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We extend the parton-hadron string dynamics (PHSD) transport approach in the partonic sector by explicitly
calculating the total and differential partonic scattering cross sections as a function of temperature T and baryon
chemical potential μB on the basis of the effective propagators and couplings from the dynamical quasiparticle
model (DQPM) that is matched to reproduce the equation of state of the partonic system above the deconfinement
temperature Tc from lattice QCD. We calculate the collisional widths for the partonic degrees of freedom at finite
T and μB in the timelike sector and conclude that the quasiparticle limit holds sufficiently well. Furthermore,
the ratio of shear viscosity η over entropy density s, i.e., η/s, is evaluated using the collisional widths and
compared to lattice QCD calculations for μB = 0 as well. We find that the novel ratio η/s does not differ very
much from that calculated within the original DQPM on the basis of the Kubo formalism. Furthermore, there
is only a very modest change of η/s with the baryon chemical μB as a function of the scaled temperature
T/Tc(μB ). This also holds for a variety of hadronic observables from central A + A collisions in the energy
range 5 GeV � √

sNN � 200 GeV when implementing the differential cross sections into the PHSD approach.
We only observe small differences in the antibaryon sector (p̄, �̄ + �̄0) at

√
sNN = 17.3 GeV and 200 GeV with

practically no sensitivity of rapidity and pT distributions to the μB dependence of the partonic cross sections.
Small variations in the strangeness sector are obtained in all collisional systems studied (A + A and C + Au);
however, it will be very hard to extract a robust signal experimentally. Since we find only small traces of a
μB dependence in heavy-ion observables—although the effective partonic masses and widths as well as their
partonic cross sections clearly depend on μB—this implies that one needs a sizable partonic density and large
space-time QGP volume to explore the dynamics in the partonic phase. These conditions are only fulfilled at high
bombarding energies where μB is, however, rather low. On the other hand, when decreasing the bombarding
energy and thus increasing μB, the hadronic phase becomes dominant and accordingly it will be difficult to
extract signals from the partonic dynamics based on “bulk” observables.
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I. INTRODUCTION

Nonequilibrium many-body theory or transport theory has
become a major topic of research in nuclear physics, cosmo-
logical particle physics, and condensed matter physics. The
multidisciplinary aspect arises due to a common interest in
understanding the various relaxation phenomena of quantum
dissipative systems. Important questions in nuclear and parti-
cle physics at the highest energy densities are the following:
(i) how do nonequilibrium systems in extreme environments
evolve and eventually thermalize, (ii) what are the macro-
scopic transport coefficients of the matter in equilibrium,
and (iii) what is the nature of possible phase transitions?
The dynamics of heavy-ion collisions at various bombarding
energies provide the laboratory of choice for research on
nonequilibrium quantum many-body physics and relativistic
quantum-field theories, since the initial state of a collision
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resembles an extreme nonequilibrium configuration while the
final state might even exhibit some degree of thermalization.

For many decades, the powerful method of the Schwinger-
Keldysh [1–4] or closed time path (CTP) real-time Green’s
functions—being the essential degrees of freedom—has been
shown to provide an appropriate basis for the formulation of
the complex problems in the various areas of nonequilibrium
quantum many-body physics. Within this framework, one can
derive suitable approximations depending on the problem
under consideration by preserving overall consistency rela-
tions [5]. Originally, the resulting causal Dyson-Schwinger
equation of motion for the one-particle Green’s functions (or
two-point functions), i.e., the Kadanoff-Baym (KB) equations
[6], have served as the underlying scheme for deriving various
transport phenomena and generalized transport equations. For
review articles on the Kadanoff-Baym equations in the various
areas of nonequilibrium quantum physics, we refer the reader
to Refs. [7–12].

On the other hand, kinetic transport theory is a convenient
method to study many-body nonequilibrium systems. Kinetic
equations, which do play the central role in more or less all
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practical simulations, can be derived from the KB equations
within suitable approximations. Hence, a major impetus in the
past has been to derive semiclassical Boltzmann-like transport
equations within the standard quasiparticle approximation.
Additionally, off-shell extensions by means of a gradient
expansion in the space-time inhomogeneities—as already in-
troduced by Kadanoff and Baym [6]—have been formulated
for various directions in physics, from a relativistic electron-
photon plasma [13] to the transport of nucleons at interme-
diate heavy-ion reactions [14] to the transport of partons in
high-energy heavy-ion reactions [15–23]. We recall that on the
formal level of the KB equations the various forms assumed
for the self-energy have to fulfill consistency relations in
order to preserve symmetries of the fundamental Lagrangian
[6,24,25]. This allows for a unified treatment of stable and
unstable (resonance) particles also out of equilibrium.

The possibilities of solving in particular QCD in
Minkowski space for out-of-equilibrium configurations and
nonvanishing quark (or baryon) densities will be low in the
next years, such that effective approaches are necessary to
model the dominant properties of QCD in equilibrium, i.e.,
the thermodynamic quantities and transport coefficients. To
this aim, the dynamical quasiparticle model (DQPM) has
been introduced [26], which is based on partonic propagators
with sizable imaginary parts of the self-energies incorporated.
Whereas the real part of the self-energies can be attributed
to a dynamically generated mass (squared), the imaginary
parts contain the information about the interaction rates in the
system [27–34]. Furthermore, the imaginary parts of the prop-
agators define the spectral functions of the degrees of freedom
which might show narrow (or broad) quasiparticle peaks [35].
A further advantage of a propagator-based approach is that
one can formulate a consistent thermodynamics [36] as well
as a causal theory for nonequilibrium configurations on the
basis of KB equations.

In order to explore the phase diagram of strongly inter-
acting matter as a function of temperature T and baryon
chemical potential μB, different strategies are employed at
present: (i) Lattice calculations of quantum chromodynamics
(lQCD) [37–39] show that the phase transition from hadronic
to partonic degrees of freedom (at vanishing baryon chem-
ical potential μB = 0) is a crossover. This phase transition
is expected to turn into a first-order transition at a critical
point (Tr, μr ) in the phase diagram with increasing baryon
chemical potential μB [40–42]. Furthermore, a nonvanishing
magnetic field, as produced in heavy-ion collisions, can also
influence the position of the critical point [43]. Since this
latter cannot be determined theoretically in a reliable way by
lQCD calculations, experimental information from relativistic
nucleus-nucleus collisions has to be obtained. In this respect,
(ii) the beam energy scan (BES) program—performed at
the relativistic heavy-ion collider (RHIC)—aims to find the
critical point and the phase boundary by gradually decreasing
the collision energy [44,45] and thus increasing the aver-
age baryon chemical potential. Additionally, new facilities
such as the Facility for Antiproton and Ion Research (FAIR)
and Nuclotron-based Ion Collider fAcility (NICA) are under
construction to explore in particular the intermediate energy

range of 4 GeV � √
sNN � 20 GeV, where one might study

also the competition between chiral symmetry restoration and
deconfinement [46,47].

Accordingly, the partonic and hadronic dynamics at finite
or large baryon densities (or chemical potentials) are of actual
interest and are addressed also in various hydrodynamical
models [48–51], hydrodynamical + hadron transport models
[52–54], and more parametric approaches [55]. However, as
found in Ref. [52], the inclusion of baryon diffusion leads
only to a small effect on the “bulk” observables at BES RHIC
energies.

About a decade ago, the parton-hadron string dynamics
(PHSD) transport approach was introduced, which differs
from the conventional Boltzmann-type models in the aspect
[56] that the degrees of freedom for the QGP phase are off-
shell massive strongly interacting quasiparticles that generate
their own mean-field potential. The masses of the dynamical
quarks and gluons in the QGP are distributed according to
spectral functions whose pole positions and widths, respec-
tively, are defined by the real and imaginary parts of their
self-energies [57]. The partonic propagators and self-energies,
furthermore, are defined in the DQPM in which the strong
coupling and the self-energies are fitted to lattice QCD results
[26], assuming an ansatz for the mass and width dependencies
on temperature T and quark chemical potential μq inspired by
the hard-thermal-loop (HTL) approach.

In the past, the PHSD transport model, based on
temperature-dependent DQPM masses, widths, and cross sec-
tions [58], has successfully described numerous experimental
data in relativistic heavy-ion collisions from the Alternat-
ing Gradient Synchrotron (AGS), Super-Proton Synchrotron
(SPS), RHIC, and Large Hadron Collider (LHC) energies
[56,57,59–64].

The goals of this study are to explore on a microscopic
level the partonic phase at finite baryonic chemical potential
μB and different temperatures T and to find traces of the
μB dependence in observables. Although the extension of the
DQPM model to finite baryon chemical potentials has been
realized previously [65,66] and the (T, μB) dependence of the
transport coefficients (such as shear and bulk viscosities or
electric conductivity) for the equilibrated QGP matter have
been calculated [65,66], the properties of the nonequilibrium
QGP at finite μB—as created in heavy-ion collisions (HICs)—
were not addressed by microscopic calculations within the
PHSD so far in a consistent fashion.

Although the DQPM inherits the information on the to-
tal interaction rates of the degrees of freedom in terms of
widths, it lacks the individual total as well as differential
cross sections for different reaction channels with partons that
are needed in the collision terms of a consistent relativistic
transport approach. In PHSD, these cross sections have been
parametrized so far to comply with the individual widths of
quarks, antiquarks, and gluons as a function of energy density
(cf. Ref. [58]), which can be related to the temperature T
by the lQCD equation of state (EoS). In this study, we will
calculate these total and differential cross sections in leading
order for the individual partonic channels on the basis of
the DQPM propagators and couplings. This will allow us to
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additionally explore the energy and angular dependence of
partonic cross sections on their T and μB dependence.

Moreover, using these cross sections, we calculate the
interaction rates of quarks and gluons in the timelike sector to
study the validity of the quasiparticle approximation. Further-
more, we evaluate the equilibrium shear viscosity η(T, μB)
within the Kubo formalism and the relaxation time approxi-
mation (RTA) and compare to results from lQCD at μB = 0
for the ratio η/s. The calculated total and differential cross
sections as well as parton masses—depending on (T, μB)—
have been implemented in the PHSD and thus we introduce a
further step toward a consistent relativistic transport approach
in the partonic sector.

In order to extract the Lagrange parameters μB and T
from the PHSD in heavy-ion collisions, we developed a
practical method (based on the expansion of thermodynamic
quantities in terms of the baryon number susceptibilities)
which allows us to relate the energy density and baryon
densities—calculated in each cell in space-time during heavy-
ion collisions—to a state-of-the-art lattice QCD EoS (practi-
cally identical to the DQPM EoS at small μB).

Finally, we will search for traces of the μB dependence
in the QGP dynamics in “bulk” observables from relativistic
heavy-ion collisions such as rapidity distributions and pT

spectra using the extended PHSD approach as a working tool.
This paper is organized as follows: In Sec. II, we will

provide a brief reminder of the DQPM and its ingredients as
well as its results for the partonic equation of state. Section III
will be devoted to the calculation of the partonic differen-
tial cross sections as a function of T and μB, employing
the effective propagators and couplings from the DQPM. In
Sec. IV, we will use these cross sections to evaluate partonic
scattering rates for fixed T and μB as well as compute
transport coefficients in Sec. V like the shear viscosity η in
comparison to calculations from lQCD at μB = 0. Section VI
is devoted to the extraction of the local T and μB in the ac-
tual transport approach and characteristic results will be pre-
sented for central collisions of Pb + Pb at

√
sNN = 17.3 and

Au + Au 200 GeV. In Sec. VII, we will compare the results of
the novel transport approach PHSD5.0 to those of PHSD4.0
and experimental data for central heavy-ion collisions from
AGS to RHIC energies. Furthermore, we explore the sensitiv-
ity of rapidity distributions and transverse momentum spectra
to the partonic scattering in asymmetric C + Au collisions at
the top SPS and RHIC energies. A summary of our study
will be presented in Sec. VIII, while technical details in
the calculation of the matrix elements and differential cross
sections are shifted to the Appendixes.

