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Global polarization of � and �̄ hyperons in Au + Au collisions at collision energies
√

sNN = 4–40 GeV in
the midrapidity region and total polarization, i.e., averaged over all rapidities, are studied within the scope of
the thermodynamical approach. The relevant vorticity is simulated within the model of the three-fluid dynamics
(3FD). It is found that the performed rough estimate of the global midrapidity polarization quite satisfactorily
reproduces the experimental STAR data on the polarization, especially its collision-energy dependence. The
total polarization increases with the collision energy rise, which is in contrast to the decrease of the midrapidity
polarization. This suggests that at high collision energies the polarization reaches high values in fragmentation
regions.
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I. INTRODUCTION

Huge global angular momentum is generated in noncentral
heavy-ion collisions at high energies that can be partially
transformed into spin alignment of constituents [1–3]. The
latter can be measured by the polarization of hyperons and
vector mesons. Global polarization of � and �̄ hyperons
was measured [4] by the STAR experiment in the energy
range of the Beam Energy Scan (BES) program at the
Relativistic Heavy Ion Collider (RHIC) at Brookhaven. It
was measured in the midrapidity region of colliding nuclei.
The measured polarization is generally reproduced within
the hydrodynamic [5,6] and kinetic [7–11] model calcula-
tions based on the thermodynamics in the hadronic phase
[12–14], as well as within an alternative approach directly
based on the axial vortical effect [15–17] within the quark-
gluon string transport model [18]. The axial vortical effect
is associated with axial-vector current induced by vorticity.
This current implies that the right (left)-handed fermions
move parallel (opposite) to the direction of vorticity. As
the momentum of a right (left)-handed massless fermion is
parallel (opposite) to its spin, all spins become parallel to the
direction of vorticity, i.e., aligned.

In the present paper we estimate the global polarization
of � and �̄ hyperons in Au + Au collisions based on the
thermodynamical approach [12–14]. The relevant vorticity is
simulated within the model of the three-fluid dynamics (3FD)
[19]. We perform a collision-energy scan in the energy range
of the Facility for Antiproton and Ion Research (FAIR) in
Darmstadt [20], the Nuclotron based Ion Collider fAcility
(NICA) in Dubna [21], and BES at RHIC.

The 3FD model describes of the major part of bulk ob-
servables: the baryon stopping [22,23], yields of different
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hadrons, their rapidity and transverse momentum distributions
[24,25], and also the elliptic [26] and directed [27] flow. It also
reproduces [28] recent STAR data on bulk observables [29].

The question we address in this paper is whether the
3FD model is able to reproduce the observed global midra-
pidity polarization without any additional adjustment of the
model parameters. In other words, are the bulk and flow
properties of the produced matter internally interconnected
with its polarization? Based on this analysis we make
predictions for the global midrapidity polarization in the
FAIR-NICA energy range.

We also address the question, why does the observed global
polarization of hyperons in the midrapidity region drop with
the collision energy rise while the total angular momentum
accumulated in the system substantially increases at the same
time? To this end, we also estimate total polarization of
hyperons, i.e., the mean global polarization over all rapidities.

II. THE 3FD MODEL

The 3FD model takes into account a finite stopping power
resulting in counterstreaming of leading baryon-rich matter at
the early stage of nuclear collisions [19]. This nonequilibrium
stage is modeled by means of two counterstreaming baryon-
rich fluids initially associated with constituent nucleons of the
projectile (p) and target (t) nuclei. Later on these fluids may
consist of any type of hadrons and/or partons (quarks and
gluons), rather than only nucleons. Newly produced particles,
dominantly populating the midrapidity region, are associated
with a fireball (f) fluid. These fluids are governed by con-
ventional hydrodynamic equations coupled by friction terms
in the right-hand sides of the Euler equations. The friction
results in energy-momentum loss of the baryon-rich fluids.
A part of this loss is transformed into thermal excitation
of these fluids, while another part leads to formation of the
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FIG. 1. The total angular momentum (conserved quantity) and
the angular momentum accumulated in the participant region in
semicentral (b = 8 fm) Au + Au collision as functions of

√
sNN .

