentum, azimuthal angle, and rapidity.
These new measurements indicated that the vorticity field, if
assumed to be responsible for the detailed structure in the �

polarization, may have a very nontrivial local structure in the
fireball. Indeed, it has been proposed from model simulations
that the vorticity can be generated from different sources,
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leading to a novel local vortical structure and local polariza-
tion [31–49]. The total � polarization is the superposition of
them. Particularly, anisotropic flow on the transverse plane
can produce a quadrupole pattern of the longitudinal vorticity
component, and accordingly, there is a longitudinal local
polarization Pz where the z axis is along the beam direction
[46,47,50]. Similarly, the nonuniform transverse expansion of
the fireball along the longitudinal axis can produce transverse
vorticity circling the z axis from which the transverse local
polarization (Px, Py) can be generated where the x axis is
along the impact parameter and the y axis is perpendicular to
the reaction plane [47,48]. Besides the circling polarization,
it is also found that the polarization Py at midrapidity has
a difference from the in-plane direction to the out-of-plane
direction [30,42,48].

However, there are discrepancies between experimental
measurements of the � polarization and theoretical calcula-
tions, in particular, the predicted azimuthal-angle dependence
of the longitudinal and transverse spin polarizations at midra-
pidity has the opposite sign compared to the data [29,30]. This
constitutes a remarkable puzzle and challenges the thermal-
vorticity interpretation of the � polarization which assumes
that the � polarization is simply proportional to the thermal
vorticity [51–53].

To resolve this puzzle, one important issue should be
understood first, that is, the feed-down contributions from
decays of other strange baryons to the final � polarization.
This is because only a fraction of the final-state � and �̄

hyperons are produced directly at the hadronization stage
(which will be called the primordial � and �̄ and their spin
polarizations may reflect the information of the vorticity). A
big fraction of � and �̄ hyperons are from the decays of
higher-lying strange baryons, such as �0, �∗, �, etc. Thus,
to bridge the measured � polarization and the information of
the vorticity, we must take into account the correction from
the feed-down contributions. As will be shown in Sec. II,
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� hyperons produced by particle decay may have an
anisotropic angular distribution in the rest frame of the parent
particle, and the � polarization vector depends on its emitted
direction. These effects and the interplay between them can
re-distribute the � polarization in azimuthal-angle space and
provide a possible solution to the above puzzle.

The purpose of this paper is to systematically investigate
the feed-down effect on the � polarization. We stress that, for
the global polarization case, this problem has been studied in
Ref. [52] where the effect of feed-downs was found to give a
linear relation between 〈PD〉 and PP, that is,

〈PD〉 = CPP, (1)

where 〈PD〉 is the momentum-averaged (i.e., the global) po-
larization of the daughter particle D and PP is the polarization
vector of the parent particle. The coefficient C is the polar-
ization transfer factor between the parent and the daughter
particle. However, Eq. (1) cannot be used to study the effect of
particle decay on the local � polarization which we will focus
on.

This paper is organized as follows. In Sec. II, we will derive
a set of formulas for the angular distribution and polarization
vector of the daughter particle produced in a two-body decay.
Several different decay channels will be considered. Based on
these formulas, we will implement the numerical simulation
to study the effect of feed-downs on � polarization. The
numerical results and discussions will be presented in Sec. III.
Finally, a summary will be given in Sec. IV.

II. SPIN POLARIZATION IN TWO-BODY DECAY

To study the effect of particle decay on the � polarization,
we need to first answer two questions: (1) For a given decay
channel with the polarization vector of the parent particle
given as PP, what is the angular distribution of the specified
daughter particle (i.e., � hyperon in our case), and (2) for
a daughter particle emitted along a specific direction p̂∗ (a
hat over a vector denotes the unit vector) in the parent’s rest
frame, what is its polarization vector PD?

As the most important decay channels to produce � are
two-body decays, let us consider a generic two-body decay
process,

P → D + X, (2)

where P is the parent and D and X are the daughters. Among
them, D stands for the � hyperon or a particle that can
further decay to �, whereas X is a by-product particle. The
goal in this section is to find the angular distribution of D
and calculate its polarization vector PD as a function of its
emission direction in the rest frame of P with the polarization
vector PP of P fixed.

This problem for some decay channels was already studied
in the 1950s, for example, the weak decay of spin-1/2 hy-
perons in Refs. [54,55] and the electromagnetic (EM) decay
process �0 → �γ in Ref. [56]. Later, a systematic method,
called the helicity formalism, was established to study the
spin-related problem in 1959 [57]. By using this method,
we can easily deal with the spin-polarization problem for
all the decay channels that are needed in this paper. In this

FIG. 1. Illustration of the coordinate frames in helicity formalism.

section, we will first introduce the basic framework of the
helicity formalism, and then, we will apply this formalism to
some specific decay channels. For more information about the
helicity formalism, we refer the readers to Refs. [58–60].

Figure 1 illustrates the coordinate frames which are used in
the helicity formalism. For the decay problem, it is natural to
use the rest frame of the parent P (RFP). The z axis is set
to be along the polarization vector of P, i.e., ẑ = P̂P. The
transverse axes x̂ and ŷ can be arbitrarily chosen since the
whole system has a rotational symmetry around the z axis. In
this x-y-z frame, we can label the spin state of P as

|i〉 = |SPMP〉, (3)

where SP is the spin number of P and MP is its spin projection
along the z axis.

