Squeezed back-to-back correlations of bosons with nonzero widths in relativistic heavy-ion collisions

Peng-Zhi Xu¹ and Wei-Ning Zhang^{1,2,*}

¹Department of Physics, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China ²School of Physics, Dalian University of Technology, Dalian, Liaoning 116024, China

(Received 17 April 2019; published 23 July 2019)

We derive the formulas for calculating the squeezed back-to-back correlation (SBBC) between a boson and antiboson with nonzero width produced in relativistic heavy-ion collisions. The SBBCs of D^0 and ϕ mesons with finite in-medium widths are studied. We find that the finite width can change the pattern of the SBBC function of $D^0 \bar{D}^0$ with respect to mass. However, the SBBC function of $\phi \phi$ is insensitive to the width. In the high-particle-momentum region, the SBBC function of $\phi \phi$ increases with particle momentum rapidly and can exceed that of $D^0 \bar{D}^0$ whether the width is nonzero or not.

DOI: 10.1103/PhysRevC.100.014907

I. INTRODUCTION

The interaction of particles with a medium in relativistic heavy-ion collisions may cause a squeezed back-to-back correlation (SBBC) of detected boson-antiboson pairs [1–8]. This SBBC is related to the in-medium mass modification of the bosons through a Bogoliubov transformation between the annihilation (creation) operators of the quasiparticles in the medium and the corresponding free particles [1–8]. Generally, the in-medium mass modification includes not only a mass shift of the boson but also an increase of its width in the medium. Therefore, the necessity of developing a formulism that can be used to calculate the SBBC between a boson and antiboson with nonzero width in a medium is obvious.

In this work, we derive the formulas for calculating the SBBC function between a boson and antiboson with nonzero width. The influences of the in-medium width on the SBBC functions of $D^0 \overline{D}^0$ and $\phi \phi$ are investigated. We find that the SBBC function of $D^{0}\overline{D}^{0}$ changes obviously for a finite change of width. The SBBC of $\phi\phi$ increases with increasing particle momentum rapidly in a high-momentum region and can exceed the SBBC of $D^0 \overline{D}^0$ at high momenta whether the width is nonzero or not. Because of the presence of a charm or strange quark, which is believed to experience the entire evolution of the quark-gluon plasma (QGP) created in relativistic heavy-ion collisions, the analyses of experimental data of D and ϕ mesons have recently attracted great interest [9–30]. However, the bosons with large masses have strong SBBC [6,31-33]. The study of the heavy-meson SBBC is meaningful in relativistic heavy-ion collisions.

The rest of this paper is organized as follows. In Sec. II, we present the formula derivations of the SBBC function for a boson and antiboson with nonzero in-medium width. Then, we show the results of the SBBC functions of $D^0 \overline{D}^0$ and $\phi \phi$ in Sec. III. Finally, a summary is given in Sec. IV.

*wnzhang@hit.edu.cn; wnzhang@dlut.edu.cn

II. FORMULAS

For a system of a boson with mass m_0 in vacuum, the Hamiltonian density is given by

$$\mathcal{H}_0(x) = \frac{1}{2} \{ \dot{\phi}^2(x) + [\nabla \phi(x)]^2 + m_0^2 \phi^2(x) \},$$
(1)

where

$$\phi(x) = \sum_{\mathbf{p}} (2V\omega_{\mathbf{p}})^{-1/2} (e^{-ip \cdot x} a_{\mathbf{p}} + e^{ip \cdot x} a_{\mathbf{p}}^{\dagger}), \qquad (2)$$

where $a_{\mathbf{p}}$ and $a_{\mathbf{p}}^{\dagger}$ are annihilation and creation operators of the free boson, respectively, $p = (\omega_{\mathbf{p}}, \mathbf{p})$, and $\omega_{\mathbf{p}} = \sqrt{\mathbf{p}^2 + m_0^2}$.