Calculations are done with the first-order transition and crossover
EoS’s.

fireball fluid. Thus, the 3FD approximation is a minimal way
to implement the early-stage nonequilibrium of the produced
strongly interacting matter at high collision energies.

The physical input of the present 3FD calculations is
described in Ref. [22]. Three different equations of state
(EoS’s) were used in simulations of Refs. [22–28]: a purely
hadronic EoS [30] and two versions of the EoS with the
deconfinement transition [31], i.e., a first-order phase tran-
sition and a crossover one. The friction between the fluids
in the hadronic phase was estimated in Ref. [32] based on
experimental proton-proton cross sections. This friction is
implemented in the 3FD simulations of the hadronic phase.
There are no estimates of this friction in the quark-gluon phase
(QGP). Therefore, the friction in the QGP was fitted for each
EoS to reproduce the observed stopping power; see Ref. [22]
for details. In the present paper only the first-order-phase-
transition (1st-order-tr.) and crossover EoS’s are used as the
most relevant to various observables.

Total angular momentum is conserved with an accuracy of
1% in the 3FD simulations. The angular momentum is defined
as

J =
∫

d3x
∑

α=p,t,f

(
z T α

10 − x T α
30

)
. (1)

where T α
μν is the energy-momentum tensor of the α (=p,t,f)

fluid and has the conventional hydrodynamical form, z is the
beam axis, and (x, z) is the reaction plane of the colliding
nuclei. The total angular momentum, Jtotal, in semicentral
(impact parameter b = 8 fm) Au + Au collision as function of
collision energy

√
sNN is presented in Fig. 1. It is independent

of the used EoS. For the Jtotal calculation the integration in
Eq. (1) runs over the whole system. As seen, Jtotal rapidly
rises with the collision energy. Only a part of the total an-
gular momentum is accumulated in the participant region.
Figure 1 also displays the angular momentum accumulated
in the participant region, i.e., in the overlap region of the
interacting fluids. As seen from Fig. 1, 25–30% of the total

angular momentum is deposited into participant matter in the
Au + Au collisions at b = 8 fm.

The participant angular momentum rises with time because
the overlap region of the interacting fluids increases in the
course of the expansion stage and includes more and more
former spectators. Therefore, the participant angular momen-
tum depends, though weakly, on the EoS. Figure 1 presents
the participant angular momenta at the “freeze-out” instant of
time in the c.m. frame of colliding nuclei, i.e., when average
energy density throughout the participant region falls to the
freeze-out value of εfrz = 0.4 GeV/fm3. This is a kind of
illustrative freeze-out. In actual calculations of observables a
differential, i.e., cell-by-cell, freeze-out is implemented [33].
The freeze-out occurs when the local energy density drops
down to the freeze-out value εfrz.

III. VORTICITY IN THE 3FD MODEL

A so-called thermal vorticity is defined as

�μν = 1
2 (∂νβ̂μ − ∂μβ̂ν ), (2)

which is dimensionless. Here β̂μ = h̄βμ, βμ = uν/T , uμ is
collective local four-velocity of the matter, and T is local
temperature. In the thermodynamical approach [12–14] in the
leading order in the thermal vorticity it is directly related to the
mean spin vector of spin 1/2 particles with four-momentum p,
produced around point x on freeze-out hypersurface

Sμ(x, p) = 1

8m
[1 − nF (x, p)] pσ εμνρσ�ρν (x), (3)

where nF (x, p) is the Fermi-Dirac distribution function and m
is mass of the considered particle. To calculate the relativistic
mean spin vector of a given particle species with given mo-
mentum, the above expression should be integrated over the
freeze-out hypersurface.