After the decay, the momenta of D and X are equal but
along opposite directions in the RFP. We denote the momen-
tum of D in the RFP as p∗, whose polar and azimuthal angles
are θ∗ and φ∗, respectively. In the helicity formalism, the spin
states of D and X are quantized along the direction of p∗
(i.e., the spin states are described by the helicities of D and
X ). Accordingly, we introduce new frame axes (X̂, Ŷ, Ẑ) as
illustrated in Fig. 1, where Ẑ = p̂∗ is the new quantization
direction and X̂ and Ŷ directions could be arbitrarily chosen.
However, it would be convenient if we fix the choice by taking
Ŷ being along ẑ × Ẑ and X̂ being along Ŷ × Ẑ. This follows
the convention in Refs. [58,60]. The explicit forms of the new
frame basis are

X̂ = (P̂P × p̂∗) × p̂∗

sin θ∗ = (P̂P · p̂∗)p̂∗ − P̂P

sin θ∗ , (4)

Ŷ = P̂P × p̂∗

sin θ∗ , (5)

Ẑ = p̂∗, (6)

where sin θ∗ in the denominators makes X̂ and Ŷ unit vectors.
This choice of the X -Y -Z frame can be achieved from the x-y-z
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frame by a standard rotating operation R̂(φ, θ, ϕ) with Euler
angles φ = φ∗, θ = θ∗, and ϕ = 0 [58,60].

In the X -Y -Z frame, the spin states of D and X can be
labeled as |SDλD〉 and |SX λX 〉, respectively, where SD and
SX are their spin numbers and λD and λX are their helicities.
The spin projections along the Z axis of D and X are λD and
−λX , respectively. For massive particles, λD = −SD, . . . , SD

and λX = −SX , . . . , SX . If X is a massless particle, such as a
photon, λX takes binary values ±SX .

As we are concerned about the angular distribution of D
and its spin state varying with the momentum direction, we
further define the following final state (the magnitude of p∗ is
not expressed),

| f 〉 = |θ∗φ∗λDλX 〉. (7)

It labels a pair of D and X being emitted along the p̂∗ and −p̂∗
directions with their helicities being λD and λX , respectively.

After the initial and final states are defined, it comes to
a useful result of the helicity formalism. Saying the decay
process is encoded by a decay operator Ĥ , the spin-density
matrix of the final-state ρ f is related to that of the initial-state
ρ i by

ρ
f
λDλX ;λ′

Dλ′
X
(θ∗, φ∗) =

∑
MP,M ′

P

HλDλX ;MPρ
i
MP ;M ′

P
H†

M ′
P ;λ′

Dλ′
X
, (8)

where ρ i
MP ;M ′

P
and ρ

f
λDλX ;λ′

Dλ′
X

are the matrix elements of ρ i and

ρ f , respectively. They are defined as

ρ i
MP ;M ′

P
= 〈SPMP|ρ i|SPM ′

P〉, (9)

ρ
f
λDλX ;λ′

Dλ′
X
(θ∗, φ∗) = 〈θ∗φ∗λDλX |ρ f |θ∗φ∗λ′

Dλ′
X 〉. (10)

Note that ρ f is labeled by λD and λX jointly and is a function
of θ∗ and φ∗. The normalization of ρ i and ρ f are, respectively,

tr(ρ i ) = 1, (11)∫
d�∗tr(ρ f ) = 1, (12)

with d�∗ = d cos θ∗dφ∗ being the solid angle volume and tr
being the trace over the spin states.

According to Refs. [58–60], the matrix element HλDλX ;MP

in Eq. (8) is given by

HλDλX ;MP =
√

2SP + 1

4π
DSP∗

MP ;λD−λX
(φ∗, θ∗, 0)AλD;λX , (13)

where DSP
MP ;λD−λX

is the Wigner D function and DSP∗
MP ;λD−λX

is its
conjugate. The arguments (φ∗, θ∗, 0) correspond to the Euler
angles for our choice of X -Y -Z axes. AλD;λX is the relative
dynamical amplitude for the decay process from |SPMP〉 to
|λDλX 〉, and its value depends only on λD and λX and is
normalized as

∑
λD,λX

|AλD;λX |2 = 1.
For the current paper, it is not necessary to calculate the

exact value of AλD;λX . Instead, one can use some constraining

conditions to simplify the calculation. If the decay process
is parity conserved (strong and EM decays), AλD;λX is con-
strained by the following relation [58–60]:

AλD;λX = πPπDπX (−1)SP−SD−SX A−λD;−λX , (14)

where πP, πD, and πX are the parity values (±1) of P, D,
and X , respectively. In this case, we always have |AλD;λX | =
|A−λD;−λX |. On the other hand, for parity-violating weak decay,
Eq. (14) does not apply, and AλD;λX can be parametrized by
several decay parameters; for example, 1/2 → 1/2 0 weak
decay can be parametrized by three decay parameters α, β,
and γ (see below and Ref. [55]) whose values can be de-
termined by fitting the experimental measurements or by
concrete field-theory calculations.