II. REMINDER OF THE DQPM AND ITS INGREDIENTS

Early concepts of the quark-gluon plasma (QGP) were
guided by the idea of a weakly interacting system of mass-
less partons which might be described by perturbative QCD
(pQCD). However, experimental observations at RHIC indi-
cated that the new medium created in ultrarelativistic Au + Au
collisions is interacting more strongly than hadronic matter.
It is presently widely accepted that this medium is a strongly
interacting system of partons as extracted experimentally from

the strong radial expansion and the scaling of the elliptic
flow v2(pT ) of mesons and baryons with the number of
constituent quarks and antiquarks [67]. At vanishing chemical
potential μB, the QCD problem can be addressed at zero and
finite temperature by lattice QCD calculations on a (3 + 1)-
dimensional torus with a suitable discretization of the QCD
action on the Euclidean lattice. These calculations so far have
provided valuable information on the QCD equation of state,
chiral symmetry restoration, and various correlators that can
be attributed or related to transport coefficients. Because of
the Fermion sign problem, lQCD calculations at finite μB are
presently not robust and one has to rely on nonperturbative—
but effective—models to obtain information in the (T , μB)
plane or for systems out of equilibrium.

A. Quasiparticle properties

As mentioned above, in the KB theory the field quanta are
described in terms of dressed propagators with complex self-
energies [26]. Whereas the real part of the self-energies can
be related to mean-field potentials (of Lorentz scalar, vector,
or tensor type), the imaginary parts provide information about
the lifetime and/or reaction rates of timelike particles. The
determination and extraction of complex self-energies for
the partonic degrees of freedom can be performed within
the DQPM by fitting lattice QCD calculations in thermal
equilibrium.

The basic ideas of the DQPM are as follows:

(i) Introduce an ansatz (with a few parameters) for the
(T and μB) dependence of masses and widths of
the dynamical quasiparticles (quarks, antiquarks, and
gluons) to define the self-energies.

(ii) Define the form of propagators for strongly interact-
ing massive partons.

(iii) Evaluate the QGP thermodynamics in equilibrium
using the Kadanoff-Baym (KB) theory and calculate
(in the 2PI approximation) the entropy density s and
other thermodynamic quantities such as the pressure
P and energy density.

(iv) Compare the DQPM results with the lQCD ones at
zero and finite μB and T and fix the initial parameters
to obtain the best reproduction of the lQCD thermo-
dynamics.

This defines the properties of the quasiparticles, their prop-
agators and couplings.

We recall the main ingredients of the DQPM:
(1) The DQPM postulates retarded propagators of the

quark and gluon degrees-of-freedom (for the QGP in equilib-
rium) in the form

GR(ω, p) = 1

ω2 − p2 − M2 + 2iγω
(1)

using ω = p0 for energy.
(2) The coupling (squared) g2, which is the essential quan-

tity in the DQPM defining the strength of the interaction
and enters the definition of the DQPM thermal masses and
widths, is extracted from lQCD. In our previous studies
[68–70], we used an ansatz for the (T, μB) dependence of the
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coupling g2 = αs/(4π ) and extracted the two parameters—
entering the parametrization of g2—from a global fit to the
lQCD thermodynamics. Furthermore, g2 was also compared
to quenched QCD results on αs(T ) at μB = 0 for the pure glue
case (Nf = 0) from Ref. [71].

Here we follow alternatively a procedure similar to
Refs. [65,66] to determine the effective coupling (squared) g2

as a function of temperature T ; i.e., the coupling is defined
at μB = 0 by a parametrization of the entropy density from
lattice QCD in the following way:

g2(s/sSB) = d ((s/sSB)e − 1) f (2)

with the Stefan-Boltzmann entropy density sQCD
SB =

19/9π2T 3 and the parameters d = 169.934, e = −0.178434,
and f = 1.14631. In the following, we use a parametrization
of the entropy density at μB = 0 calculated by lQCD from
Refs. [72,73] to determine the DQPM coupling constant as a
function of temperature.

The extension to finite μB can be worked out in different
scenarios. First of all, an expansion of the grand-canonical
potential, i.e., the negative pressure P, in terms of μB/T can
be performed and the expansion coefficients can be calculated
by lQCD [74,75]. This provides a solid framework for small
and moderate μB. Alternatively, Maxwell relations can be
employed to extract the thermodynamic potential at finite
μB starting from the information given by lQCD at μB = 0
[76]. Both methods give almost the same results up to μB ≈
450 MeV [76]. For practical purposes, the explicit results can
be fitted by a scaling ansatz [66] which works up to μB ≈
450 MeV and suggests that the phase transition to the QGP
is a crossover up to such baryon chemical potentials. We
mention that the experimental studies of the STAR Collabo-
ration within the BES program down to bombarding energies
of

√
sNN = 7.7 GeV—corresponding to μB ≈ 450 MeV—did

not indicate any critical point in the QCD phase diagram [77]
so far.

To obtain the coupling constant at finite baryon chemi-
cal potential μB, the scaling hypothesis assumes that g2 is
a function of the ratio of the effective temperature T ∗ =√

T 2 + μ2
q/π

2 and the μB-dependent critical temperature

Tc(μB) as [78]

g2(T/Tc, μB) = g2

(
T ∗

Tc(μB)
, μB = 0

)
(3)

with μB = 3μq and Tc(μB) = Tc

√
1 − αμ2

B, where Tc is
the critical temperature at vanishing chemical potential
(≈ 0.158 GeV) and α = 0.974 GeV−2.

In Fig. 1, the DQPM running coupling αs =
g2(T, μB)/(4π ) is displayed as a function of the scaled
temperature T/Tc(μB) for different values of the baryon
chemical potential μB. We find that with increasing μB

the effective coupling drops in the vicinity of the critical
temperature Tc(μB). This drop is rather moderate up to
μB = 0.4 GeV (adequate for central Au + Au collisions
at 30 A GeV) but becomes significant for μB = 0.6 GeV
(roughly adequate for central Au + Au collisions at 10 A
GeV). A comparison to the lattice results for quenched QCD

FIG. 1. The DQPM running coupling αs = g2(T, μB )/(4π ) (for
Nf = 2 + 1) as a function of the scaled temperature T/Tc(μB ) for
different values of the baryon chemical potential μB. The lattice
results for quenched QCD (for Nf = 0) are taken from Ref. [71] and
scaled by the critical temperature Tc ≈ 270 MeV.

from Ref. [71]—scaled by Tc ≈ 270 MeV—shows that the
DQPM coupling qualitatively matches the lattice results but
is slightly larger for lower μB. We note, however, that this
comparison should be taken only for orientation since the
DQPM coupling corresponds to unquenched QCD with three
light flavors (Nf = 2 + 1) whereas the lattice results are
for quenched QCD (Nf = 0). Note that—since the running
coupling (squared) g2 ∼ (11Nc − 2Nf )−1 (Nc = 3)—the
coupling is larger for a finite number of flavors Nf compared
to Nf = 0.

With the coupling g2 fixed from lQCD, one can now spec-
ify the dynamical quasiparticle mass (for gluons and quarks)
which is assumed to be given by the HTL thermal mass in
the asymptotic high-momentum regime, i.e., for gluons by
[57,79]

M2
g (T, μB) = g2(T, μB)

6

[(
Nc + 1

2
Nf

)
T 2 + Nc

2

∑
q

μ2
q

π2

]

(4)

and for quarks (antiquarks) by

M2
q(q̄)(T, μB) = N2

c − 1

8Nc
g2(T, μB)

(
T 2 + μ2

q

π2

)
, (5)

where Nc = 3 stands for the number of colors while Nf (= 3)
denotes the number of flavors. The dynamical masses (5) in
the QGP are large compared to the bare masses of the light
(u, d) quarks and adopted in the form (5) for the (u, d) quarks.
The strange quark has a larger bare mass, which also enters
to some extent the dynamical mass Ms(T ). This essentially
suppresses the channel g → s + s̄ relative to the channel g →
u + ū or d + d̄ and controls the strangeness ratio in the QGP.
Empirically, we have used Ms(T, μB) = Mu(T, μB) + 	M =
Md (T, μB) + 	M, where 	M = 30 MeV, which has been
fixed once in comparison to experimental data for the K+/π+
ratio in central Au + Au collisions at

√
sNN = 200 GeV.
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Furthermore, the effective quarks, antiquarks, and gluons in
the DQPM have finite widths, which are adopted in the form
[57]

γg(T, μB) = 1

3
Nc

g2(T, μB)T

8π
ln

[
2c

g2(T, μB)
+ 1

]
, (6)

γq(q̄)(T, μB) = 1

3

N2
c − 1

2Nc

g2(T, μB)T

8π
ln

[
2c

g2(T, μB)
+ 1

]
,

(7)

where c = 14.4 is related to a magnetic cutoff, which is an
additional parameter of the DQPM. Furthermore, we assume
that the width of the strange quark is the same as that for the
light (u, d) quarks.

The physical processes contributing to the width γg are
both gg ↔ gg, gq ↔ gq scattering as well as splitting and fu-
sion reactions gg ↔ g, gg ↔ ggg, ggg ↔ gggg, or g ↔ qq̄, etc.
On the fermion side, elastic fermion-fermion scattering pp ↔
pp, where p stands for a quark q or antiquark q̄, fermion-gluon
scattering pg ↔ pg, gluon bremsstrahlung pp ↔ pp + g, or
quark-antiquark fusion qq̄ ↔ g, etc., emerge. Note, however,
that the explicit form of (6) is derived for hard two-body
scatterings only. Furthermore, the widths γq(q̄)(T ) and γg(T )
provide only information on the total interaction rates and not
on the individual differential cross sections. The computation
of these cross sections will be carried out here in leading order
on the basis of the propagators (1) and coupling (2) and (3) in
Sec. III, which in turn will allow us to recalculate the widths
(6) and (7) and explore the validity of the quasiparticle limit
in the timelike sector.

B. Spectral functions

In line with the propagator (1), the parton spectral functions
(or imaginary parts of the propagator ρ = −2 Im GR) are no
longer δ functions in the invariant mass squared but given by

ρ j (ω, p) = γ j

Ẽ j

[
1

(ω − Ẽ j )2 + γ 2
j

− 1

(ω + Ẽ j )2 + γ 2
j

]

≡ 4ωγ j(
ω2 − p2 − M2

j

)2 + 4γ 2
j ω

2
(8)

separately for quarks, antiquarks, and gluons ( j = q, q̄, g).
Here, Ẽ2

j (p) = p2 + M2
j − γ 2

j , where the widths γ j and
masses Mj from the DQPM have been described above.
The spectral function (8) is antisymmetric in ω and
normalized as [80]∫ ∞

−∞

dω

2π
ω ρ j (ω, p) =

∫ ∞

0

dω

2π
2ωρ j (ω, p) = 1, (9)

as mandatory for quantum field theory.