Unlike the conventional hydrodynamics, the system is
characterized by three hydrodynamical velocities, uμ

a (a = p,
t, and f), in the 3FD model. The counterstreaming of the p
and t fluids takes place only at the initial stage of the nuclear
collision that lasts from ≈5 fm/c at

√
sNN = 5 GeV [34]

to ≈1 fm/c at a collision energy of 39 GeV [35]. At later
stages the baryon-rich (p and t) fluids have already either
partially passed though each other or partially stopped and
unified in the central region. At lower collision energies, like
those of NICA and FAIR, the contribution the f fluid into
various quantities, in particular into the vorticity [34], is small
compared with that of the baryon-rich (p and t) fluids. At
higher BES RHIC energies the f-fluid contributions become
comparable with those of the baryon-rich (p and t) fluids. The
f fluid also is entrained by the the unified baryon-rich fluid but
is not that well unified with the latter, thus keeping its identity
even after the initial thermalization/unification of the baryon-
rich fluids. The local baryon-fireball relative velocity is small
but not negligible even at the freeze-out stage [36]. In partic-
ular, the friction between the baryon-rich and net-baryon-free
fluids is the only source of dissipation at the expansion stage.

014908-2



ESTIMATES OF HYPERON POLARIZATION … PHYSICAL REVIEW C 100, 014908 (2019)

Therefore, after the initial thermalization stage the system is
characterized by two hydrodynamical velocities, uμ

B and uμ
f ,

and two temperatures, TB and Tf , corresponding to the unified
baryon-rich (B) and fireball (f) fluids.

As a result the system is characterized by two sets of
the vorticity related to these baryon-rich and baryon-free
fluids, � B

μν and � f
μν , respectively, which are defined in

terms of their velocities and temperatures. We consider a
proper-energy-density-weighted vorticity which allows us to
suppress contributions of regions of low-density matter. It
is appropriate because production of (anti)hyperons under
consideration dominantly takes place in highly excited regions
of the system. We also determine the sum of vorticities of the
baryon-rich and baryon-free fluids with the weights of their
energy densities, and thus define a single quantity responsible
for the particle polarization:

�̃μν (x, t ) = � B
μν (x, t )εB(x, t ) + � f

μν (x, t )εf (x, t )

ε(x, t )
(4)

where εB and εf are the proper energy densities of the the
baryon-rich and baryon-free fluids, respectively. The proper
energy density of all three fluids in their combined local rest
frame, ε, is

ε = uμT μνuν . (5)

where T μν ≡ T μν
p + T μν

t + T μν

f is the total energy–
momentum tensor, being the sum of conventional
hydrodynamical energy-momentum tensors of separate
fluids, and the total collective four-velocity of the matter is

uμ = uνT μν/(uλT λνuν ). (6)

However, because of almost perfect unification of the baryon-
rich fluids and small local baryon-fireball relative velocities
[35], at the later stages of the collision a very good approxi-
mation for ε is just

ε � εB + ε f . (7)

A quantitative comparison of the thermal vorticity in semi-
central (b = 8 fm) Au + Au collisions at different collision
energies

√
sNN is performed in terms of average thermal

vorticity of the composed matter [Eq. (4)] also averaged over
coordinate (x) space with the weight of the proper energy
density:

〈�μν (t )〉 =
∫

d3x
[
� B

μν (x, t ) εB(x, t )

+� f
μν (x, t ) εf (x, t )

]/〈ε(t )〉, (8)

where average energy density is

〈ε(t )〉 =
∫

d3x ε(x, t )

/∫
θ [ε(x, t )]d3x (9)

with θ (x) being equal to 1 for x > 0, and 0 otherwise. This
averaging is performed over two different space regions:

(a) Over the central slab, |x| < R − b/2, |y| < R − b/2
and |z| < R/γcm, where R is the radius of the Au nu-
cleus, b is the impact parameter, and γcm is the Lorentz
factor associated with the initial nuclear motion along
the beam (z) axis in the c.m. frame. This central

central layer includes the whole participant region in
the transverse direction. The data from this central slab
are used to imitate the midrapidity global polarization.