Up to this point, the main line of the helicity formalism has
been established. From a given initial spin-density-matrix ρ i,
we can calculate the spin-density matrix of final-state ρ f by
Eq. (8). Then, the angular distribution of D in the RFP can be
determined by

1

N

dN

d�∗ = tr
(
ρ

f
λDλX ;λ′

Dλ′
X

)
. (15)

To obtain the polarization vector of D emitted in a certain
direction, we first take the partial trace of ρ f over index λX ,
obtaining the spin-density matrix of D,

ρD
λD;λ′

D
= trX

(
ρ

f
λDλX ;λ′

Dλ′
X

)
, (16)

then the polarization vector of D can be calculated by

PD = trD
(
P̂ρD

λD;λ′
D

)
/trD

(
ρD

λD;λ′
D

)
, (17)

where P̂ is the polarization operator, e.g., P̂ = σ (the Pauli
matrix) for spin-1/2 particles. As the spin-density-matrices
ρ

f
λDλX ;λ′

Dλ′
X

and ρD
λD;λ′

D
are functions of θ∗ and φ∗, the polariza-

tion vector PD in Eq. (17) depends on the momentum direction
p̂∗ in general.

Now, we apply the above results to the decay channels
relevant for � production to calculate the angular distribution
of D in the RFP and its polarization vector PD.

A. Strong decay 1/2± → 1/2+0−

We start with the simplest case, the strong decay 1/2± →
1/2+0−. As we choose the polarization direction of P to be
the initial spin-quantization axis, the spin-density matrix of P
is a diagonal matrix, which reads

ρ i
MP ;M ′

P
= diag

(
1 + PP

2
,

1 − PP

2

)
, (18)

where PP is the polarization magnitude of P.
Using Eqs. (8) and (13), we obtain the final spin-density

matrix as

ρD
λD;λ′

D
= 1

4π

(|A1/2|2(1 + PP cos θ∗) −A1/2A∗
−1/2PP sin θ∗

−A∗
1/2A−1/2PP sin θ∗ |A−1/2|2(1 − PP cos θ∗)

)
, (19)
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where λD takes binary values λD = ±1/2 and the index of A
refers to λD. We have omitted the index λX as it takes a single
value λX = 0, i.e., AλD ≡ AλD;0 and ρD

λD;λ′
D

≡ ρ
f
λD0;λ′

D0.
Because strong decay conserves parity, the decay ampli-

tude A±1/2 is constrained by Eq. (14). We have A1/2 = −A−1/2

for decay channel 1/2+ → 1/2+0− and A1/2 = +A−1/2 for
channel 1/2− → 1/2+0−. For both channels, the normaliza-
tion condition gives |A1/2|2 = |A−1/2|2 = 1/2. Then Eq. (19)
can be reduced to

ρD
λD;λ′

D
= 1

8π

(
1 + PP cos θ∗ ±PP sin θ∗
±PP sin θ∗ 1 − PP cos θ∗

)
, (20)

where ± takes the upper sign for channel 1/2+ → 1/2+0−
and the lower sign for 1/2− → 1/2+0−, respectively.

Plugging Eq. (20) into Eqs. (15) and (17), we find that the
angular distribution of D in the RFP is

1

N

dN

d�∗ = 1

4π
, (21)

and the three components of PD are

PX (θ∗, φ∗) = ±PP sin θ∗, (22)

PY (θ∗, φ∗) = 0, (23)

PZ (θ∗, φ∗) = PP cos θ∗. (24)

Note that these three components are on the bases X̂, Ŷ, and
Ẑ, so plugging them into PD = PX X̂ + PY Ŷ + PZ Ẑ and using
Eqs. (4)–(6), we can rewrite PD as

PD = 2(PP · p̂∗)p̂∗ − PP (25)

for channel 1/2+ → 1/2+0− and

PD = PP (26)

for channel 1/2− → 1/2+0−. Equations (25) and (26) are
expressed by PP and p̂∗, so they are free from the choice of
the frames and are thus convenient for practical use.

B. Weak decay 1/2 → 1/2 0

Since the spin numbers for the weak decay 1/2 → 1/2 0
is the same as the strong decay above, the spin-density-matrix
ρD

λD;λ′
D

for this channel is also given by Eq. (19). The difference
is that A±1/2 is no longer constrained by Eq. (14). Indeed,
the weak decay process 1/2 → 1/2 0 is a mixture of s-wave
(parity-even) and p-wave (parity-odd) modes [54,55], so one
can decompose A±1/2 into

A±1/2 = As ± Ap√
2(|As|2 + |Ap|2)

, (27)

where As and Ap are the amplitudes of the decay process
through s-wave and p-wave channels. Plugging Eq. (27) into
Eq. (19) and using Eqs. (15) and (17), one obtains the angular
distribution of D in the RFP as

1

N

dN

d�∗ = 1

4π
(1 + αPP cos θ∗), (28)

and its polarization vector as

PD = (α + PP · p̂∗)p̂∗ + β(PP × p̂∗) + γ p̂∗ × (PP × p̂∗)

1 + αPP · p̂∗ .

(29)

Here, we have introduced three decay parameters α, β, and
γ , which are defined as

α = 2 Re(A∗
s Ap)

|As|2 + |Ap|2 , β = 2 Im(A∗
s Ap)

|As|2+|Ap|2 , γ = |As|2−|Ap|2
|As|2+|Ap|2 .

(30)

Their values for �− and �0 can be found from the Particle
Data Group (PDG) [61].