(a)

(b)

FIG. 2. The effective quark (a) and gluon (b) masses M and
widths γ [from the parametrizations (6) and (7)] as a function of the
temperature T for different μB. The vertical dashed lines correspond
to the DQPM μB-dependent critical temperature Tc(μB ).

The actual quark mass Mq and width γq—employed as
input in the PHSD calculations—as well as the gluon mass
Mg and width γg are depicted in Fig. 2 as a function of T/Tc

and show an infrared enhancement close to Tc. For μq = μB/3
= 0, the DQPM gives

Mq = 2
3 Mg, γq = 4

9γg. (10)

C. Thermodynamics within the DQPM

With the quasiparticle properties (or propagators) chosen
as described above, one can evaluate the entropy density
s(T, μB), the pressure P(T, μB), and energy density ε(T, μB)
in a straightforward manner by starting with the entropy
density and number density in the propagator representation
from Baym [36,81],

sdqp = −
∫

dω

2π

d3 p

(2π )3

⎧⎨
⎩dg

∂nB

∂T
[Im (ln −	−1) + Im � Re 	] +

∑
q=u,d,s

dq
∂nF (ω − μq)

∂T

[
Im

(
ln −S−1

q

) + Im �q Re Sq
]

+
∑

q̄=ū,d̄,s̄

dq̄
∂nF (ω + μq)

∂T

[
Im

(
ln −S−1

q̄

) + Im �q̄ Re Sq̄
]⎫⎬⎭, (11)
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ndqp = −
∫

dω

2π

d3 p

(2π )3

⎧⎨
⎩

∑
q=u,d,s

dq
∂nF (ω − μq)

∂μq

[
Im

(
ln −S−1

q

) + Im �q Re Sq
]

+
∑

q̄=ū,d̄,s̄

dq̄
∂nF (ω + μq)

∂μq

[
Im

(
ln −S−1

q̄

) + Im �q̄ Re Sq̄
]⎫⎬⎭ (12)

where nB(ω) = [exp(ω/T ) − 1]−1 and nF (ω − μq) =
{exp[(ω − μq)/T ] + 1}−1 denote the Bose-Einstein and
Fermi-Dirac distribution functions, respectively, while
	 = (p2 − �)−1, Sq = (p2 − �q)−1, and Sq̄ = (p2 − �q̄)−1

stand for the full (scalar) quasiparticle propagators of
gluons g, quarks q, and antiquarks q̄. In Eqs. (11) and (12),
� and � = �q ≈ �q̄ denote the (retarded) quasiparticle
self-energies. Furthermore, the number of transverse gluonic
degrees of freedom is dg = 2 × (N2

c − 1) while for the
fermion degrees of freedom we use dq = 2 × Nc and
dq̄ = 2 × Nc.

In principle, � as well as 	 are Lorentz tensors and should
be evaluated in a nonperturbative framework. The DQPM
treats these degrees of freedom as independent scalar fields
(for each color and spin projection) with scalar self-energies
which are assumed to be identical for quarks and antiquarks.
This is expected to hold well for the entropy and number
density. Note that one has to treat quarks and antiquarks
separately in Eqs. (11) and (12) as their abundance differs at
finite quark chemical potential μq = μB/3.

With the choice (8), the complex self-energies � = M2
g −

2iωγg and �q = M2
q − 2iωγq are fully defined via (4), (5),

(6), and (7). Note that the retarded propagator (1) resembles
the propagator of a damped harmonic oscillator (with an
additional p2) and preserves microcausality also for γ > M
[82], i.e., in case of overdamped motion. Although the ansatz
for the parton propagators is not QCD, it has been shown that
a variety of QCD observables on the lattice are compatible
with this choice [57].

In case the real and imaginary parts of the propagators 	

and S are fixed, the entropy density (11) and number density
(12) can be evaluated numerically. As we deal with a grand-
canonical ensemble, the Maxwell relations give

s = ∂P

∂T
, nB = ∂P

∂μB
, (13)

such that the pressure can be obtained by integration of the
entropy density s over T and of the baryon density nB over μB

as

P(T, μB) = P(T0, 0) +
∫ T

T0

s(T ′, 0) dT ′

+
∫ μB

0
nB(T, μ′

B) dμ′
B, (14)

where one identifies the full entropy density s and baryon
density nB with the quasiparticle entropy density sdqp (11)
and baryon density nB = ndqp/3 (12). The starting point T0 for
the integration in T is chosen between 0.1 < T < 0.15 GeV

where the entropy density is taken in accordance to the lattice
QCD results from Ref. [73] in the hadronic sector.

The energy density ε then follows from the thermodynam-
ical relation

ε = T s − P + μBnB (15)

and thus is also fixed by the entropy s(T, μB) and baryon
density nB(T, μB) as well as the interaction measure

I := ε − 3P = T s − 4P + μBnB (16)

that vanishes for massless and noninteracting degrees of free-
dom at μB = 0.

A direct comparison of the resulting entropy density s(T )
(11), pressure P(T ) (14), energy density ε(T ) (15), and inter-
action measure (16) from the DQPM with lQCD results from
the BMW group [72,73] at μB = 0 (a) and μB = 400 MeV
(b) is presented in Fig. 3. The dimensionless results s/T 3,
P/T 4, and ε/T 4 are shown to demonstrate the scaling with
temperature. The agreement is sufficiently good for the en-
tropy and energy density as well as for the pressure. A satis-
factory agreement also holds for the dimensionless interaction
measure, i.e., (ε − 3P)/T 4 (cf. orange line in Fig. 3).

III. DIFFERENTIAL CROSS SECTIONS FOR
PARTONIC INTERACTIONS

A. Definitions

1. On-shell case

The differential cross section for a 2 → 2 process of on-
shell particles (1 + 2 → 3 + 4) is given by

dσ on = d3 p3

(2π )32E3

d3 p4

(2π )32E4

× (2π )4δ(4)(p1 + p2 − p3 − p4)
|M̄|2

F
, (17)

where the flux is defined by F = vrel 2E1 2E2 with the
definition vrel = |�v1 − �v2| and the on-shell energies for the

particle are defined as Ej =
√

p2
j + M2

j . |M̄|2 denotes the

matrix element squared averaged over the color and spin of
the incoming particles and summed over those of the final
particles. We want to evaluate the cross section in the rest
frame of the heat bath where the Fermi-Dirac or Bose-Einstein
functions describe the particle distributions. The only factor
in Eq. (17) which is not Lorentz invariant is the flux factor
F , while the other factors, the Lorentz-invariant phase space
(LIPS), the matrix element |M̄|2, and the δ function for
energy-momentum conservation, are invariant. This implies
that the cross section can be calculated in any frame, but the
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FIG. 3. The scaled pressure P(T )/T 4 (pink line), entropy density
s(T )/T 3 (red line), scaled energy density ε(T )/T 4 (blue line), and in-
teraction measure (16) (orange line), from the DQPM in comparison
to the lQCD results from Refs. [72,73] (full dots) for μB = 0 (a) and
μB = 400 MeV (b).

flux factor has to be correctly taken into account according to
the actual frame of interest.

The cross section is usually evaluated in the center-of-mass
(c.m.) frame of the collision for simplicity. In this case, the
momenta of the colliding particles obey p1 + p2 = p3 + p4 =
p = �0, and the notation |p1| = |p2| = pi and |p3| = |p4| = p f

is used. The flux factor becomes F c.m. = 4pi
√

s and, after
simplification, Eq. (17) reads

dσ c.m.
on = p f d�

16π2
√

s

|M̄|2
F c.m.

= d�

64π2s

p f

pi
|M̄|2, (18)

where s in the Mandelstam variable and d� is the differential
solid angle corresponding to one of the final particle. The
momenta of the initial (i) and final particles ( f ) in the c.m.
frame is found to be

pi, f =
√

[s − (Mi, f + M ′
i, f )2][s − (Mi, f − M ′

i, f )2]

2
√

s
, (19)

with Mi, f and M ′
i, f being the masses of the colliding partons.

The total cross section is obtained by performing the integral

in Eq. (18) over d� as

σ c.m.
on = 1

32πs

p f

pi

∫ 1

−1
d cos(θ )|M̄|2, (20)

where θ is the final polar angle of one of the final particle in
the c.m. frame. In the c.m. frame, the collision is independent
from the azimuthal angle φ and the corresponding integration
gives a factor 2π .

2. Off-shell case

In the off-shell case, the energy of the partons, as well their
momenta, are independent degrees of freedom and a general
definition of an “off-shell cross section” is not possible due
to the lack of asymptotically stable states. However, tran-
sition matrix elements for different incoming and outgoing
4-momenta can be well defined also off shell. By transforming
the Lorentz-invariant phase space in Eq. (17), one can include
the off-shell effects for the scattering of timelike particles—in
the case of a well-defined incoming flux F = vrel 2ω1 2ω2—
by integrating over the energy of the final timelike particles as

Fdσ off = d4 p3

(2π )4

d4 p4

(2π )4
ρ̃3(ω3, p3) θ (ω3) ρ̃4(ω4, p4) θ (ω4)

× (2π )4δ(4)(p1 + p2 − p3 − p4)|M̄|2 (21)

with the renormalized timelike spectral functions

ρ̃ j (ω j, p j ) = ρ(ω j, p j ) θ
(
p2

j

)
∫ ∞

0
dω j

(2π ) 2ω j ρ(ω j, p j ) θ
(
p2

j

) , (22)

where the spectral function ρi in (22)—corresponding to
the parton type i—is taken from Eq. (8). The final parton
masses are defined as m2

i = p2
i = ω2

i − p2
i , where pi is the

4-momentum of particle i. One can verify that by replacing
the spectral functions by their on-shell value:

lim
γ j→0

ρ j (ω, p) = 2π δ
(
ω2 − p2 − M2

j

)
= π

ω

[
δ
(
ω−

√
p2 + M2

j

)+δ
(
ω +

√
p2 + M2

j

)]
,

(23)

the off-shell cross section leads to the on-shell one as defined
in the previous subsection from Eq. (17).

We follow the same strategy as in the previous subsection
and evaluate the differential “off-shell cross section” for time-
like quanta in the center-of-mass system of the collision for
convenience. By making use of the δ function in Eq. (21), one
can integrate over d4 p4 to obtain the total cross section in the
c.m. frame by performing the integrations with the appropriate
boundaries as

F c.m.σ c.m.
off = 1

(2π )3

∫ √
s/2

0
p2

f d p f d cos(θ )

×
∫ √

s−p f

p f

dωc.m.
3 ρ̃3(ω3, p3) ρ̃4(ω4, p4) |M̄|2

(24)

for F c.m. = 4pc.m.
i

√
s. Bear in mind that even if the calculation

of the cross section is performed in the center-of-mass system,
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FIG. 4. Elastic differential cross sections between different partons for the on-shell case (dashed lines) from Eq. (18) and the off-shell case
(solid lines) evaluated in the center of mass of the collision system as a function of the angle cos(θ ) between the initial and final momenta of
one of the partons for T = 1.2Tc and μB = 0. The initial masses of the colliding partons are taken as the pole masses from Eqs. (4) and (5).
The different lines correspond to different collision energies

√
s from 1 to 4 GeV (see legend).

the energies and momenta entering the spectral functions (8)
should be expressed in the heat bath frame by applying the
appropriate Lorentz transformations.