(b) Over the whole participant region system, which is re-
stricted by the condition T > 100 MeV. This condition
first of all is related to the baryon-rich fluid because the
temperature of the produced f fluid is always high. The
temperature gradients and hence the thermal vorticity
reach very high values at the spectator-participant bor-
der, where the temperature itself is not that high. At
the same time, the � hyperons are efficiently produced
only from the hottest regions of the system. Therefore,
keeping in mind application to the � polarization, we
apply this temperature constraint. The temperature is
always high in the above discussed central slab, which
makes this constraint unnecessary.

In order to keep all the matter in consideration, conven-
tional local 3FD freeze-out was turned off because it removes
the frozen-out matter from the hydrodynamical evolution [33].
Nevertheless, we do apply a simplified freeze-out, that was
already mentioned in the end of the previous section. This is
an isochronous freeze-out similar to that used in Refs. [5,6].
The system is frozen out at the time instant tfrz when

(a) the average energy density in the central slab,
〈ε(t )〉slab, decreases to its freeze-out value εfrz =
0.4 GeV/fm3, or

(b) the average energy density in the whole participant
region, 〈ε(t )〉total, decreases to its freeze-out value εfrz.

The freeze-out in the central slab of the system of colliding
nuclei is used to imitate the midrapidity global polarization,
while that in the whole participant region is used to estimate
the total1 polarization that also includes averaging over all
rapidities.

Time evolution of the average energy density in the cen-
tral slab and in the whole participant region is displayed
in panels (a) of Figs. 2 and 3, respectively. The bold cyan
line indicates the freeze-out value εfrz. The simulations were
performed with the crossover EoS. We do not present re-
sults for the first-order-transition EoS because they are quite
similar. As seen from Figs. 2 and 3, the time span prior
this global freeze-out is quite short. It should be compared
to time of completion of the conventional local 3FD freeze-
out at the same collision energies: 8 fm/c for both total
and central-slab freeze-out at 7.7 GeV, 6 fm/c for central-
slab freeze-out, and 20 fm/c for total freeze-out at 39 GeV.
This happens because the 〈ε(t )〉 value is calculated over all
regions of the system, i.e., including those which would be
already locally frozen out to the considered time instant.

The time evolution of the average proper-energy-weighted
thermal zx vorticity in the central slab and in the whole
participant region is displayed in panels (b) of Figs. 2
and 3, respectively. The bold cyan line indicates the global

1To distinguish it from the global one at midrapidity.
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Au+Au at b = 8 fm, crossover EoS
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FIG. 2. Time evolution of (a) the proper energy density averaged
over the central slab in the semicentral (b = 8 fm) Au + Au collision
at

√
sNN = 3.8, 4.9, 7.7, 11.5, 19.6, 39 GeV; the cyan band is placed

at the freeze-out energy density ε = 0.4 GeV/fm3. (b) The proper-
energy-density-weighted thermal zx vorticity averaged over the cen-
tral slab; the cyan band indicates the freeze-out, corresponding to the
ε = 0.4 GeV/fm3 band in panel (a). Calculations are done with the
crossover EoS.

freeze-out, which correspond to the similar lines at value εfrz

in panels (a) of Figs. 2 and 3.
The central-slab thermal vorticity rapidly decreases with

time. At the early stages it practically coincides with the total
one because this central region includes all the participant
region. Later on the central vorticity becomes more than an
order of magnitude lower than the total one. The central-slab
vorticity at the freeze-out decreases with increasing collision
energy because the vortical field is pushed out to the fragmen-
tation of regions [36,37]. The violation of this trend at energies

Au+Au at b = 8 fm, crossover EoS

total  (a)

10-1
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101
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√sNN = 27 GeV

3.8 GeV

freeze-out

total  (b)
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3.8 GeV

FIG. 3. The same as in Fig. 2 but averaging over the whole
participant region at collision energies

√
sNN = 3.8, 4.9, 7.7, 11.5,

19.6, 27 GeV.