Equations (28) and (29) are the well-known results for
the weak decay of spin-1/2 hyperons [55]. We note that,
by setting α = β = 0 and γ = ±1, Eqs. (28) and (29) can
be reduced to Eqs. (21), (25), and (26). This is because the
strong decay 1/2+ → 1/2+0− occurs in the pure p-wave
mode (γ = −1), whereas 1/2− → 1/2+0− occurs in the pure
s-wave mode (γ = 1).

C. EM decay 1/2+ → 1/2+1−

In the EM decay 1/2+ → 1/2+1−, the initial spin-density-
matrix ρ i

MP ;M ′
P

is the same as Eq. (18), whereas the final spin-

density-matrix ρ
f
λDλX ;λ′

Dλ′
X

should be labeled jointly by λD =
±1/2 and λX = ±1. Using Eqs. (8), (13), and (14), we obtain

ρ
f
λDλX ;λ′

Dλ′
X

= 1

8π

⎛
⎜⎝

1 + PP cos θ∗ 0 0 −PP sin θ∗
0 0 0 0
0 0 0 0

−PP sin θ∗ 0 0 1 − PP cos θ∗

⎞
⎟⎠.

(31)

Here, the rows and columns are sorted in order (λ(′)
D , λ

(′)
X ) =

(1/2, 1), (−1/2, 1), (1/2,−1), and (−1/2,−1). We note
that only four elements of ρ f are nonzero. This is the
consequence of the angular momentum conservation, which
requires |λD − λX | � 1/2.

After taking the partial trace of ρ f over index λX , the spin-
density matrix for D is

ρD
λD;λ′

D
= 1

8π

(
1 + PP cos θ∗ 0

0 1 − PP cos θ∗

)
. (32)

This directly leads to the angular distribution,

1

N

dN

d�∗ = 1

4π
, (33)

and the polarization vector,

PD = −(PP · p̂∗)p̂∗. (34)

These results agree with Ref. [56].

D. Strong decay 3/2± → 1/2+0−

For the strong decay 3/2± → 1/2+0−, the initial spin-
density-matrix ρ i

MP ;M ′
P

is a 4 × 4 matrix. Its diagonal elements
fulfill two equations, corresponding to the normalization,

ρ i
3/2,3/2 + ρ i

1/2,1/2 + ρ i
−(1/2)−(1/2) + ρ i

−(3/2)−(3/2) = 1, (35)

and the polarization,

ρ i
3/2,3/2 + 1

3ρ i
1/2,1/2 − 1

3ρ i
−(1/2)−(1/2) − ρ i

−(3/2)−(3/2) = PP.

(36)
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Here, the polarization operator along the z axis for the spin-
3/2 particle is P̂z = diag(1, 1/3,−1/3,−1), and P̂x and P̂y are
given by

P̂x = 1

3

⎛
⎜⎜⎝

0
√

3 0 0√
3 0 2 0

0 2 0
√

3
0 0

√
3 0

⎞
⎟⎟⎠,

P̂y = 1

3i

⎛
⎜⎜⎝

0
√

3 0 0
−√

3 0 2 0
0 −2 0

√
3

0 0 −√
3 0

⎞
⎟⎟⎠.

The off-diagonal elements of ρ i satisfy tr(P̂xρ
i ) = tr(P̂yρ

i ) =
0. These two equations cannot uniquely determine all the
off-diagonal elements, and Eqs. (35) and (36) cannot uniquely
determine the four diagonal elements. To proceed, we will
assume that all the off-diagonal elements are zero. This could
happen if the spin degrees of freedom of all the primordial
particles are thermalized so that their spin-density matrices
are diagonal [51,52]. Particularly, the diagonal elements are
arranged by the thermal vorticity � 1 and are given by [52]

ρ i
MP ;MP

= exp (MP� )∑3/2
m=−3/2 exp (m� )

. (37)

In this case, the value of � and, thus, ρ i can be uniquely
determined from PP by solving

PP = tanh(�/2) + 2 tanh(� )

3
. (38)

Furthermore, we define two parameters,

� = ρ i
1/2,1/2 + ρ i

−(1/2)−(1/2), (39)

δ = (
ρ i

1/2,1/2 − ρ i
−(1/2)−(1/2)

)
/(3PP ), (40)

to characterize the initial polarization state. Both � and δ are
functions of PP.

After some calculations similar to the above subsections,
one can obtain the angular distribution of D,

1

N

dN

d�∗ = 3

8π

[
1 − 2

3
� − (1 − 2�) cos2 θ∗

]
. (41)

This result is analogous to the spin alignment of the vector
meson [7–10]. If the parent is polarized, we expect � < 1/2,
and the daughter’s angular distribution becomes anisotropic.
The polarization vector of D is obtained to be

PD = −4δ(PP · p̂∗)p̂∗ + [1 − 2δ − (1 − 10δ)(P̂P · p̂∗)2]PP

1 − 2�/3 − (1 − 2�)(P̂P · p̂∗)2
,

(42)

and

PD = 2[1 − 4δ − (1 − 10δ)(P̂P · p̂∗)2](PP · p̂∗)p̂∗ − [1 − 2δ − (1 − 10δ)(P̂P · p̂∗)2]PP

1 − 2�/3 − (1 − 2�)(P̂P · p̂∗)2
. (43)

Here, Eqs. (42) and (43) are for 3/2+ → 1/2+0− and
3/2− → 1/2+0−, respectively. We note here that, if the initial
polarization is small (PP 	 0), we have