We mention that one can simplify the off-shell energy
integration by an integration over the final masses of the
partons in the nonrelativistic limit. The off-shell cross section
from Eq. (21) then becomes [68]

σ BW
off =

∫ √
s

0
dm3

∫ √
s−m3

0
dm4 ρBW(m3) ρBW(m4)

∫
dσ c.m.

on ,

(25)
where the Breit-Wigner spectral function ρBW in Ref. [68] is
obtained from Eq. (8) in the limit ω → m:

ρBW
i (m) = 2

π

2m2γi(
m2 − M2

i

)2 + (2mγi )2
. (26)

This distribution fulfills the normalization
∫ ∞

0 dm ρBW

(m) = 1.

B. Partonic scattering

In the framework of the DQPM, quarks and gluons are
massive with a finite lifetime associated to their interaction
width. In order to calculate the matrix elements corresponding
to a scattering of DQPM partons, the scalar propagator (1)
has to be replaced by the following propagators—with full
Lorentz structure—to describe a massive vector gluon and
massive (spin-1/2) fermion with a finite width [68]:

(27)

(28)

where q is the 4-momentum of the exchanged particle. The
δ functions ensure that the exchanged quark or gluon is
conncted with other parts of the diagram with the same color
(a, b for the gluon and i, j for the quark). The invariant matrix
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FIG. 5. Cross sections between different partons for the on-shell case (dashed lines) from Eq. (20) and the off-shell case (solid lines) from
Eq. (24) evaluated in the center of mass of the collision system as a function of the collision energy

√
s (see text for a detailed description).

The initial masses of the colliding partons are taken as the pole masses from Eqs. (4) and (5).

element (squared) |M̄|2, entering the differential cross sec-
tion in Eqs. (17)–(21), is calculated in leading order and
is averaged over initial—and summed over final—spin and
colors. In the following, we employ a degeneracy factor for
spin and color of dq = 2 × Nc = 6 for quarks and dg = 2 ×
(N2

c − 1) = 16 for gluons in consistency with Eqs. (11) and
(12). Each matrix element can be decomposed into several
channels known as t−, u−, and s−channels for quark-quark
(qq′) and quark-gluon (qg) scatterings, as well as a four-
point interaction for the case of gluon-gluon (gg) scattering.
For details, we refer the reader to the Appendixes A–C and
continue with the actual results.

In Fig. 4, we show the differential cross sections between
different partons for the on-shell case (dashed lines) from
Eq. (18) and the off-shell case (solid lines) evaluated in the
center-of-mass of the collision system as a function of the
collision energy

√
s. In these examples, the initial masses

of the colliding partons are taken as the pole masses from
Eqs. (4) and (5) to allow for a comparison between on-shell
and off-shell scattering, i.e., for the same initial states. In all
cases [uu → uu (a), ud → ud (b), ug → ug (c), gg → gg (d)],
the cross sections are almost isotropic at the threshold energy√

s ≈ 1 GeV and increase in anisotropy with increasing
√

s.
Furthermore, the on-shell case (dashed lines) gives slightly
larger cross sections than the off-shell case (solid lines), which
will be discussed below.

Figure 5(a) displays the angle integrated cross section for
uu → uu scattering as a function of

√
s for temperatures of

T = 1.2Tc (blue), T = 2Tc (green), and T = 3Tc (red) for
the on-shell (dashed lines) and off-shell (solid lines) cases
at μB = 0. Again, the initial masses of the colliding partons

are taken as the pole masses from Eqs. (4) and (5) to obtain
the same initial flux F . At all temperatures T , the cross
section does not change very much with collision energy

√
s

and the difference between the on-shell and off-shell case
decreases with increasing

√
s. The explicit dependence of the

uu → uu cross section on the chemical potential is shown
in Fig. 5(b) for μB = 0 (blue), μB = 0.3 GeV (green), and
μB = 0.6 GeV (red) at T = 1.2Tc for the on-shell (dashed
lines) and off-shell (solid lines) cases. While the dependencies
on

√
s are similar, we find a decrease of the cross section

with increasing chemical potential μB which can be traced
back to a decreasing coupling with μB at fixed temperature T
(see Fig. 1). Figure 5(c), furthermore, shows the dependence
of all cross sections calculated on the collision energy

√
s

in the off-shell case for T = 1.2Tc and μB = 0. While most
of the channels do not change drastically with

√
s—except

for thresholds—the flavor-changing processes uū → dd̄ and
uū → ss̄ drop quickly with increasing energy.

With all differential partonic cross sections fixed as a
function of T and μB (above the phase boundary), we can now
continue with transport properties of the hot QGP as a func-
tion of T and μB employing the partonic energy-momentum
distributions from the DQPM.

IV. COLLISIONAL WIDTHS OF THE HOT
AND DENSE QGP

A. On-shell case

In the on-shell case, all energies of the particles are taken
to be E2 = p2 + M2, where M is the pole mass. The on-
shell interaction rate for the corresponding parton is given by
[34,83,84]

�on
i (pi, T, μq ) = 1

2Ei

∑
j=q,q̄,g

∫
d3 p j

(2π )32Ej
d j f j (Ej, T, μq )

∫
d3 p3

(2π )32E3

∫
d3 p4

(2π )32E4
(1 ± f3)(1 ± f4)

× |M̄|2(pi, p j, p3, p4) (2π )4δ(4)(pi + p j − p3 − p4)

=
∑

j=q,q̄,g

∫
d3 p j

(2π )3
d j f j vrel

∫
dσ on

i j→34 (1 ± f3)(1 ± f4), (29)

014911-9



PIERRE MOREAU et al. PHYSICAL REVIEW C 100, 014911 (2019)

where d j is the degeneracy factor for spin and color [for quarks dq = 2 × Nc and for gluons dg = 2 × (N2
c − 1)], and with the

shorthand notation f j = f j (Ej, T, μq ) for the distribution functions. In Eq. (29) and throughout this section, the notation
∑

j=q,q̄,g
includes the contribution from all possible partons, which in our case are the gluons and the (anti)quarks of three different flavors
(u, d, s). The Pauli-blocking (−) and Bose-enhancement (+) factors account for the available density of final states. Note that
here all quantities have to be expressed in the rest frame of the heat bath, implying that the on-shell cross section dσ on from
Eq. (18) has to be modified according to the different fluxes:

F HBσ HB = σ c.m.F c.m., (30)

where the quantities denoted by HB are expressed in the rest frame of the heat bath and c.m. in the center-of-mass frame of the
collision.

To evaluate the average width of the partons i, we finally have to average its interaction rate (29) over its momentum
distribution,

�on
i (T, μq ) = di

non
i (T, μq )

∫
d3 pi

(2π )3
fi(Ei, T, μq )�on

i (pi, T, μq ) (31)

with the on-shell density of partons i at T and μq given by

non
i (T, μq ) = di

∫
d3 pi

(2π )3
fi(Ei, T, μq ). (32)

B. Off-shell case

In order to obtain the width for the off-shell DQPM timelike partons, we have to calculate the interaction rate for the
corresponding parton i with momentum pi due to collisions with timelike particles j leading to final timelike particles 3 and
4 by integrating additionally over all energies ω j in the timelike sector:

�off
i (pi, T, μq ) =

∫ ∞

0

dωi

(2π )
ρ̃i

∑
j=q,q̄,g

∫
d4 p j

(2π )4
θ (ω j ) d j ρ̃ j f j

∫
d4 p3

(2π )4
θ (ω3) ρ̃3

∫
d4 p4

(2π )4
θ (ω4) ρ̃4(1 ± f3)(1 ± f4)

× |M̄|2(pi, p j, p3, p4) (2π )4δ(4)(pi + p j − p3 − p4), (33)

where the shorthand notation (22) for the renormalized timelike spectral functions ρ̃ j (ω j, p j ) has been used and f j =
f j (ω j, T, μq ) for the distribution functions. We mention that the limit (33) discards damping processes between the timelike
and spacelike sector which are assumed to be subleading. To evaluate the average timelike width of the partons i, we finally have
to average its interaction rate as

�off
i (T, μq ) = di

noff
i (T, μq )

∫
d4 pi

(2π )4
θ (ωi ) ρ̃i fi(ωi, T, μq )

∑
j=q,q̄,g

∫
d4 p j

(2π )4
θ (ω j ) d j ρ̃ j f j

∫
d4 p3

(2π )4
θ (ω3) ρ̃3

×
∫

d4 p4

(2π )4
θ (ω4) ρ̃4(1 ± f3)(1 ± f4)|M̄|2(pi, p j, p3, p4) (2π )4δ(4)(pi + p j − p3 − p4), (34)

FIG. 6. Off-shell collision rate from Eq. (34) of a light quark q as a function of the temperature T for μB = 0 (a) and μB = 0.4 GeV
(b) (blue lines). The contributions from the scattering with light quarks (green), antiquarks (blue), and gluons (pink) are given by the lower
hatched bands which arise from the finite statistics in the evaluation of the integrals by Monte Carlo.
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FIG. 7. Off-shell collision rate from Eq. (34) of a gluon g as a function of the temperature T for μB = 0 (a) and μB = 0.4 GeV (b). The
contributions from the scattering with light quarks (green), antiquarks (blue), and gluons (pink) are given by the lower hatched bands which
arise from the finite statistics in the evaluation of the integrals by Monte Carlo.

with the off-shell density of timelike partons i given by

noff
i (T, μq ) = di

∫
d4 pi

(2π )4
θ (ωi ) 2ωi ρ̃i fi(T, μq ). (35)

Figure 6 shows the “off-shell interaction rate” �coll
q of a

light quark q as a function of the temperature T for μB = 0
(a) and μB = 0.4 GeV (b). The contributions from the scat-
tering with light quarks (green), antiquarks (blue), and gluons
(pink) are given by the lower hatched bands. At μB = 0, the
total width �coll

q to a large extend stems from quark-gluon
scattering and increases with temperature while the contribu-
tions from scatterings with quarks and antiquarks are about
equal and subdominant. At μB = 0.4 GeV, the quarks are
more abundant than the antiquarks and the contributions from
scatterings with quarks increase while that from collisions
with antiquarks decrease relative to μB = 0. The contributions
from collisions with gluons slightly decreases also with μB,

which can be attributed to a decrease of the cross sections with
μB as noted before. Figure 7 shows the off-shell interaction
rate of a gluon g as a function of the temperature T for μB = 0
(a) and μB = 0.4 GeV (b) as in case of quark scattering in
Fig. 6. The contributions from the scattering with light quarks
(green), antiquarks (blue), and gluons (pink) are given by the
lower hatched bands. The discussion of the contributions to
the total widths is very similar to the case of quark scattering
and not repeated here.

In summarizing this section, we find that the collisional
widths for timelike partons are sizable and increase with
temperature (as in the DQPM) but still remain substantially
smaller than the pole masses in Fig. 2. Accordingly, a quasi-
particle interpretation for timelike quanta should approxi-
mately hold.

Figure 8, finally, gives an overview on the width �q (a)
and width �g (b) as a function of the scaled temperature

FIG. 8. Off-shell collision rate of a quark (a) and gluon (b) as a function of the scaled temperature T/Tc(μB ) and the baryon chemical
potential μB from Eq. (34).
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T/Tc(μB) and chemical potential μB. While the dependencies
on temperature are similar for fixed μB, we see a general slight
decrease of the total widths with μB for fixed T/Tc(μB) as
discussed above.