Denoting the in-medium mass shift and width as Δm and Γ , respectively, the boson in-medium energy can be written as

$$\Omega_{\mathbf{p}} = \sqrt{\mathbf{p}^2 + (m_0 + \Delta m - i\Gamma/2)^2} \equiv |\Omega_{\mathbf{p}}| e^{i\Theta}, \quad (3)$$

where

$$|\Omega_{\mathbf{p}}| = \left\{ \left[\mathbf{p}^{2} + (m_{0} + \Delta m)^{2} - \frac{\Gamma^{2}}{4} \right]^{2} + (m_{0} + \Delta m)^{2} \Gamma^{2} \right\}^{1/4},$$
(4)

$$\Theta = \frac{1}{2} \tan^{-1} \left[\frac{-(m_0 + \Delta m)\Gamma}{\mathbf{p}^2 + (m_0 + \Delta m)^2 - \Gamma^2/4} \right].$$
 (5)

Here, $\Theta < 0$, indicating the imaginary part of Ω_p is negative. The in-medium system Hamiltonian is given by [1]

$$H_{\rm M} = \int d^3x \, \frac{1}{2} \left\{ \dot{\phi}^2(x) + [\nabla \phi(x)]^2 + \left(m_0^2 + m_1^2\right) \phi^2(x) \right\}$$
$$= \sum_{\mathbf{p}} \omega_{\mathbf{p}} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} + \frac{1}{4} \sum_{\mathbf{p}} \frac{m_1^2}{\omega_{\mathbf{p}}} [e^{-i2\omega_{\mathbf{p}}t} a_{\mathbf{p}} a_{-\mathbf{p}}$$
$$+ e^{i2\omega_{\mathbf{p}}t} a_{\mathbf{p}}^{\dagger} a_{-\mathbf{p}}^{\dagger} + 2a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}], \tag{6}$$

where

$$m_1^2 = (m_0 + \Delta m - i\Gamma/2)^2 - m_0^2 = \Omega_{\mathbf{p}}^2 - \omega_{\mathbf{p}}^2.$$
 (7)

Equation (6) reduces to the case in Ref. [1] when $\Gamma = 0$.

To diagonalize $H_{\rm M}$, we perform the transformation

$$e^{-i\omega_{\mathbf{p}}t}a_{\mathbf{p}} = c_{\mathbf{p}}e^{-i\Omega_{\mathbf{p}}t}b_{\mathbf{p}} + s_{-\mathbf{p}}^{*}e^{i\Omega_{\mathbf{p}}t}b_{-\mathbf{p}}^{\dagger},$$
(8)

$$e^{i\omega_{\mathbf{p}}t}a^{\dagger}_{\mathbf{p}} = c^{*}_{\mathbf{p}}e^{i\Omega_{\mathbf{p}}t}b^{\dagger}_{\mathbf{p}} + s_{-\mathbf{p}}e^{-i\Omega_{\mathbf{p}}t}b_{-\mathbf{p}},\tag{9}$$

and obtain

$$H_{\rm M} = \frac{1}{2} \sum_{\mathbf{p}} \frac{m_1^2}{\omega_{\mathbf{p}}} \bigg[(|c_{\mathbf{p}}|^2 + |s_{\mathbf{p}}|^2 + c_{\mathbf{p}} s_{\mathbf{p}}^* + c_{\mathbf{p}}^* s_{\mathbf{p}}) + \frac{2\omega_{\mathbf{p}}^2}{m_1^2} (|c_{\mathbf{p}}|^2 + |s_{\mathbf{p}}|^2) \bigg] b_{\mathbf{p}}^{\dagger} b_{\mathbf{p}} + \frac{1}{4} \sum_{\mathbf{p}} \frac{m_1^2}{\omega_{\mathbf{p}}} \bigg[(c_{\mathbf{p}}^* c_{-\mathbf{p}}^* + s_{\mathbf{p}}^* s_{-\mathbf{p}}^* + 2c_{\mathbf{p}}^* s_{-\mathbf{p}}^*) + \frac{4\omega_{\mathbf{p}}^2}{m_1^2} c_{\mathbf{p}}^* s_{-\mathbf{p}}^* \bigg] e^{i2\Omega_{\mathbf{p}}t} b_{\mathbf{p}}^{\dagger} b_{-\mathbf{p}}^{\dagger}.$$
(10)

Here, the time-decayed term of $e^{-i2\Omega_{\mathbf{p}}t}b_{\mathbf{p}}b_{-\mathbf{p}}$ has been removed. In Eqs. (8) and (9), the transformation coefficients satisfy

$$|c_{\mathbf{p}}|^2 - |s_{\mathbf{p}}|^2 = 1 \tag{11}$$

to keep the operators b and b^{\dagger} with the same commutation relation as that of a and a^{\dagger} .