ρ i
MP ;MP

= 1
4 + 1

4 MP� + O(� 2),

PP = 5
6� + O(� 2),

and, thus, � = 1/2 and δ = 1/10. In this case, Eqs. (42) and
(43) are dramatically simplified

PD = 6
5

[
PP − 1

2 (PP · p̂∗)p̂∗], (44)

and

PD = − 6
5

[
PP − 3

2 (PP · p̂∗)p̂∗], (45)

respectively. On the other hand, if the parent is ultrapolarized
(|PP| 	 1), the initial density-matrix ρ i is condensed at the
MP = 3/2 or the −3/2 state, then, we have � = δ = 0, and
Eqs. (42) and (43) are reduced to

PD = PP, (46)

1The thermal vorticity vector is defined as �μ = εμνρσ uν∂σ (uρ/T )
with uμ as the velocity. � = |�|.

and

PD = 2(PP · p̂∗)p̂∗ − PP, (47)

respectively. In our simulations presented in the next section,
the initial polarization can take an arbitrary value, thus, we use
Eqs. (42) and (43).

Before we end this section, we summarize the above results
in Table I. The last column shows the factor C = 〈PD〉/PP in
Eq. (1) where the averaged polarization 〈PD〉 is obtained by

〈PD〉 =
∫

d�∗ 1

N

dN

d�∗ PD. (48)

The results for 〈PD〉 are consistent with Ref. [52].

III. NUMERICAL SIMULATION

In this section, we present Monte Carlo simulations to
study the effect of feed-downs on � polarization using the
formalism obtained in the last section. All the simulations are
aimed at noncentral Au + Au collisions at

√
sNN = 200 GeV

in 10–60% centrality.
We first describe the method for determining the yields

and the kinetic distributions of the primordial particles in
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TABLE I. Daughter angular distribution and polarization vector PD in different decay channels.

Spin and parity (1/N )dN/d�∗ PD 〈PD〉/PP

Strong decay 1/2+ → 1/2+0− 1/(4π ) 2(PP · p̂∗)p̂∗ − PP −1/3
Strong decay 1/2− → 1/2+0− 1/(4π ) PP 1
Strong decay 3/2+ → 1/2+0− 3[1 − 2�/3 − (1 − 2�) cos2 θ∗]/(8π ) Eq. (42) 1
Strong decay 3/2− → 1/2+0− 3[1 − 2�/3 − (1 − 2�) cos2 θ∗]/(8π ) Eq. (43) −3/5
Weak decay 1/2 → 1/2 0 (1 + αPP cos θ∗)/(4π ) Eq. (29) (2γ + 1)/3
EM decay 1/2+ → 1/2+1− 1/(4π ) −(PP · p̂∗)p̂∗ −1/3

Sec. III A. Then, a series of simulation results are presented
in Sec. III B. Some discussions are given in Sec. III C.

A. Simulation setup

In this subsection, we set up the input information for our
simulation, including the yields and the kinetic distributions of
the primordial particles. The particle species that we include
in our simulations are listed in Table II. Their primordial
yields are determined by the statistical thermodynamic model,
presented as a ratio to the yield of �. We employ the grand-
canonical ensemble in which the partition function is given
by

ln Z =
∑

species i

giV

(2π )3

∫
d3 p ln

[
1 ± exp

(
Ei − μi

Tch

)]±1

,

(49)

where gi is the spin degeneracy factor, V is the volume of
the thermal system, Tch is the chemical freeze-out tempera-
ture, Ei =

√
p2 + m2

i is the particle energy, and μi = BiμB +
SiμS + QiμQ is the chemical potential in which Bi, Si, and Qi

are the baryon, strangeness, and charge numbers of particle
species i, and μB, μS , and μQ are the corresponding chemical
potentials. The plus and minus signs correspond to fermions
and bosons, respectively. From Eq. (49), the primordial yield

TABLE II. The primordial yield ratio Ni/N�, spin, parity, and
decay channels of strange particles.

Ni/N� Spin and parity Decay channel

� 1 1/2+

�(1405) 0.236 1/2− �0π

�(1520) 0.265 3/2− �0π

�(1600) 0.098 1/2+ �0π

�(1670) 0.061 1/2− �0π,�η

�(1690) 0.112 3/2− �0π

�0 0.686 1/2+ �γ

�∗0 0.533 3/2+ �π

�∗+ 0.535 3/2+ �π,�0π

�∗− 0.524 3/2+ �π,�0π

�(1660) 0.068 1/2+ �π,�0π

�(1670) 0.125 3/2− �π,�0π

�0 0.343 1/2+ �π

�− 0.332 1/2+ �π

�∗0 0.228 3/2+ �π

�∗− 0.224 3/2+ �π

number of particle species i can be calculated by

Ni = Tch
∂ (ln Z )

∂μi
. (50)

We adopt the THERMUS package [62] to calculate
Eqs. (49) and (50) with the calculational parameters
taking the same values as in Ref. [63] where the yields
of π±, K±, p, p̄, �, �̄, �−, and �̄+ are fitted to the
experimental data. We, thus, obtain the multiplicities of
the primordial particles for the 10–60% central Au + Au
collision at