V. TRANSPORT PROPERTIES OF THE HOT
AND DENSE QGP

The starting point to evaluate viscosity coefficients of
partonic matter is the Kubo formalism [85–92], which was
used to calculate the viscosities for a previous version of the
DQPM within the PHSD in a box with periodic boundary
conditions (cf. Ref. [93]). We focus here on the calculation
of the shear viscosity based on Refs. [87–90], which reads

ηKubo(T, μq ) = −
∫

d4 p

(2π )4
p2

x p2
y

∑
i=q,q̄,g

di
∂ fi(ω)

∂ω
ρi(ω, p)2

= 1

15T

∫
d4 p

(2π )4
p4

∑
i=q,q̄,g

× di((1 ± fi(ω)) fi(ω))ρi(ω, p)2, (36)

where the notation fi(ω) = fi(ω, T, μq ) is used for the dis-
tribution functions, and ρi denotes the spectral functions from
Eq. (8). We note that the derivative of the distribution function
accounts for the Pauli-blocking (−) and Bose-enhancement
(+) factors. Following Ref. [89], we can evaluate the inte-
gral over ω = p0 in Eq. (36) by using the residue theorem.
When keeping only the leading-order contribution in the width
γ (T, μB) from the residue—evaluated at the poles of the
spectral function ωi = ±Ẽ (p) ± iγ —we finally obtain

ηRTA(T, μq) = 1

15T

∫
d3 p

(2π )3

∑
i=q,q̄,g

×
(

p4

E2
i �i(pi, T, μq )

di((1 ± fi(Ei )) fi(Ei ))

)
+ O(�i ), (37)

which corresponds to the expression derived in the relaxation-
time approximation (RTA) [94–98] by identifying the inter-
action rate � with 2γ as expected from transport theory in
the quasiparticle limit [21]. This interaction rate �i(pi, T, μq )
(inverse relaxation time) is calculated microscopically by
Eq. (29). We recall that the pole energy is E2

i = p2 + M2
i ,

where Mi is the pole mass given in the DQPM by Eqs. (4)
and (5). As in the previous section, we use here the notation∑

j=q,q̄,g, which includes the contribution from all possible
partons which in our case are the gluons and the (anti)quarks
of three different flavors (u, d, s).

The actual results are displayed in Fig. 9 for the ratios of
shear viscosity to entropy density η/s as a function of the
scaled temperature T/Tc for μB = 0 in comparison to those
from lattice QCD [101]. The solid green line (ηKubo/s) shows
the result from the original DQPM in the Kubo formalism
while the dashed green line (ηRTA

2γ /s) shows the same result
in the quasiparticle approximation (37) by replacing �i by
2γi. The solid red line (ηRTA

�on /s) results from Eq. (37) using
the interaction rate �on (29) calculated by the microscopic

FIG. 9. The ratio of shear viscosity to entropy density as a
function of the scaled temperature T/Tc for μB = 0 from Eqs. (36)
and (37). The solid green line (ηKubo/s) shows the results from the
original DQPM in the Kubo formalism while the dashed green line
(ηRTA

2γ /s) shows the same result in the quasiparticle approximation
(37). The solid red line (ηRTA

�on /s) results from Eq. (37) using the inter-
action rate �on (29) calculated by the microscopic differential cross
sections in the on-shell limit. The dashed gray line demonstrates the
Kovtun-Son-Starinets bound [99,100] (η/s)KSS = 1/(4π ), and the
symbols show lQCD data for pure SU(3) gauge theory taken from
Ref. [101] (pentagons).

differential cross sections in the on-shell limit. We find that—
apart from temperatures close to Tc—the ratios η/s do not
differ very much and have a similar behavior as a function
of temperature. The approximation (37) of the shear viscosity
is found to be very close to the one from the Kubo formalism
(36), indicating that the quasiparticle limit (γ � M) holds in
the DQPM. We have also checked that the shear viscosity does
not differ substantially if one uses the momentum-dependent
interaction rate from Eq. (29) or the averaged one from
Eq. (31).

An overview for the ratio of shear viscosity to entropy
density η/s as a function of the scaled temperature T/Tc(μB)
and μB is given in Fig. 10 in case of the Kubo formalism (a)
(36) and the on-shell limit (37) (b). There is no strong varia-
tion with μB for fixed T/Tc(μB); however, the ratio increases
slightly with μB in the on-shell limit while it slightly drops
with μB in the Kubo formalism for the DQPM. Accordingly,
there is some model uncertainty when extracting the shear
viscosity in the different approximations.

In summarizing this section, we find that the results for
the ratio of shear viscosity over entropy density from the
original DQPM and those from the microscopic calculations
are similar and within error bars compatible with present
results from lattice QCD. However, having the differential
cross sections for each partonic channel at hand one might find
substantial differences for nonequilibrium configurations as
encountered in relativistic heavy-ion collisions where a QGP
is formed initially out of equilibrium.
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Γ

FIG. 10. The ratio of shear viscosity to entropy density η/s as a function of the scaled temperature T/Tc(μB ) and baryon chemical potential
μB calculated within the Kubo formalism (a) from Eq. (36) and in the relaxation-time approximation (RTA) (b) from Eq. (37) using the on-shell
interaction rate �on from Eq. (29).

VI. EXTRACTION OF T AND μB FROM PHSD IN
HEAVY-ION COLLISIONS

Since PHSD is a microscopic off-shell transport approach,
it does not incorporate thermodynamic Lagrange parameters
such as T and μB that characterize the system in equilibrium.
In order to extract the required information (the temperature
T and baryon chemical potential μB)—defining the parton
properties and differential scattering processes in the PHSD
space-time grid—we use a parametrization of the lQCD equa-
tion of state from Ref. [102] where the pressure (negative
thermodynamic potential) is expanded as

P

T 4
= c0(T ) + c2(T )

(μB

T

)2
+ c4(T )

(μB

T

)4
+ O

(
μ6

B

)
.

(38)

This equation of state matches the conditions of a heavy-
ion collision where strangeness neutrality 〈nS〉 = 0 is realized
on average and where the relation between electric charge and
baryon number 〈nQ〉 = 0.4 〈nB〉 is fixed by the content of the
initial nuclei. We mention that the inclusion of the sixth-order
coefficient c6 induces wiggles in the EoS due to oscillating
contributions in Eq. (38) (see also Ref. [75]) but does not
lead to considerable changes for μB/T < 3 and is discarded
here. Note that the parametrization of the coefficients ci(T )
in Eq. (38) is also in agreement with lQCD data below Tc

which allows for an evaluation of T and μB also in the hot
hadronic phase. We point out that these results have to be
taken as estimates in the regions of large chemical potentials
for μB/T > 3.

In each space-time cell of the PHSD grid, the thermody-
namic quantities are calculated by the method developed in
Ref. [103], i.e., by diagonalization of the energy momentum

tensor T μν as

T μν (xν )i = λi (xμ)i = λi gμν (xν )i, (39)

with i = 0, 1, 2, 3, where λi are the eigenvalues of T μν and
(xν )i are the corresponding eigenvectors. For i = 0, the local
energy density ε is identified with the eigenvalue of T μν (Lan-
dau matching) and the corresponding timelike eigenvector is
defined as the 4-velocity uν :

T μνuν = εuμ = (εgμν )uν (40)

using the normalization condition uμuμ = 1. The three other
solutions are (−Pi), the pressure components expressed in the
local rest frame of the cell. The energy-momentum tensor T μν

is calculated in PHSD as

T μν =
∑

i

pμ
i pν

i

Ei
, (41)

where the sum i runs over all the particles in the considered
cell.

To study the matter at finite baryon density, we calculate
additionally the net-baryon current

Jμ
B =

∑
i

pμ
i

Ei

(qi − q̄i )

3
, (42)

with qi (q̄i) being the number of light quarks (antiquarks)
within particle i. To obtain the local net-baryon density, we
apply the Lorentz transformation defined via

nB = γE
(
J0

B − �βE · �JB
) = J0

B

γE
, (43)

where �βE = �JB/J0
B is known as the Eckart velocity and γE is

the associated Lorentz factor. We mention that by using the
Eckart velocity �βE to transform the net-baryon current, the
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FIG. 11. The energy density ε (left) and baryon density nB (right) as a function of the cell rapidity ycell at different times t for 5% central
Pb+Pb collisions at 158 A GeV extracted from the central cell x = y = 0 of the PHSD. The energy density and baryon density are divided by
the critical energy density εc = 0.5 GeV/fm3 and the saturation density ρ0 = 0.17 fm−3, respectively. The initial time t = 0 is systematically
taken to be the time of the first nucleon-nucleon collision.

spatial part of the latter automatically vanishes, whereas this
is not guaranteed when employing the energy flow uμ from
Eq. (40).

We illustrate in Fig. 11 our extraction method and show
the time and rapidity dependence of the energy density ε and
baryon density nB extracted from the PHSD in the central
cell x = y = 0 of 5% central Pb + Pb collisions at 158 A
GeV. We mention that in the PHSD the parallel ensemble
method is used, implying that the densities are averaged over
a large number of parallel events (≈250 for AGS energies,
≈150 for top SPS, and ≈30 for top RHIC). With this pro-
cedure, even if each event contains only a few particles per
cell, the overall profile is relatively smooth in space-time.
Furthermore, in the evaluation of the energy density ε and
baryon density nB, leading quarks or diquarks are also in-
cluded since they carry most of the baryon number in the
string fragmentation picture. The cell rapidity ycell is evaluated
from the cell 4-velocity uμ = γ (1, �β ) in Eq. (40) as ycell =
1/2 log[(1 + βz )/(1 − βz )]. For illustration, we have scaled
the energy and baryon densities by the critical energy den-
sity εc = 0.5 GeV/fm3 used in the PHSD and the saturation
density ρ0 = 0.17 fm−3, respectively. One can see that at the
collision time (t = 0) a high amount of energy is deposited
into the midrapidity region whereas at higher rapidities the
initial nuclei are still intact. Indeed, we observe that around
the initial rapidity of the nuclei (yN ≈ 2.9) the baryon density
is still close to the saturation density ρ0. After the passing time
t = R/γN ≈ 0.75 fm/c, all the initial nucleons in the central
cell (x = y = 0) have interacted and maximal values for the
energy density and baryon density are reached which are of
the order of ε ≈ 5 GeV/fm3 and nB ≈ 2 fm−3, respectively.
We can identify approximatively constant values of ε and nB

as a function of the cell rapidity ycell along parabolas of proper

time τ ∼ t/ cosh(ycell ). After τ ≈ 6 fm/c, the energy density
reaches the critical value εc, implying that quarks and gluons
hadronize into hadrons, whereas the baryon density appears to
be slightly lower than the saturation density ρ0.

In the beginning of heavy-ion collisions, the created
medium is highly anisotropic due to the longitudinal expan-
sion. In order to correct for the anisotropy, we apply the shape
generalized equation of state developed in Ref. [104] in order
to extract values for the temperature T and baryon chemical
potential μB. In this framework, the energy density εanis and
pressure components of an anisotropic medium are evaluated
by the following expressions:

εanis = εEoS r(x), (44)

P⊥ = PEoS [r(x) + 3xr′(x)], (45)

P‖ = PEoS [r(x) − 6xr′(x)], (46)

where P⊥ and P‖ are, respectively, the transverse and lon-
gitudinal pressures, and εEoS and PEoS are the equilibrium
energy density and pressure from which a temperature T
and chemical potential μB can be extracted. The anisotropy
parameter x can be approximated as a function of the pressure
components as P‖/P⊥ = x−3/4, and the function r(x) reads

r(x) =
⎧⎨
⎩

x−1/3

2

[
1 + x arctanh

√
1−x√

1−x

]
for x � 1

x−1/3

2

[
1 + x arctan

√
x−1√

x−1

]
for x � 1.