Letting the terms $b_{\mathbf{p}}^{\dagger}b_{-\mathbf{p}}^{\dagger}$ and $b_{\mathbf{p}}^{\dagger}b_{\mathbf{p}}$ in Eq. (10) equal 0 and $\Omega_{\mathbf{p}}b_{\mathbf{p}}^{\dagger}b_{\mathbf{p}}$, respectively, we have

$$c_{\mathbf{p}} = \frac{\cosh r_1 + i \cosh r_2}{\sqrt{2}}, \quad s_{\mathbf{p}} = \frac{\sinh r_1 + i \sinh r_2}{\sqrt{2}}, \quad (12)$$

where $c_{\mathbf{p}} = c_{-\mathbf{p}}$, $s_{\mathbf{p}} = s_{-\mathbf{p}}$, r_1 and r_2 are two real functions,

$$r_{1,2} = \frac{1}{2} \ln \left[\frac{\omega_{\mathbf{p}} (1 \mp \sin \Theta)}{|\Omega_{\mathbf{p}}| \cos \Theta} \right], \tag{13}$$

and therefore

$$H_{\rm M} = \sum_{\mathbf{p}} \Omega_{\mathbf{p}} b_{\mathbf{p}}^{\dagger} b_{\mathbf{p}}, \qquad (14)$$

i.e., $b_{\mathbf{p}}$ and $b_{\mathbf{p}}^{\dagger}$ are annihilation and creation operators, respectively, of the quasiparticle in the medium with energy $\Omega_{\mathbf{p}}$. For $\Gamma = 0$, we have $r_1 = r_2 = \frac{1}{2} \ln[\omega_{\mathbf{p}}/\sqrt{\mathbf{p}^2 + (m_0 + \Delta m)^2}]$, and the diagonalization issue reduces to that for the zero-width case.

Next, we further consider the boson with a width Γ_0 in vacuum. In this case, the boson energy in vacuum is

$$\omega'_{\mathbf{p}} = \sqrt{\mathbf{p}^2 + (m_0 - i\Gamma_0/2)^2} \equiv |\omega'_{\mathbf{p}}|e^{i\theta}.$$
 (15)

Introducing the annihilation and creation operators, $a'_{\mathbf{p}}$ and $a'_{\mathbf{p}}^{\dagger}$, respectively, by a transformation similar to Eqs. (8) and (9) $(a'_{\mathbf{p}} \rightarrow b_{\mathbf{p}}, a'_{\mathbf{p}}^{\dagger} \rightarrow b^{\dagger}_{\mathbf{p}}, \omega'_{\mathbf{p}} \rightarrow \Omega_{\mathbf{p}})$, we can diagonalize the Hamiltonian of the boson with Γ_0 , and therefore write the Hamiltonian density in this case as

$$\mathcal{H}'_{0}(x) = \frac{1}{2} \{ \dot{\phi}'^{2}(x) + [\nabla \phi'(x)]^{2} + (m_{0} - i\Gamma_{0}/2)^{2} \phi'^{2}(x) \},$$
(16)

where

$$\phi'(x) = \sum_{\mathbf{p}} (2V\omega'_{\mathbf{p}})^{-1/2} (e^{-ip' \cdot x} a'_{\mathbf{p}} + e^{ip' \cdot x} a'^{\dagger}_{\mathbf{p}}), \qquad (17)$$

where $p' = (\omega'_{\mathbf{p}}, \mathbf{p})$.