√
sNN = 200 GeV. The results are listed in the

second column of Table II as the ratios to the primordial �

yield.
In Table II, we also list particles’ spin, parity, and main

decay channels that can contribute to final � hyperons. Using
the Ni/N� data and the branch ratio for each decay channel
in the PDG [61], we find that only around 21% of the final
�s are primordial, and the others are produced by decays
from high-lying strange baryons: about 15% from the decay
of primordial �0, 30% from primordial �∗0, �∗+, and �∗−,
14% from primordial �0 and �−, 10% from primordial �∗0

and �∗−, and 10% from other higher-lying resonance states.
As for the momentum distributions of the primordial par-

ticles, we assume the rapidity distribution dN/dη to be flat at
200 GeV, and the transverse momentum pT is generated by
the blast-wave model [64] using the following equation:

d2N

pTd pTdy
∝

∫ 1

0
r̃ d r̃ mTI0

(
pT sinh ρ

Tkin

)
K1

(
mT cosh ρ

Tkin

)
,

(51)

where mT =
√

p2
T + m2

0 is the transverse mass and m0 is
the particle mass. For resonance particles, m0 is sampled
according to the Breit-Wigner distribution with the central
mass and width from PDG [61]. Tkin is the kinetic freeze-out
temperature, I0 and K1 are the modified Bessel functions, and
ρ is the transverse rapidity parametrized as

tanh ρ = 2 + l

2
〈β〉r̃l , (52)

where 〈β〉 is the average radial flow in the thermal area, r̃ =
r/rmax is the reduced radius, and l is the exponent of the flow
profile. In our simulation, the blast-wave parameters take the
values of Tkin = 140 MeV, 〈β〉 = 0.445, and l = 1.21, which
are determined by fitting the experimental data [65] for pT

spectra of �, �̄, �−, and �̄+ in 10–60% central Au + Au
collisions at

√
sNN = 200 GeV. The fitting result is shown in

Fig. 2.
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FIG. 2. Blast-wave fits (dashed curves) to the data of the STAR
Collaboration [65] for pT spectra of �, �̄, �−, and �̄+ in 10–60%
central Au + Au collisions at

√
sNN = 200 GeV.

When sampling the azimuthal angle, all primordial parti-
cles are allowed to have their elliptic flows. The value of v2 is
calculated by the following function inspired by the number
of constituent quark (NCQ) scaling law [66]:

v2/n = a

1 + exp{−[(mT − m0)/n − b]/c} − d, (53)

where n is the number of constituent quarks in a hadron.
The parameter values are a = 0.133, b = 0.066 GeV/c, c =
0.238 GeV/c, and d = 0.06, which are determined by fitting
the elliptic flows of K0

S , φ, �, �, and � in the minimum-
bias Au + Au collisions at

√
sNN = 200 GeV [67–69] as

shown in Fig. 3.
We note that, in the above fittings, the experimental data

for the pT spectra and the elliptic flows include the contri-
bution from feed-down decays; only the pT spectra of �(�̄)
are corrected by excluding the weak decays from � and �

[65]. Besides, the available v2 data for (multi)strangeness
particles are from minimum-bias (0–80%) events, whereas
our simulation is for 10–60% central collisions. However, as
we checked by varying the yields, pT spectra, and v2 data,

FIG. 3. NCQ fit (dashed curve) to the data of the STAR Col-
laboration [67–69] for elliptic flows of K0

S , φ, �, �, and � in the
minimum-bias Au + Au collisions at

√
sNN = 200 GeV.

these mismatches have only a minor impact on our results
presented in the following subsections. Nevertheless, if more
data from the experiments are released, our fitting can be
gradually improved.

B. Feed-down effect on � polarization

In this subsection, we perform a series of Monte Carlo
simulations to study the effect of particle decay on � polar-
ization. For each plot shown in this section, 109 primordial
particles are sampled. Their species and momenta are deter-
mined randomly by the yield ratio Ni/N� and the momentum
distribution in last subsection. The polarizations of primordial
particles are input as function of the particle’s azimuthal
angle. All spin-1/2 primordial particles are assumed to have
the same polarization with that of the primordial �’s, whereas,
for spin-3/2 primordial particles, their polarization vector P3/2

is determined from the spin-1/2 polarization P1/2 by solving

P3/2 = [tanh(�/2) + 2 tanh(� )]/3, (54)

P1/2 = tanh(�/2). (55)

These relations are obtained by assuming thermal equilibrium
for the spin degree of freedom so that the polarization is
determined by the thermal-vorticity � [52]. The angular
distribution and polarization of the daughter particle in each
decay channel are calculated by equations obtained in Sec. II,
and the daughter’s momentum is boosted to the laboratory
frame by the parent’s momentum. In all the simulations,
primordial particles are generated in ranges of |η| < 2 and
0 < pT < 8 GeV/c, whereas only the final �s in ranges of
|η| < 1 and 0.5 < pT < 4 GeV/c are selected for analysis. In
the present paper, we do not distinguish � and �̄.