(47)

In a PHSD simulation, we calculate in each of the cells the
energy density εPHSD, the baryon density nPHSD

B , as well as
the pressure components PPHSD

⊥ and PPHSD
‖ , from which one

can evaluate the function r(x) in Eq. (47). In order to find the
temperature T and baryon chemical potential μB according
to the EoS—constructed at the beginning of this section—we
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FIG. 12. The ratio μB/T as a function of the cell rapidity ycell at
different times t for 5% central Pb + Pb collisions at 158 A GeV
from PHSD.

have to solve the following system of equations:

εEoS(T, μB) = εPHSD/r(x)

nEoS
B (T, μB) = nPHSD

B , (48)

where the left-hand sides represent the EoS which depends on
the unknowns T and μB, whereas on the right-hand sides of
these equations we have the energy density and baryon density
evaluated in PHSD. In Eq. (48), the energy density from
PHSD εPHSD is divided by the function r(x) from Eq. (47) to
account for the anisotropy of the considered cell according to
the shape generalized equation of state in Eq. (44). We solve
this system by using the Newton-Raphson method [105,106].

We now turn to the evaluation of T and μB in actual
PHSD simulations for A + A collisions. As an example for
our results, we show in Fig. 12 the ratio μB/T as a function
of the cell rapidity ycell at different times (from 1 to 6 fm/c)
for 5% central Pb + Pb collisions at 158 A GeV. The largest
ratios are seen for all times for rapidities closer to projectile
and target rapidities (cf. Ref. [55]), while at midrapidity this
ratio is initially high (at t = 1 fm/c) but drops to μB/T ∼ 2
at t = 2 fm/c and remains approximately constant afterward.
We mention that this profile is very close to that calculated in
the hydrodynamics + hadronic transport approach by Denicol
et al. (Fig. 5 in Ref. [52]) and also shows an increase of μB/T
with increasing |y|.

Figure 13 shows the temperature profile (for the central
cell) as a function of the cell rapidity ycell and different times
(from 0.15 to 7 fm/c) for a 5% central Au + Au collision
at

√
sNN = 200 GeV. This temperature profile initially (t =

0.15 fm/c) has a broad maximum at midrapidity but for
t > 0.25 fm/c slight maxima at |ycell| ≈ 1.5 appear which
move to higher cell rapidity with increasing time while the
average temperature drops rapidly in time. The lowest tem-
peratures (at midrapidity), however, are still on the level of
250 MeV at t = 2 fm/c, i.e., well above the critical tempera-
ture Tc. We note in passing that the temperature profiles from
two different extraction methods, directly from the energy

FIG. 13. The temperature profile (for the central cell) as a func-
tion of the cell rapidity ycell and different times (from 0.15 to 7 fm/c)
for a 5% central Au + Au collision at

√
sNN = 200 GeV from PHSD.

The dashed lines result when extracting the temperature directly from
the energy density of the central cell in PHSD εPHSD while the solid
lines refer to the extraction from the equation of state εEoS (see text).

density of the cell in PHSD εPHSD (dashed lines)—setting
r(x) = 1 in Eq. (48)—and from the equation of state εEoS

(solid lines) are practically the same for t � 0.25 fm/c
and provide an idea about the accuracy of our extraction
method.

We now focus on the space-time distribution of the ex-
tracted temperatures T (left column) and chemical potentials
μB (right column) for a 5% central collision of Pb + Pb at
158 A GeV from PHSD as shown in Fig. 14. These distri-
butions correspond to the transverse plane (x, y)—orthogonal
to the beam direction—at midrapidity (|ycell| < 1), i.e., in
the center of the collision zone. For early times, we find the
temperatures of the fireball to be well above Tc practically
everywhere, with a maximum in the center. Then the fireball
expands in space with time while the temperature (and thus
the QGP region) drops accordingly. Indeed, at t = 4 fm/c
the temperature is above Tc only in the very central region,
whereas on the outside hadronization already occurred. This
is in line with the common picture of fireball expansion
and hadronization. However, the profile in the chemical po-
tential μB (right column) shows that the chemical potential
μB is very large for early times in the whole fireball and
drops to values of around ≈0.2–0.3 in the hot QGP zone
for t ≈ 4 fm/c.

We close this section by visualizing the time evolution
of the distribution in T and μB for cells having a temper-
ature T > Tc(μB) at midrapidity (|ycell| < 1) for 5% central
heavy-ion collisions. Figure 15(a) shows this distribution for a
Au + Au collision at

√
sNN = 200 GeV from PHSD for times

t < 0.5 fm/c, 0.5 fm/c < t < 2 fm/c, and t > 2 fm/c. The
scale corresponds to the number of cells in the PHSD event
in the considered bin in T − μB divided by the total number
of cells in the corresponding time window while the solid
black line is the DQPM phase boundary for orientation. At
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FIG. 14. (Left) The temperature profile in (x, y) at midrapidity (|ycell| < 1) at 1 and 4 fm/c after the initial collision in case of a 5% central
Pb + Pb collision at 158 A GeV from PHSD. (Right) The profile in the chemical potential μB in (x, y) at midrapidity (|ycell| < 1) for different
times from 0.5 to 6 fm/c for the same collision.

the very early times t < 0.5 fm/c, the distribution peaks at
T ≈ 0.3 GeV and is concentrated around μB ≈ 0. For times
0.5 fm/c < t < 2 fm/c, the average temperature has dropped
to about 0.24 GeV, and for later times (t > 2 fm/c), the
distribution peaks at an average temperature slightly above Tc.
Note that a negative μB implies that there are more antiquarks
(antibaryons) than quarks (baryons) in the individual cell. This
time evolution of the distribution at the top RHIC energy
matches well-known expectations.

Figure 15(b) shows the distribution in T and μB for cells
at midrapidity (|ycell| < 1) in case of Pb + Pb collisions
at 158 A GeV from PHSD for times t < 2 fm/c, 2 fm/c
< t < 4 fm/c, and t > 4 fm/c. For early times t < 2 fm/c,
the distribution peaks at a temperature of about 0.25 GeV
and a sizable chemical potential of about 0.6 GeV, while
for times in the interval 2 fm/c < t < 4 fm/c, the maxi-
mum has dropped already to an average temperature ≈0.18
GeV and a chemical potential of about 0.3 GeV. For later
times t > 4 fm/c, the distribution (above Tc) essentially stays
around μB ≈ 0.25 GeV. We mention that the values of μB

probed around the transition temperature Tc in the PHSD are
in accordance with the expectation from statistical models
which for central Pb + Pb collisions at 158 A GeV quote a
value of μB = 0.2489 GeV [107]. Furthermore, the trajectory
of the fireball in the (T, μB) plane resembles the isentropic

trajectories shown in Ref. [102], which for this energy corre-
sponds approximately to a fixed ratio of entropy over baryon
density of s/nB ≈ 40 [108] and a fixed ratio of μB/T ≈ 2 (see
Fig. 12).

VII. OBSERVABLES FROM RELATIVISTIC
NUCLEUS-NUCLEUS COLLISIONS

As mentioned above, the PHSD transport approach [56,60]
is a microscopic covariant dynamical model for strongly
interacting systems formulated on the basis of Kadanoff-
Baym equations [26] for Green’s functions in phase-space
representation (in first-order gradient expansion beyond the
quasiparticle approximation). The approach consistently de-
scribes the full evolution of a relativistic heavy-ion collision
from the initial hard scatterings and string formation through
the dynamical deconfinement phase transition to the strongly
interacting quark-gluon plasma (sQGP) as well as hadroniza-
tion and the subsequent interactions in the expanding hadronic
phase as in the hadron-string-dynamics (HSD) transport ap-
proach [109]. Note that at lower bombarding energies—
without any partonic phase—the PHSD approach merges to
the HSD approach with only hadronic and string degrees of
freedom. Since we only look for modifications in the partonic
sector—cf. Secs. III and IV—we do not further specify the
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FIG. 15. Distributions in T and μB as extracted from the DQPM equation of state in a PHSD simulation of a central Au + Au collision at√
sNN = 200 GeV (a) and of a central Pb + Pb collision at 158 A GeV (b) for cells with a temperature T > Tc(μB). The scale corresponds to

the number of cells in the PHSD event in the considered bin in T − μB divided by the total number of cells in the corresponding time window
(see legend). The solid black line is the DQPM phase boundary for orientation, the gray dashed lines indicate ratios of μB/T ranging from 1
to 5, while the vertical line stands for μB = 0.

hadronic sector and refer the reader to Refs. [46,47,109] for
details. We recall that in the PHSD4.0 version, the partonic
cross sections are parametrized as a function of the energy
density to comply with the individual widths of quarks, anti-
quarks, and gluons (cf. Ref. [58]), while the parton masses are
parametrized as a function of the scalar density (cf. Ref. [60]).

A. AGS-SPS energies

We start with lower and intermediate energies covered
experimentally by the AGS (BNL) and SPS (CERN) with a
focus on central Au + Au or Pb + Pb collisions. We will com-
pare results for the “bulk” observables (rapidity distributions
and pT or mT spectra) from PHSD calculations based on the
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ππ

Λ Σ

FIG. 16. The rapidity distributions for 5% central Au + Au colli-
sions at 10.7 A GeV for PHSD4.0 (green dot-dashed lines), PHSD5.0
with partonic cross sections and parton masses calculated for μB =
0 (blue dashed lines), and with cross sections and parton masses
evaluated at the actual chemical potential μB in each individual
space-time cell (red lines) in comparison to the experimental data
from the E866 [110], E877 [111], E891 [112], E877 [113], and
E896 [114] Collaborations. All PHSD results are the same within
the linewidth.

default DQPM parameters (PHSD4.0) with the new PHSD5.0
including the differential cross sections from Sec. III for the
individual partonic channels at finite T and μB as well as the
parton masses Mi(T, μB) from Eqs. (4) and (5). A comparison
to the available experimental data is included (for orientation)
but not discussed explicitly since this has been done in earlier
work in detail [46,47,57].

Figure 16 displays the actual results for hadronic rapidity
distributions in the case of 5% central Au + Au collisions at
10.7 A GeV for PHSD4.0 (green dot-dashed lines), PHSD5.0
with partonic cross sections and parton masses calculated for
μB = 0 (blue dashed lines), and with cross sections and parton
masses evaluated at the actual chemical potential μB in each
individual space-time cell (red lines) in comparison to the
experimental data from the E866 [110], E877 [111], E891
[112], E877 [113], and E896 [114] Collaborations. Here,
we focus on the most abundant hadrons, i.e., pions, kaons,
protons, and neutral hyperons. We note in passing that the
effects of chiral symmetry restoration are incorporated as in
Refs. [46,47] since this was found to be mandatory to achieve
a reasonable description of the strangeness degrees of freedom
reflected in the kaon and neutral hyperon dynamics. As seen
from Fig. 16, there is no difference in rapidity distributions
for all the hadron species from the different versions of PHSD
within linewidth, which implies that there is no sensitivity to
the new partonic differential cross sections and parton masses
employed. One could argue that this result might be due to the
low amount of QGP produced at this energy, but the different
PHSD calculations for 5% central Pb + Pb collisions at 30 A
GeV in Fig. 17 for the hadronic rapidity distributions do not
provide a different picture. Only when stepping up to the top

π π

Λ Σ

FIG. 17. The rapidity distributions for 5% central Pb + Pb colli-
sions at 30 A GeV for PHSD4.0 (green dot-dashed lines), PHSD5.0
with partonic cross sections and parton masses calculated for μB = 0
(blue dashed lines) and with cross sections and parton masses evalu-
ated at the actual chemical potential μB in each individual space-time
cell (red lines) in comparison to the experimental data from the NA49
Collaboration [115–117]. All PHSD results are practically the same
within the linewidth.