19.6 and 39 GeV is because of somewhat unstable numerics
at 39 GeV energy.

At the same time, the average total thermal vorticity at the
freeze-out generally rises with the collision energy, as can be
expected from the corresponding increase of the total angular
momentum accumulated in the participants; see Fig. 1. At the
lowest considered energy of 3.8 GeV, the central-slab and total
values of the vorticity are very similar because the vorticity
is more homogeneously distributed over the beam direction
[9,34,38] than at higher collision energies. The average total
thermal vorticity as a function of time changes much slower
as compared with the central one: at lower collision energies it
moderately decreases while at higher energies it even slightly
rises with time.
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IV. POLARIZATION

In terms of the mean spin vector (3), the polarization vector
of an S-spin particle is defined as

Pμ
S = Sμ/S. (10)

In the experiment, the polarization of the � hyperon is mea-
sured in its rest frame, therefore the � polarization is

Pμ
� = 2S∗μ

� , (11)

where S∗μ
� is mean spin vector of the � hyperon in its

rest frame. In the � rest frame the zeroth component S0
�

identically vanishes and the spatial component becomes [9]

S∗
�(x, p) = S� − p� · S�

E�(E� + m�)
p�. (12)

Substitution of the expression for S from Eq. (3) and averaging
this expression over the p� direction (i.e., over np) results in
the following polarization in the direction orthogonal to the
reaction plane (xz) [9] (see also [12–14]):

〈P�〉np = 1

2m�

(
E� − 1

3

p2
�

E� + m�

)
�zx, (13)

where m� is the � mass and E� and p� are the energy
and momentum of the emitted � hyperon, respectively. Here
we put (1 − n�) � 1 because the � production takes place
only in high-temperature regions, where Boltzmann statistics
dominates.

Particles are produced across the entire freeze-out hyper-
surface. Therefore, to calculate the global polarization vector,
the above expression should be integrated over the freeze-out
hypersurface � and particle momenta

〈P�〉 =
∫

(d3 p/p0)
∫
�

d�λ pλn�P�∫
(d3 p/p0)

∫
�

d�λ pλ n�

. (14)

Because of the isochronous freeze-out, (d3 p/p0)d�λ pλ =
d3 p d3x.

We apply further approximations, after which the present
evaluation of the global polarization becomes more an esti-
mation than a calculation. We associate the global midrapidity
polarization with the polarization of � hyperons emitted from
the above discussed central slab. We decouple averaging of
�zx and the term in parentheses in Eq. (13). Here we neglect
the longitudinal motion of the � hyperon at the freeze-out
stage in the central slab and therefore approximate the av-
erage � energy by the mean midrapidity transverse mass:
〈E�〉 = 〈m�

T 〉midrap., which was calculated earlier in Ref. [25].
Applying all the above approximations, we arrive at the esti-
mate of the global midrapidity � polarization in the direction
orthogonal to the reaction plane (xz):

〈P�〉midrap. � 〈�zx〉cent. slab

2

(
1 + 2

3

〈
m�

T

〉
midrap. − m�

m�

)
.

(15)

Results of this estimate are presented in panel (a) of Fig. 4.
The corresponding 3FD simulations of Au + Au collisions
were performed at fixed impact parameter b = 8 fm. This
value of b was chosen in order to roughly comply with the

FIG. 4. (a) Global, i.e., in the central-slab region, and (b) total,
i.e. averaged over the whole participant region, polarization of �

hyperons in Au + Au collisions at b = 8 fm as a function of collision
energy

√
sNN . The blue bands indicate polarization uncertainty due to

a change in the freeze-out criterion from εfrz = 0.3 to 0.5 GeV/fm3

for the crossover EoS. STAR data on global � and also �̄ polariza-
tion in the midrapidity region (pseudorapidity cut |η| < 1) [4] are
also displayed.

centrality selection 20–50% in the STAR experiment [4].
The correspondence between experimental centrality and the
mean impact parameter was taken from Glauber simulations
of Ref. [39].