First of all, let us study the case that the input primordial
polarization is zero Pprim = (0, 0, 0). The final � polarization
is presented as a function of �’s azimuthal angle in Fig. 4. We
find the final �s are polarized, even though the polarizations
of all primordial particles are zero. This is due to the weak
decay of �− and �0. From Eq. (29), one can see that �s
decaying from unpolarized � could have a radial polarization
P� = α�p̂∗, where p̂∗ is �’s momentum direction in the rest
frame of �. After boosting back to the laboratory frame, this
radial polarization gives Fig. 4. The longitudinal component
Pz is zero averaged in the symmetric rapidity range of −1 <

η < 1 and is not shown in the figure. The blue curves in
Fig. 4 show the fits to final � polarization by the following
equations:

Pfinal
x (φ) = K1x cos φ, (56)

Pfinal
y (φ) = K1y sin φ, (57)

where φ is the azimuthal angle of �’s momentum with respect
to the x axis and (cos φ, sin φ) is the unit vector in the
radial direction. The coefficient values are K1x = −0.127 and
K1y = −0.145, which mean that the final �s are polarized
pointing almost opposite to �’s momentum direction. This is
consistent with the fact that α�− and α�0 are negative [61].
The difference between K1x and K1y is due to the existence of
the parent’s elliptic flow. We have checked that, if we remove
�−, �0, �∗−, and �∗0 from the primordial particle species
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FIG. 4. Radial polarization of final �’s (diamond points) gen-
erated from feed-downs with zero input of primordial polarization
(black dashed curves). The blue curves represent the harmonic fit to
the final � polarization. The simulation is for Au + Au collisions at√

sNN = 200 GeV.

in the simulation, all components of final � polarization are
zero; and if we set the primordial v2 to be zero, the values of
K1x and K1y are equal.

Next, we input nonzero primordial polarization. Three
issues are taken into consideration. They are as follows: (1)
the in-plane to out-of-plane differences of the polarization at
midrapidity, (2) the transverse local polarization at positive or
negative rapidity, and (3) the longitudinal local polarization
at midrapidity. The input primordial polarization of � is
parametrized as a superposition of harmonic functions of �’s
azimuthal-angle φ in the following form:

Pprim
x = f1x sin φ, (58)

Pprim
y = f0 − f1y cos φ + f2 cos(2φ), (59)

Pprim
z = fz sin(2φ). (60)

Other particles in the simulation are given polarizations as
discussed around Eqs. (54) and (55). In Eqs. (58)–(60), f0

stands for the global polarization, the term f2 cos(2φ) char-
acterizes a difference in Pprim

y at midrapidity from in-plane
(φ = 0 or π ) to out-of-plane (φ = π/2 or 3π/2) directions;
( f1x sin φ,− f1y cos φ) is the transverse local polarization,
and fz sin(2φ) is the longitudinal local polarization. In the
following simulation, the coefficient values are taken to be
f0 = f2 = 0.0025 and fz = 0.002, for instance, which are of
the typical magnitude close to the current preliminary exper-
imental data [30]. The coefficients f1x and f1y are assumed

FIG. 5. Effect of the feed-downs on the global � polarization
with in-plane and out-of-plane differences. Compared to the primor-
dial � polarization (black dashed curves), the final � polarization
after decay (diamond points) and the harmonic fit to the final �

polarization (blue curves) are shown. The simulation is for Au +
Au collisions at

√
sNN = 200 GeV.

linear relations with rapidity f1x = f1y = 2 f 1η, where f 1 is
the mean value of | f1x| and | f1y| in rapidity region |η| < 1. Its
value takes f 1 = 0.1, estimated in Ref. [47]. It is important
to point out that the coefficients f1x and f1y are found to be
rapidity odd, whereas f0, f2, and fz are rapidity even, see
the discussions in Refs. [47,48]. Because of their different
dependences on rapidity, when � polarization is averaged on
symmetric rapidity region −1 < η < 1, terms related to f1x

and f1y get canceled, and the effects of f0, f2, and fz survive.
In contract, to extract the terms with f1x and f1y, � polariza-
tion are averaged separately in the regions of −1 < η < 0 and
0 < η < 1 or, equivalently, averaged with the weight of the
sign of rapidity.

Figure 5 shows the effect of the feed-downs on the global
� polarization with a difference from in-plane to out-of-plane
directions. We find that the output signal for the final �

polarization is the superposition of the radial polarization and
the global polarization which can be well fitted by

Pfinal
x (φ) = K1x cos φ, (61)

Pfinal
y (φ) = F0 + K1y sin φ + F2 cos(2φ). (62)

We can see that the peak magnitude of K1y sin φ is much
larger than that of F0 + F2 cos(2φ), so the final polarization
follows roughly a sine shape.
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FIG. 6. The same as Fig. 5 with �’s azimuthal angle folded into
range (0, π/2).

In the experimental measurement for the in-plane to out-of-
plane differences of the global polarization [30], the azimuthal
angle of � is defined in range of (0, π/2) by folding twice
the entire range of (0, 2π ). After applying the same analysis
as the experimental measurement, we obtain the result shown
in Fig. 6 in which the radial polarization K1y sin φ vanishes,
and we can see that the final � polarization is suppressed
compared with the primordial one. The blue curve in Fig. 6
is the fit to the final � polarization by

Pfinal
y (φ) = F0 + F2 cos(2φ). (63)

We find the suppression factors for the isotropic polarization
and the in-plane to out-of-plane differences are F0/ f0 = 0.93
and F2/ f2 = 0.88, respectively.