SPS energy of 158 A GeV can one identify a small difference
in the antibaryon sector (p̄, �̄ + �̄0) in the case of 5% central
Pb + Pb collisions (cf. Fig. 18).

According to the studies above, there is apparently no siz-
able sensitivity in the hadronic rapidity distributions to the ac-
tual differential partonic cross sections, but one has to explore
the transverse dynamics in addition. To this end, we show in
Figs. 20 and 21 the transverse momentum distributions for
5% central Pb + Pb collisions at 158 A GeV and midrapidity
(|y| < 0.5) for PHSD4.0 (green lines), PHSD5.0 with partonic
cross sections and parton masses calculated for μB = 0 (blue
lines), and with cross sections and parton masses evaluated at
the actual chemical potential μB in each individual space-time
cell (red lines) in comparison to the experimental data from
the NA49 Collaboration [115–120]. Here, the solid lines stand
for positively charged particles while the dashed lines display
the results for negatively charged particles. We find that at
30 A GeV there is practically no change in the pT spectra
for all PHSD versions; only at 158 A GeV do tiny changes in
the pT spectra become visible for transverse momenta above
about 2.5 GeV/c. We mention for completeness that again for
10.7 A GeV Au + Au collisions we do not find any changes
also in the pT spectra within the linewidth (cf. Fig. 19). Appar-
ently, the space-time volume of the partonic phase is too small
at AGS and SPS energies even in central Pb + Pb collisions
such that one has practically no sensitivity to the microscopic
collisional details in the partonic phase. However, this might
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FIG. 18. The rapidity distributions for 5% central Pb + Pb colli-
sions at 158 A GeV for PHSD4.0 (green dot-dashed lines), PHSD5.0
with partonic cross sections and parton masses calculated for μB =
0 (blue dashed lines), and with cross sections and parton masses
evaluated at the actual chemical potential μB in each individual
space-time cell (red lines) in comparison to the experimental data
from the NA49 Collaboration [118–121]. All PHSD results are the
same within the linewidth except for the antibaryons.

change for ultrarelativistic collision systems where the QGP
phase becomes dominant.

B. RHIC energies

As demonstrated in Ref. [60], one expects a dominantly
partonic phase in central Au + Au collisions at

√
sNN =

200 GeV especially when gating on midrapidity. However,
the differences between PHSD4.0 and PHSD5.0 (with and
without μB dependence) in the hadronic rapidity distributions
for 5% central Au + Au collisions turn out to be rather small
for mesons (π±, K±) and also for baryons and antibaryons
(p, p̄,� + �0, �̄ + �̄0) (cf. Fig. 22) such that no robust
conclusion on the partonic collisional dynamics can be drawn
even in this case.

This also holds true for the transverse momentum distri-
butions at midrapidity (|y| < 0.5) for these collisions when
comparing the results from the different PHSD versions with
each other and the data from the PHENIX [126] and STAR
[127] Collaborations in Fig. 23. Only for high transverse
momenta can small differences be seen with the tendency
to improve the description of the data in the novel versions
of PHSD5.0 with the microscopic differential partonic cross
sections.

C. Asymmetric systems

Since the central collisions of the heavy systems (Au + Au
or Pb + Pb) only provide information on the total partonic
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FIG. 19. The transverse momentum distributions for 5% central
Pb + Pb collisions at 11 A GeV and midrapidity (|y| < 0.5) for
PHSD4.0 (green lines), PHSD5.0 with partonic cross sections and
parton masses calculated for μB = 0 (blue lines), and with cross
sections and parton masses evaluated at the actual chemical potential
μB in each individual space-time cell (red lines) in comparison to the
experimental data from the E917 and E866 Collaborations [122,123].
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FIG. 20. The transverse momentum distributions for 5% central
Pb + Pb collisions at 30 A GeV and midrapidity (|y| < 0.5) for
PHSD4.0 (green lines), PHSD5.0 with partonic cross sections and
parton masses calculated for μB = 0 (blue lines), and with cross
sections and parton masses evaluated at the actual chemical potential
μB in each individual space-time cell (red lines) in comparison to the
experimental data from the NA49 Collaboration [115–117].

FIG. 21. The transverse momentum distributions for 5% central
Pb + Pb collisions at 158 A GeV and midrapidity (|y| < 0.5) for
PHSD4.0 (green lines), PHSD5.0 with partonic cross sections and
parton masses calculated for μB = 0 (blue lines), and with cross
sections and parton masses evaluated at the actual chemical potential
μB in each individual space-time cell (red lines) in comparison to the
experimental data from the NA49 Collaboration [118–120].)
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FIG. 22. The rapidity distributions for 5% central Au + Au col-
lisions at

√
sNN = 200 GeV for PHSD4.0 (green dot-dashed lines),

PHSD5.0 with partonic cross sections and parton masses calculated
for μB = 0 (blue dashed lines), and with cross sections and parton
masses evaluated at the actual chemical potential μB in each indi-
vidual space-time cell (red lines) in comparison to the experimental
data from the BRAHMS [124,125], PHENIX [126], and STAR [127]
Collaborations.

reaction rate and not details of the partonic collisional dynam-
ics, one has to explore asymmetric heavy-ion collisions—such
as C + Au or Cu + Au—in addition in order find out a
possible sensitivity to the partonic collisions. To this end, we
have performed a systematic study of 5% C + Au and Cu +
Au collisions at bombarding energies from AGS to top RHIC
energies for the “bulk” observables within the different PHSD
versions. We note that (without explicit representation) we did
not find any difference at 10.7 and 30 A GeV as in the case of
the heavy symmetric systems for the hadronic rapidity distri-
butions and transverse momentum spectra at midrapidity. For
Cu + Au, the actual results—with regard to the differences
between PHSD4.0 and PHSD5.0—at all bombarding energies
turned out to be very similar to the central Au + Au or Pb +
Pb collisions such that an explicit representation is discarded.
Only in the case of 5% C + Au reactions at top SPS and top
RHIC energies have some differences been found, which will
be discussed in the following.

The rapidity distributions of hadrons for 5% central C +
Au collisions are displayed in Figs. 24 and 25 for 158 A
GeV and

√
sNN = 200 GeV, respectively. Note that the ra-

pidity distributions are no longer symmetric in rapidity y but
enhanced for y < 0 (Au-going side). There is no change of the

FIG. 23. The transverse momentum distributions for 5% central
Au + Au collisions at

√
sNN = 200 GeV and midrapidity (|y| < 0.5)

for PHSD4.0 (green lines), PHSD5.0 with partonic cross sections
and parton masses calculated for μB = 0 (blue lines), and with cross
sections and parton masses evaluated at the actual chemical potential
μB in each individual space-time cell (red lines) in comparison to
the experimental data from the PHENIX [126] and STAR [127]
Collaborations.
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π π

Λ Σ Λ Σ

FIG. 24. The rapidity distributions for 5% central C + Au colli-
sions at 158 A GeV for PHSD4.0 (green dot-dashed lines), PHSD5.0
with partonic cross sections and parton masses calculated for μB =
0 (blue dashed lines), and with cross sections and parton masses
evaluated at the actual chemical potential μB in each individual
space-time cell (red lines).

pion and baryon distributions at both energies for the different
PHSD versions as in the case of the heavy symmetric systems
while tiny differences can again be seen in the antibaryon
spectra. However, in the case of C + Au, now there is also
a small signal in the kaon rapidity distributions which is
more pronounced at

√
sNN = 200 GeV. This suggests that the

strangeness degree of freedom might be explored in very
asymmetric systems to obtain additional information on the
partonic scattering dynamics.

The transverse momentum spectra of hadrons at midrapid-
ity (for C + Au) are shown in Figs. 26 and 27 for 158 A
GeV and

√
sNN = 200 GeV, respectively. There is practically

no difference in the PHSD4.0 and PHSD5.0 results for pions,
kaons, protons, and antiprotons and only a very small signal
in the antihyperons can be identified. Nevertheless, our results
for this very asymmetric system can be considered as predic-
tions for the production of the most abundant hadron species
at top SPS and RHIC energies.

VIII. SUMMARY

In this work, we have extended the PHSD transport ap-
proach (PHSD4.0 [47,57]) to incorporate differential “off-
shell cross sections” for all binary partonic channels that
are based on the same effective propagators and couplings
as employed in the QGP equation of state and the parton
propagation. To this end, we have recalled the extraction of
the partonic masses and the coupling g2 from lattice QCD data
(within the DQPM) and calculated the partonic differential
cross sections as a function of T and μB for the leading tree-
level diagrams (cf. the Appendixes). Furthermore, in Sec. IV,

π π

Λ Σ Λ Σ

FIG. 25. The rapidity distributions for 5% central C + Au col-
lisions at

√
sNN = 200 GeV for PHSD4.0 (green dot-dashed lines),

PHSD5.0 with partonic cross sections and parton masses calculated
for μB = 0 (blue dashed lines), and with cross sections and parton
masses evaluated at the actual chemical potential μB in each individ-
ual space-time cell (red lines).

we have used these differential cross sections to evaluate
partonic scattering rates for fixed T and μB as well as to
compute the ratio of the shear viscosity η to entropy density
s within the Kubo formalism in comparison to calculations
from lQCD. It turns out that the ratio η/s calculated with the
partonic scattering rates in the relaxation-time approximation
is very similar to the original result from the DQPM and to
lQCD results such that the present extension of the approach
does not lead to different partonic transport properties ex-
cept for temperatures close to Tc. We recall that the novel
PHSD version (PHSD5.0) is practically parameter free in
the partonic sector since the effective coupling (squared) is
determined by a fit to the scaled entropy density from lQCD.
The dynamical masses for quarks and gluons then are fixed
by the HTL expressions. The interaction rate in the timelike
sector is, furthermore, calculated in leading order employing
the DQPM propagators and coupling.

When implementing the differential cross sections and par-
ton masses into the PHSD5.0 approach, one has to specify the
Lagrange parameters T and μB in each computational cell in
space-time. This has been done by employing a state-of-the-
art lattice QCD equation of state [102] and a diagonalization
of the energy-momentum tensor from PHSD as described in
Sec. V. Detailed results for T and μB have been presented for
central collisions of Pb + Pb at

√
sNN = 17.3 and Au + Au

at
√

sNN = 200 GeV in the (T, μB) plane as a function of
reaction time. It turns out that the evolution of the QGP
phase from the PHSD approximately follows the expectation
from the isentropic trajectory s/nB ≈ 40 at

√
sNN = 17.3 for
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FIG. 26. The transverse momentum distributions for 5% central
C + Au collisions at 158 A GeV and midrapidity (|y| < 0.5) for
PHSD4.0 (green lines), PHSD5.0 with partonic cross sections and
parton masses calculated for μB = 0 (blue lines), and with cross
sections and parton masses evaluated at the actual chemical potential
μB in each individual space-time cell (red lines).