As seen from Fig. 4, such a rough estimate of the global
midrapidity polarization quite satisfactorily reproduces the
experimental data, especially the collision-energy dependence
of the polarization. This energy dependence is related to
the decrease of the thermal vorticity in the central region
(see Fig. 2) with the collision energy rise. The latter is a
consequence of pushing out the vorticity field into the frag-
mentation region, which was discussed in Ref. [36] in detail.
This effect of pushing out was found already in Ref. [37]. The
difference between results of the first-order-phase-transition
and crossover EoS’s is negligible. Apparently this is related
to the fact that these two EoS’s equally well reproduce the
bulk of the available experimental data in this energy range.
The performed estimate predicts that the global midrapid-
ity polarization further increases at NICA/FAIR energies,
reaching values of 5% at

√
sNN = 3.8 GeV. This prediction

approximately agrees with that made in Ref. [18] based on
the axial vortical effect [15–17].

The global midrapidity polarization of �̄ hyperons differs
only by replacement of 〈m�

T 〉midrap. with 〈m�̄
T 〉midrap. in Eq. (15)
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from that for �’s, and quantitatively does not exceed 5% of
that for � hyperons. Therefore, we do not display it in Fig. 4.

As mentioned above, the freeze-out applied in this calcula-
tion differs from that used in previous studies of the bulk and
flow observables. We studied sensitivity of the polarization to
a change of the freeze-out criterion that indirectly simulates
the effect of different freeze-out procedures. The results of
the change of the freeze-out energy density from εfrz = 0.3
to 0.5 GeV/fm3 for the calculations with the crossover EoS
are presented in Fig. 4. The lower εfrz corresponds to the
lower border of the displayed band. As seen from Fig. 4, the
resulting variation of the central-slab polarization gradually
changes from 30% at the energy of 4.3 GeV to 5% at 39 GeV.
Results for the first-order-transition EoS are similar.

To further estimate uncertainties of the present estimation
we performed calculations in a considerably smaller central
box: |x| < 2 fm, |y| < 2 fm, and |z| < 2 fm/γcm, i.e., with
the box used in Ref. [40] to estimate densities achieved in the
center of colliding nuclei. The difference from results in the
central slab used in the above case depends on the collision
energy but generally does not exceed 20%. Another source
of uncertainty is feed-down contribution due to decays of
higher-mass hyperons, which are not included in the present
estimate. According to Refs. [5,7,14], including �’s from
resonance decays reduces the � polarization by 15% to 20%.
However, the resonance decays increase the � polarization by
approximately 20% according to Ref. [9].

In the case of total � polarization, the integration in
Eq. (13) runs over the whole participant range confined by the
condition T > T0 with T0 = 100 MeV. In such averaging the
above applied decoupling of averaging of �zx and the term in
parentheses in Eq. (13) is even less justified than in the central
slab. Therefore, we do an even more rough estimate of the
mean total polarization of emitted � hyperons,

〈P�〉total ≈ 〈�zx〉T >T0

2
, (16)

by neglecting the term in parentheses in Eq. (13). Note
that this term is a correction, though not a negligible one.
Sometimes it results in 30% correction for the central-slab
polarization. Thus, this is another point to add to the above-
discussed list of uncertainties.

Results of this estimate of the total � polarization are
presented in panel (b) of Fig. 4. The total � polarization
increases with collision energy rise. This is in contrast to
the energy dependence of the midrapidity polarization. This
increase is quite moderate as compared with the rapid rise of
the angular momentum accumulated in the participant region;
see Fig. 1.