Figure 7 shows the effect of the feed-downs on the trans-
verse local � polarization where the data are averaged sepa-
rately in range of η > 0 and η < 0 and then combined with
the weight of the sign of η, namely,

〈Pxsgn(η)〉 ≡ Px(η > 0) − Px(η < 0)

2
, (64)

〈Pysgn(η)〉 ≡ Py(η > 0) − Py(η < 0)

2
. (65)

The blue curves in Fig. 7 are the fit to the final � polarization
by the following equations:〈

Pfinal
x sgn(η)

〉 = F1x sin φ, (66)〈
Pfinal

y sgn(η)
〉 = −F1y cos φ. (67)

The feed-downs suppress the transverse local � polarization
by factors of F1x/ f 1x = F1y/ f 1y = 0.93.

Figure 8 shows the effect of the feed-down on the longitu-
dinal local � polarization. The blue curve is the fit to the final
� polarization by the following equation:

Pfinal
z (φ) = Fz sin(2φ). (68)

The effect of the feed-downs is suppression to the primordial
polarization, and the corresponding factor is Fz/ fz = 0.87.

From the above calculation, we can see that, in all cases,
the feed-downs can reduce the � polarization by a factor of
∼0.9 but cannot flip the sign of the primordial polarization.

FIG. 7. Transverse local � polarization: The primordial � po-
larization (black dashed curves), the final � polarization after decay
(diamond points), and the harmonic fit to the final � polarization
(blue curves). The simulation is for Au + Au collisions at

√
sNN =

200 GeV.

C. Discussions

We present some discussions in order. (1) In the simu-
lations, the input coefficients f0, f 1, f2, and fz are chosen
based on the available experimental data and the current
model simulations. However, we have checked that, varying

FIG. 8. Longitudinal local � polarization: The primordial �

polarization (black dashed curve), the final � polarization after decay
(diamond points), and the harmonic fit to the final � polarization
(blue curve). The simulation is for Au + Au collisions at

√
sNN =

200 GeV.
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FIG. 9. The upper panel shows the distribution of final �’s on
the �φ-pT plane with �φ as the azimuthal-angle difference between
the parent and the daughter �. The lower panel shows the averages
of cos(�φ) (green line) and cos(2 �φ) (red line) as functions of pT.
The simulation is for Au + Au collisions at

√
sNN = 200 GeV.

the values of the input coefficients has no significant change
on our qualitative results. Furthermore, if the primordial �

polarization is limited to be small |Pprim
� | < 20%, which is

the most likely case for realistic heavy ion collisions, our
estimation for suppression factors of F0/ f0, F1/ f 1, F2/ f2,
and Fz/ fz in the last subsection does not change significantly.
(2) The main uncertainty for this paper comes from the choice
of the primordial particle species. This is because the spin
transfer law is different for different decay channels as shown
in Table I. We note that our estimation for the suppression
factor of the global polarization F0/ f0 has a minor difference
from the previous studies [42,44]. This is mainly because
�−, �0, �∗−, and �∗0 were not included in those studies.
(3) The φ angle appearing in Eqs. (58)–(60) is the primordial
particle’s azimuthal angle φprim, whereas the φ angle in other
equations in the last subsection is the final �’s azimuthal angle
φfinal which is different from φprim in principle. However, our
simulations indicate that these two should align well with each
other. To understand this, we show the distribution of the final
�’s on the �φ-pT plane with �φ as the difference between
φprim and φfinal in Fig. 9. We can see that, except for the
very low-pT (pT < 0.5 GeV/c) region, φfinal aligns with φprim

well. Such a strong alignment can be characterized by the
averages of cos(�φ) and cos(2 �φ) shown in the lower panel

of Fig. 9. Therefore, in the laboratory frame, the daughter �

with pT > 0.5 GeV/c flies almost along the same direction as
its parent particle. As a consequence, the final � polarization
inherits very similar azimuthal-angle dependence with that of
the primordial particles.

IV. SUMMARY AND OUTLOOK

To summarize, we have studied systematically the effect
of feed-downs from high-lying strange baryons on the �

polarization. We have derived the angular distribution and
polarization vector of the daughter particle for different decay
channels including the strong decay 1/2± → 1/2+0− and
3/2± → 1/2+0−, the weak decay 1/2 → 1/2 0, and the EM
decay 1/2+ → 1/2+1−, based on the framework of the helic-
ity formalism.

We present a numerical computation of the feed-down
effect on � polarization with appropriate input of the initial
polarization and kinetic distribution of the primordial baryons.
The high-lying baryons included in our simulation are listed
in Table II. The numerical computation performed for Au +
Au collisions at

√
sNN = 200 GeV show that only about 21%

of the final �s are primordial, and the others are produced
by decays from other baryons. We find that the decays from
�0 and �− can lead to a radial � polarization opposite to
the momentum direction of the produced �. After a series of
Monte Carlo simulations, we find that the feed-down contri-
bution is not strong enough to flip the sign of the primordial
polarization, although it suppresses the � polarization by a
factor of ∼0.9 at

√
sNN = 200 GeV. Therefore, we conclude

that the feed-down effect does not solve the puzzle on the
opposite azimuthal-angle dependence in the observed and
predicted � polarization.

In the future, we will extend the current paper to other col-
lision energies, especially to the energies covered by the Beam
Energy Scan Program at the Brookhaven National Laboratory
Relativistic Heavy Ion Collider. Besides, our paper can also
provide guidance for the spin-polarization measurement of
high-lying weak decay states, such as the �− hyperon. The
concrete simulation will be reported elsewhere.

Note added. During the preparation of this paper, we
learned that Becattini et al. have been working on the same
subject [70]. Their results bear some overlap with ours.
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