FIG. 27. The transverse momentum distributions for 5% central
C + Au collisions at

√
sNN = 200 GeV and midrapidity (|y| < 0.5)

for PHSD4.0 (green lines), PHSD5.0 with partonic cross sections
and parton masses calculated for μB = 0 (blue lines), and with cross
sections and parton masses evaluated at the actual chemical potential
μB in each individual space-time cell (red lines).
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T above Tc while at the top RHIC energy the distribution
in T and μB spreads around zero for all reaction times
considered.

In Sec. VI, we then have calculated 5% central Au + Au
(or Pb + Pb) collisions and compared the results for hadronic
rapidity distributions and transverse momentum spectra (at
midrapidity) from the previous PHSD4.0 with the novel ver-
sion PHSD5.0 (with and without the explicit dependence of
the partonic differential cross sections and parton masses on
μB). No differences for all the hadron “bulk” observables
from the various PHSD versions have been found at AGS and
FAIR/NICA energies within linewidth, which implies that
there is no sensitivity to the new partonic differential cross
sections employed. Only in the case of the kaons and the
antibaryons p̄ and �̄ + �̄0 could a small difference between
PHSD4.0 and PHSD5.0 be seen at top SPS and top RHIC
energies; however, there was no clear difference between the
PHSD5.0 calculations with partonic cross sections for μB =
0 and actual μB in the local cells. When considering very
asymmetric collisions of C + Au, a small sensitivity to the
partonic scatterings was found in the kaon and antibaryon
rapidity distributions, too. However, it will be very hard to
extract a robust signal experimentally.

Our findings can be understood as follows: The fact that we
find only small traces of the μB dependence of partonic scat-
tering dynamics in heavy-ion “bulk” observables—although
the differential cross sections and parton masses clearly de-
pend on μB—implies that one needs a sizable partonic density
and large space-time QGP volume to explore the dynamics
in the QGP phase. These conditions are only fulfilled at
high bombarding energies (top SPS, RHIC energies) where,
however, μB is rather low. On the other hand, decreasing
the bombarding energy to FAIR-NICA energies and thus
increasing μB lead to collisions that are dominated by the
hadronic phase where the extraction of information about the
parton dynamics will be rather complicated based on “bulk”
observables. Further investigations of other observables (such
as flow coefficients vn of particles and antiparticles, fluctua-
tions, and correlations) might contain more visible μB traces

from the QGP phase and will be the subject of a forthcoming
study.
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APPENDIX A: MATRIX ELEMENTS FOR qq′ → qq′

SCATTERING

Here, we give the details on the calculation of the ma-
trix elements used to evaluate the DQPM partonic cross
sections which are based on Refs. [68,128,129]. We recall
that the Mandelstam variables are given by the momenta
as s = (ki + pi )2 = (k f + p f )2, t = (ki − k f )2 = (pi − p f )2,
u = (ki − p f )2 = (pi − k f )2. The generators of SU(3) asso-
ciated with QCD are denoted by the matrices T a = λa/2
with a being the gluon color and λa the Gell-Mann matrices
[130]. The Lie algebra formed by the generators T a is given
by the commutation relation [T a, T b] = i f abcT c where f abc

are the structure constants. We refer the reader to Ref. [131]
where all the rules for calculating the color factors in the
following calculations are given in detail. The γ matrices are
denoted by γ μ and the Dirac spinors are u for particles and
v for antiparticles. The final analytical expressions for the
matrix elements used in the PHSD code were evaluated using
FEYNCALC [132,133].

The invariant matrix elements corresponding to Fig. 28 are
given by the following expressions:

iMt
(
qi

αqk
β → q j

δql
γ

) = δαδ δβγ ū j
δ (k f )

( − igγ μT a
i j

)
ui

α (ki )

[
−i

gμν − (
qt

μqt
ν

)
/M2

g

(k f − ki )2 − M2
g + 2iγgωt

]
ūl

γ (p f )
( − igγ νT a

kl

)
uk

β (pi ), (A1)

iMu
(
qi

αqk
β → q j

δql
γ

) = −δαβ δαδ δβγ ū j
δ (k f )

( − igγ νT a
k j

)
uk

β (pi )

[
−i

gμν − (
qu

μqu
ν

)
/M2

g

(p f − ki )2 − M2
g + 2iγgωu

]
ūl

γ (p f )
( − igγ μT a

il

)
ui

α (ki ),

(A2)

iMs
(
qi

αqk
β → q j

δql
γ

) = −δαβ̄ δδγ̄ ū j
δ (k f )

( − igγ νT a
l j

)
vl

γ (p f )

[
−i

gμν − (
qs

μqs
ν

)
/M2

g

(ki + pi )2 − M2
g + 2iγgωs

]
v̄k

β (pi )
( − igγ μT a

ik

)
ui

α (ki ), (A3)

where the energy of the exchanged gluon is ωt = |k0
f − k0

i |, ωu = |p0
f − k0

i |, and ωs = |k0
i + p0

i |, and its momentum denoted by
qμ

t = (k f − ki )μ, qμ
u = (pi − k f )μ, and qμ

s = (ki + pi )μ. We note here that the matrix element Mt given above only corresponds
to a q-q elastic scattering, but the final contribution from t-channel diagrams to |M|2 is found to be the same whether a quark
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FIG. 28. Leading-order Feynman diagrams for the qq′ → qq′ and qq̄ → q′q̄′ processes. The initial and final 4-momenta are ki and pi,
and k f and pf , respectively. The indices i, j, k, l = 1–3 denote the quark colors, a = 1–8 denote the gluon colors, while the quark flavor is
indicated by the indices α, β, δ, γ = u, d, s, ....

scatters with a quark or antiquark since the amplitudes are averaged (summed) over initial (final) partons as

|M̄(qαqβ → qδqγ )|2 = 1

d2
q

∑
color

∑
spin

|Mt + Mu + Ms|2

= 1

3 × 3

∑
color

1

2 × 2

∑
spin

(|Mt |2 + |Mu|2 + 2 Re [MtM�
u] + 2 Re [MtM�

s ]). (A4)

APPENDIX B: MATRIX ELEMENTS FOR gq → gq SCATTERING

The invariant matrix elements corresponding to the Feynman diagrams in Fig. 29 are given by the following expressions:

iMt (g
aqi → gbq j ) = (ε�

b, f )ν[−gf cabCλμν (ki − k f ,−ki, k f )](εa,i)μ

[
−i

gλτ − (
qt

λqt
τ

)
/M2

g

(k f − ki )2 − M2
g + 2iγgωt

]
ū j (p f )

( − igγ τ T c
i j

)
ui(pi ),

(B1)

iMu(gaqi → gbq j ) = ū j (p f )
( − igγ μT a

k j

)
(εa,i )μ

[
i

/qu + Mq

u − M2
q + 2iγqωu

]
(ε�

b, f )ν
( − igγ νT b

ik

)
ui(pi ), (B2)

iMs(g
aqi → gbq j ) = ū j (p f )

( − igγ νT b
l j

)
(ε�

b, f )ν

[
i

/qs + Mq

s − M2
q + 2iγqωs

]
(εa,i )μ

( − igγ μT a
il

)
ui(pi ), (B3)

with the 3-gluon vertex Cλμν (q1, q2, q3) = [(q1 − q2)νgλμ + (q2 − q3)λgμν + (q3 − q1)μgλν] and the momentum of the ex-
changed gluon qμ

t = (k f − ki )μ in the t-channel.

FIG. 29. Leading-order Feynman diagrams for the gq → gq processes. The initial and final 4-momenta are ki and pi, and k f and pf ,
respectively. The indices i, j, k, l = 1–3 denote the quark colors, a, b, c = 1–8 indicate the gluon colors, while the quark flavor is indicated by
the indices α, β, δ, γ = u, d, s, ....
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FIG. 30. Leading-order Feynman diagrams for the gg → gg scatterings. The initial and final 4-momenta are ki and pi, and k f and pf ,
respectively. The indices a, b, c, d, e = 1–8 denote the gluon colors.

In the case of a massive gluon, the sum over polarizations is given by [in accordance with the denominator of the propagator
in Eq. (27)] ∑

pol.

(εi )μ(ε�
i )μ′ = −gμμ′ + (ki )μ(ki )μ′

(Mi )2
g

. (B4)

The invariant matrix element squared averaged (summed) over the initial (final) partons is

|M(gq → gq)|2 = 1

dgdq

∑
color

∑
spin

|Mt + Mu + Ms|2

= 1

8 × 3

∑
color

1

2 × 2

∑
spin

(|Mt |2 + |Mu|2 + |Ms|2 + 2 Re [MtM�
u] + 2 Re [MtM�

s ] + 2 Re [MuM�
s ]). (B5)

APPENDIX C: MATRIX ELEMENTS FOR gg → gg SCATTERING

The invariant matrix elements corresponding to the Feynman diagrams in Fig. 30 are given by the following expressions:

iMt (g
agb → gcgd ) = (ε�

d,4)σ [−gf eadCτλσ (q1 − q4,−q1, q4)](εa,1)λ

×
[
−i

gττ ′ − (
qt

τ qt
τ ′
)
/M2

g

(q4 − q1)2 − M2
g + 2iγgωt

]
(ε�

c,3)ν[−gf ecbCτ ′νμ(−q3 + q2, q3,−q2)](εb,2)μ, (C1)

iMs(g
agb → gcgd ) = (ε�

d,4)σ [−gf edcCτ ′σν (−q4 − q3, q4, q3)](ε�
c,3)ν

×
[
−i

gττ ′ − (
qs

τ qs
τ ′
)
/M2

g

(q1 + q2)2 − M2
g + 2iγgωs

]
(εb,2)μ[−gf ebaCτμλ(q2 + q1,−q2,−q1)](εa,1)λ (C2)

iMu(gagb → gcgd ) = (ε�
d,4)σ [−gf edbCτ ′σμ(−q4 + q2, q4,−q2)](εb,2)μ

×
[
−i

gττ ′ − (
qu

τ qu
τ ′
)
/M2

g

(q2 − q4)2 − M2
g + 2iγgωu

]
(ε�

c,3)ν[−gf eacCτλν (q1 − q3,−q1, q3)](εa,1)λ, (C3)

with the 3-gluon vertex Cλμν (q1, q2, q3) = [(q1 − q2)νgλμ + (q2 − q3)λgμν + (q3 − q1)μgλν] and the momentum of the ex-
changed gluon qμ

t = (q4 − q1)μ, qμ
s = (q1 + q2)μ, and qμ

u = (q2 − q4)μ.
The 4-point invariant amplitude is given by (according to Refs. [128,129])

iM4(gagb → gcgd ) = −ig2[ f abe f cde(gλνgμσ − gλσ gμν ) + f ace f bde(gλμgνσ − gλσ gνμ)

+ f ade f cbe(gλμgσν − gλνgσμ)](ε�
d,4)σ (ε�

c,3)ν (εb,2)μ(εa,1)λ,

M4(gagb → gcgd ) = f abe f cdeMs
4 + f ace f bdeMu

4 + f ade f cbeMt
4. (C4)

The invariant matrix element squared averaged (summed) over the initial (final) gluons is

|M(gg → gg)|2 = 1

d2
g

∑
color

∑
spin

|M(gagb → gcgd )|2

= 1

8 × 8

∑
color

1

2 × 2

∑
spin

(|Mt |2 + |Ms|2 + |Mu|2 + |M4|2 + 2 Re [MtM�
s ] + 2 Re [MtM�

u]

+ 2 Re [MuM�
s ] + 2 Re [MtM�

4] + 2 Re [MsM�
4] + +2 Re [MuM�

4]). (C5)
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