Again, with the transformation similar to Eqs. (8) and (9),

$$e^{-i\omega'_{\mathbf{p}}t}a'_{\mathbf{p}} = c_{\mathbf{p}}e^{-i\Omega_{\mathbf{p}}t}b'_{\mathbf{p}} + s^*_{-\mathbf{p}}e^{i\Omega_{\mathbf{p}}t}b'^{\dagger}_{-\mathbf{p}},$$
(18)

$$e^{i\omega'_{\mathbf{p}}t}a'^{\dagger}_{\mathbf{p}} = c^{*}_{\mathbf{p}}e^{i\Omega_{\mathbf{p}}t}b'^{\dagger}_{\mathbf{p}} + s_{-\mathbf{p}}e^{-i\Omega_{\mathbf{p}}t}b'_{-\mathbf{p}},$$
(19)

we can diagonalize the in-medium Hamiltonian

$$H'_{\rm M} = \sum_{\mathbf{p}} \omega'_{\mathbf{p}} a'^{\dagger}_{\mathbf{p}} a'_{\mathbf{p}} + \frac{1}{4} \sum_{\mathbf{p}} \frac{m'^{2}_{1}}{\omega'_{\mathbf{p}}} [e^{-i2\omega'_{\mathbf{p}}t} a'_{\mathbf{p}} a'_{-\mathbf{p}} + e^{i2\omega'_{\mathbf{p}}t} a'^{\dagger}_{\mathbf{p}} a'^{\dagger}_{-\mathbf{p}} + 2a'^{\dagger}_{\mathbf{p}} a'_{\mathbf{p}}], \quad (m'^{2}_{1} = \Omega^{2}_{\mathbf{p}} - \omega'^{2}_{\mathbf{p}}) \quad (20)$$

to

$$H'_{\rm M} = \sum_{\mathbf{p}} \Omega_{\mathbf{p}} b'^{\dagger}_{\mathbf{p}} b'_{\mathbf{p}}.$$
 (21)

In Eqs. (18) and (19), the transformation coefficients c_p and s_p have the same expressions as Eq. (12), but r_1 and r_2 are now

$$r_{1,2} = \frac{1}{2} \ln \left[\frac{|\omega'_{\mathbf{p}}| (1 \mp \sin(\Theta - \theta))}{|\Omega_{\mathbf{p}}| \cos(\Theta - \theta)} \right].$$
(22)

The SBBC function of the boson-antiboson with momenta \mathbf{p}_1 and \mathbf{p}_2 is defined as [2–8]

$$C(\mathbf{p}_1, \mathbf{p}_2) = 1 + \frac{|G_s(\mathbf{p}_1, \mathbf{p}_2)|^2}{G_c(\mathbf{p}_1, \mathbf{p}_1)G_c(\mathbf{p}_2, \mathbf{p}_2)},$$
(23)

where $G_c(\mathbf{p}_1, \mathbf{p}_2)$ and $G_s(\mathbf{p}_1, \mathbf{p}_2)$ are the chaotic and squeezed amplitudes, respectively, and

$$G_c(\mathbf{p}_1, \mathbf{p}_2) = \sqrt{\omega_{\mathbf{p}_1} \omega_{\mathbf{p}_2}} \langle a_{\mathbf{p}_1}^{\dagger} a_{\mathbf{p}_2} \rangle, \qquad (24)$$

$$G_{s}(\mathbf{p}_{1}, \mathbf{p}_{2}) = \sqrt{\omega_{\mathbf{p}_{1}}\omega_{\mathbf{p}_{2}}} \langle a_{\mathbf{p}_{1}}a_{\mathbf{p}_{2}} \rangle, \qquad (25)$$

where $\langle \cdots \rangle$ indicates the ensemble average and $\omega_{\mathbf{p}}$ is the energy of a boson with average mass m_0 for nonzero Γ_0 . The SBBC function for a spatially homogeneous source can be written as [2,3,5-8]

$$C(\mathbf{p}, -\mathbf{p}) = 1 + \frac{|c_{\mathbf{p}}s_{\mathbf{p}}^{*}n_{\mathbf{p}} + c_{-\mathbf{p}}s_{-\mathbf{p}}^{*}(n_{-\mathbf{p}} + 1)|^{2}}{n_{1}(\mathbf{p})n_{1}(-\mathbf{p})} |\widetilde{F}(\omega_{\mathbf{p}}, \Delta t)|^{2},$$
(26)