A peculiar feature is seen in Fig. 4(b). The lower and
upper borders of the band, corresponding to lower and higher
freeze-out energy densities, εfrz = 0.3 and 0.5 GeV/fm3, re-
spectively, at low collision energies

√
sNN � 11.5 GeV, cross

and then change their places at high collision energies. Thus,
the total polarization rises with decrease of the freeze-out
energy density at high collision energies. This can be expected
from the evolution of the thermal vorticity displayed in Fig. 3.
This observation indirectly indicates that the � polarization in
the fragmentation regions reaches high values at high collision

energies. Indeed, the fragmentation regions become dominant
at later time instants because of their longer evolution (as
compared to the central region) due to relativistic time dilation
caused by their high-speed motion with respect to the central
region. Therefore, at late freeze-out, i.e., at lower εfrz, we see
a larger relative contribution from the fragmentation regions
in the total polarization than that at the early freeze-out. The
increase of the total polarization with simultaneous decrease
of the midrapidity one additionally confirms the conjecture on
high values of the � polarization reached in the fragmentation
regions at high collision energies.

In view of high degree of the polarization and therefore
large values of �zx, the expansion of the exponential function
in terms of � is definitely inapplicable (see Eqs. (34) and (35)
in Ref. [12]). Note that this expansion was used in deriving
the formula for the polarization in Ref. [12]. This is another
source of uncertainty of the present estimate of the total
polarization at high energies.

At lower collision energies, values of the total and midra-
pidity polarization are very close to each other, which reflects
a more homogeneous distribution of the vortical field over
the bulk of the produced matter. This spread into the bulk
is an effect of dissipation (or the shear viscosity in terms
of the conventional hydrodynamics). In the 3FD dynamics
it is a result of the 3FD dissipation which increases with
collision-energy decrease [41].

V. SUMMARY

We estimated the global polarization of � and �̄ hyperons
in Au + Au collisions in the midrapidity region and the total
polarization, i.e., averaged over all rapidities. This estimate
was based on the thermodynamical approach [12–14]. The
relevant vorticity was simulated within the 3FD model [19].
A collision-energy scan in the energy range of FAIR, NICA,
and BES-RHIC was performed. The midrapidity results were
compared with STAR data [4].

It is found that without any adjustment of the model param-
eters the performed rough estimate of the global midrapidity
polarization quite satisfactorily reproduces the experimental
STAR data on the � polarization, especially the collision-
energy dependence of the polarization. This energy depen-
dence is a consequence of the decrease of the thermal vorticity
in the central region with the collision energy rise, which
in its turn results from pushing out the vorticity field into
the fragmentation regions [36,37]. The difference between
results of the first-order-phase-transition and crossover EoS’s
is negligible. Apparently this is related to the fact that these
two EoS’s equally well reproduce the bulk of the available
experimental data in this energy range. The performed esti-
mate predicts that the global midrapidity polarization further
increases at NICA/FAIR energies, reaching values of 5%
at

√
sNN = 3.8 GeV. This prediction approximately agrees

with that made in Ref. [18] based on the axial vortical effect
[15–17].

The global midrapidity polarizations of �̄’s and �’s practi-
cally do not differ from each other within the present estimate.
This is also true for all other hydrodynamic [5,6] and kinetic
[7–11] calculations based on the thermodynamical approach.
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It is not quite clear whether this contradicts the STAR data
at the energy of 7.7 GeV because of large error bars of
the measured �̄ polarization. However, there are approaches
which naturally explain this difference. One of them is directly
based on the axial vortical effect [15–17]. Application of
this approach within the quark-gluon string transport model
[18] well reproduces both the �̄ and � polarizations and
splitting between them. Another recently suggested approach
[42] based on a Walecka-like model can also explain the
difference in the �̄-� polarizations. However, the ability of
this Walecka-like approach to describe absolute values of
these polarizations still remains to be seen.

According to our estimate, the total � polarization in-
creases with collision energy rise, which is in contrast to
the energy dependence of the midrapidity polarization. This
increase is quite moderate compared to the rapid rise of the
angular momentum accumulated in the participant region. The

increase of the total polarization with simultaneous decrease
of the midrapidity one suggests that at high collision energies
the fragmentation-region polarization reaches high values.
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