where $n_{\mathbf{p}}$ is the Bose-Einstein distribution of the quasiparticle with the energy corresponding to in-medium average mass $(m_0 + \Delta m)$, $n_1(\mathbf{p}) = |c_{\mathbf{p}}|^2 n_{\mathbf{p}} + |s_{-\mathbf{p}}|^2 (n_{-\mathbf{p}} + 1)$, and $|\widetilde{F}(\omega_{\mathbf{p}}, \Delta t)|^2$ is a time suppression factor. We take $|\widetilde{F}(\omega_{\mathbf{p}}, \Delta t)|^2 = (1 + 4\omega_{\mathbf{p}}^2 \Delta t^2)^{-1}$ in the calculations for a time-profile function of exponential decay as in Refs. [2-4,8,32,33]. Generally, $|\widetilde{F}(\omega_{\mathbf{p}}, \Delta t)|^2$ is also related to the spatial distribution of particle-emitting source for an evolving system [5,6], and there is a large difference between the suppression factors from different time-profile functions [5,34].

III. RESULTS

We plot in Figs. 1(a) and 1(b) the SBBC functions of $D^0\bar{D}^0$ and $\phi\phi$ with respect to in-medium mass $m_0 + \Delta m$ for different Γ values, respectively. Here, the particle momentum is fixed at 1000 MeV/*c* and we take $\Delta t = 2$ fm/*c* in calculations as in Refs. [2–5,8]. The mass and width of D^0 meson in vacuum, m_0 and Γ_0 , are taken to be 1864.86 and 0 MeV/*c*² (Particle Data Group (PDG [35,36]): 1.60×10^{-9} MeV/*c*,

FIG. 1. SBBC functions of $D^0 \bar{D}^0$ (a) and $\phi \phi$ (b) with respect to in-medium particle mass $(m_0 + \Delta m)$ for particle momentum $|\mathbf{p}| = 1000 \text{ MeV}/c$ and different Γ values.

corresponding to a mean life 4.10×10^{-15} s) respectively, and the m_0 and Γ_0 of ϕ meson are taken to be 1019.46 and 4.26 MeV/ c^2 respectively [35,36].

We see from Fig. 1(a) that the pattern of the SBBC function of $D^0 \bar{D}^0$ changes significantly with in-medium width Γ . For $\Gamma = 0$, the SBBC function has a typical two-peak structure [2–4,8]. It is 1 (no correlation) at m_0 ($\Delta m = 0$) and approaches 1 when $\Delta m \to \pm \infty$. However, the two peaks of the SBBC function move to m_0 and form one peak rapidly with increasing Γ . Then, the peak declines with increasing Γ . For $\Gamma \neq 0$, the SBBC always exists even though $\Delta m = 0$. By comparing the SBBC functions in Figs. 1(a) and 1(b), we see that the SBBC functions of $\phi\phi$ with respect to mass are much wider than those of $D^0 \overline{D}^0$. This is because the SBBC function becomes wide with decreasing boson mass [6,32,33]. We also see that the influence of Γ on the SBBC function of $\phi\phi$ is small. Because the SBBC function of $\phi\phi$ has a wide mass distribution, it is insensitive to a mass-distribution change caused by a change of Γ . However, the nonzero Γ_0 of ϕ will also counteract the effect of Γ on the SBBC function [see Eq. (22) $\theta \neq 0$].

We plot in Fig. 2 the SBBC functions of $D^0\bar{D}^0$ and $\phi\phi$ with respect to particle momentum for the in-medium mass shift $\Delta m = -10 \text{ MeV}/c^2$ and in-medium width $\Gamma = \Gamma_0$ and 10 MeV/ c^2 . We see that the SBBC functions increase with increasing particle momentum, and the influence of Γ increases with increasing particle momentum. Because the momentum distribution $n_{\mathbf{p}} = n_{-\mathbf{p}}$ approaches zero when $|\mathbf{p}| \rightarrow \infty$, the behavior of the SBBC function at very high momenta is mainly determined by $(|c_{\mathbf{p}}s^*_{\mathbf{p}}|^2/|s_{\mathbf{p}}|^4)$ [2,6], which is approximately $16\mathbf{p}^4/[4m_0^2\Delta m^2 + m_0^2(\Gamma - \Gamma_0)^2]$. Therefore, the SBBC functions of $\phi\phi$ increase with increasing particle momentum more rapidly than that of $D^0\bar{D}^0$ in the high-momentum region and can exceed the SBBC of $D^0\bar{D}^0$ at high momenta.

IV. SUMMARY AND DISCUSSION

We derived the formulas for calculating the SBBC between a boson and antiboson with nonzero width produced in relativistic heavy-ion collisions. The influences of the inmedium width on the SBBC functions of $D^0 \bar{D}^0$ and $\phi \phi$ are investigated. It is found that the pattern of the SBBC function of $D^0 \bar{D}^0$ with respect to mass changes significantly with the width. However, the SBBC function of $\phi \phi$ changes slightly with the width. The influence of the width on the SBBC increases with particle momentum. Whether the width is nonzero or not, the SBBC function of $\phi \phi$ increases with increasing particle momentum more rapidly than that of $D^0 \bar{D}^0$ in the high-momentum region and can exceed the SBBC function of $D^0 \bar{D}^0$ at high momenta.

Finally, it is necessary to mention that we have removed the time-decayed term of $e^{-i2\Omega_{\mathbf{p}}t}b_{\mathbf{p}}b_{-\mathbf{p}}$ in diagonalizing the in-medium Hamiltonian [Eq. (10)]. Therefore, the diagonalization is an approximation unless the imaginary part of $-2\Omega_{\mathbf{p}} [\operatorname{Im}(-2\Omega_{\mathbf{p}}) \sim m_0 \Gamma / \omega_{\mathbf{p}} \sim \Gamma$ for $\mathbf{p}^2 < m_0^2]$ is very large. This problem does not appear in the diagonalization for the

FIG. 2. SBBC functions of $D^0 \overline{D}^0$ and $\phi \phi$ with respect to particle momentum for the in-medium mass shift $\Delta m = -10 \text{ MeV}/c^2$ and in-medium widths $\Gamma = \Gamma_0$ and 10 MeV/ c^2 .

bosons without width. There, the terms of $b_{\mathbf{p}}b_{-\mathbf{p}}$ and $b_{\mathbf{p}}^{\dagger}b_{-\mathbf{p}}^{\dagger}$ can become zero simultaneously with the reduced transform quantity, $r_1 = r_2 = \frac{1}{2} \ln[\omega_{\mathbf{p}}/\sqrt{\mathbf{p}^2 + (m_0 + \Delta m)^2}]$. The recent measurements of D^0 in heavy-ion collisions at the RHIC and LHC indicate that the average width of D^0 is approximately 30 MeV/ c^2 [9–16]. The corresponding characteristic size is $c\tau \sim 6.6$ fm, which is smaller than the typical size of the particle-emitting source in relativistic heavy-ion collisions. Therefore, the diagonalization is a good approximation and the influence of the in-medium width on the SBBC of $D^0\bar{D}^0$ must be considered in the heavy-ion collisions. For the ϕ meson, its $c\tau$ is comparable to the typical size of the source. Our

- [1] M. Asakawa and T. Csörgő, Heavy Ion Phys. 4, 233 (1996).
- [2] M. Asakawa, T. Csörgő, and M. Gyulassy, Phys. Rev. Lett. 83, 4013 (1999).
- [3] S. S. Padula, G. Krein, T. Csörgő, Y. Hama, and P. K. Panda, Phys. Rev. C 73, 044906 (2006).
- [4] D. M. Dudek and S. S. Padula, Phys. Rev. C 82, 034905 (2010).
- [5] Y. Zhang, J. Yang, and W. N. Zhang, Phys. Rev. C 92, 024906 (2015).
- [6] Y. Zhang and W. N. Zhang, Eur. Phys. J. C 76, 419 (2016).
- [7] A. G. Yang, Y. Zhang, L. Cheng, H. Sun, and W. N. Zhang, Chin. Phys. Lett. C 35, 052501 (2018).
- [8] P. Z. Xu, W. N. Zhang, and Y. Zhang, Phys. Rev. C 99, 011902(R) (2019).
- [9] J. Adam *et al.* (STAR Collaboration), Phys. Rev. C 99, 034908 (2019).
- [10] A. M. Sirunyan *et al.* (CMS Collaboration), Phys. Rev. Lett. 120, 202301 (2018).
- [11] A. M. Sirunyan *et al.* (CMS Collaboration), Phys. Lett. B 782, 474 (2018).
- [12] S. Acharya *et al.* (ALICE Collaboration), J. High Energy Phys. 10 (2018) 174.
- [13] J. Adam et al. (ALICE Collaboration), J. High Energy Phys. 03 (2016) 081.
- [14] J. Adam et al. (ALICE Collaboration), J. High Energy Phys. 11 (2015) 205.
- [15] B. Abelev *et al.* (ALICE Collaboration), Phys. Rev. C 90, 034904 (2014).
- [16] B. Abelev *et al.* (ALICE Collaboration), Phys. Rev. Lett. **111**, 102301 (2013).
- [17] S. Acharya *et al.* (ALICE Collaboration), Eur. Phys. J. C 78, 559 (2018).
- [18] L. Adamczyk *et al.* (STAR Collaboration), Phys. Rev. Lett. **116**, 062301 (2016).

work is a key step forward to solve the problem. In addition, it will be of interest to expand the approach presented in the case that the particle and antiparticle with different in-medium mass modifications.

ACKNOWLEDGMENTS

W.-N.Z. thanks Y. Zhang for helpful discussions. This research was supported by the National Natural Science Foundation of China under Grants No. 11675034 and No. 11275037.

- [19] L. Adamczyk *et al.* (STAR Collaboration), Phys. Rev. C 93, 021903(R) (2016).
- [20] A. Adare *et al.* (PHENIX Collaboration), Phys. Rev. C 93, 024904 (2016).
- [21] B. Abelev *et al.* (ALICE Collaboration), Phys. Rev. C **91**, 024609 (2015).
- [22] A. Adare *et al.* (PHENIX Collaboration), Phys. Rev. C 83, 024909 (2011).
- [23] B. I. Abelev *et al.* (STAR Collaboration), Phys. Lett. B 673, 183 (2009).
- [24] B. I. Abelev *et al.* (STAR Collaboration), Phys. Rev. C 79, 064903 (2009).
- [25] B. I. Abelev *et al.* (STAR Collaboration), Phys. Rev. Lett. 99, 112301 (2007).
- [26] S. Afanasiev *et al.* (PHENIX Collaboration), Phys. Rev. Lett. 99, 052301 (2007).
- [27] S. S. Adler *et al.* (PHENIX Collaboration), Phys. Rev. C 72, 014903 (2005).
- [28] B. Alessandro *et al.* (NA50 Collaboration), Phys. Lett. B 555, 147 (2003).
- [29] C. Adler *et al.* (STAR Collaboration), Phys. Rev. C **65**, 041901(R) (2002).
- [30] S. V. Afanasiev *et al.* (NA49 Collaboration), Phys. Lett. B 491, 59 (2000).
- [31] S. S. Padula, D. M. Dudek, and O. Socolowski Jr., J. Phys. G 37, 094056 (2010).
- [32] Y. Zhang, J. Yang, and W. N. Zhang, Chin. Phys. C 39, 034103 (2015).
- [33] Y. Zhang, J. Yang, and W. N. Zhang, Int. J. Mod. Phys. 24, 1550071 (2015).
- [34] J. Knoll, Phys. Rev. C 83, 044914 (2011).
- [35] J. Beringer *et al.* (Particle Data Group), Phys. Rev. D 86, 010001 (2012).
- [36] M. Tanabashi *et al.* (Particle Data Group), Phys. Rev. D 98, 030001 (2018).