Squeezed back-to-back correlations of bosons with nonzero widths in relativistic heavy-ion collisions

Peng-Zhi Xu^{1} and Wei-Ning Zhang ${ }^{1,2, *}$
${ }^{1}$ Department of Physics, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
${ }^{2}$ School of Physics, Dalian University of Technology, Dalian, Liaoning 116024, China

(Received 17 April 2019; published 23 July 2019)

Abstract

We derive the formulas for calculating the squeezed back-to-back correlation (SBBC) between a boson and antiboson with nonzero width produced in relativistic heavy-ion collisions. The SBBCs of D^{0} and ϕ mesons with finite in-medium widths are studied. We find that the finite width can change the pattern of the SBBC function of $D^{0} \bar{D}^{0}$ with respect to mass. However, the SBBC function of $\phi \phi$ is insensitive to the width. In the high-particle-momentum region, the SBBC function of $\phi \phi$ increases with particle momentum rapidly and can exceed that of $D^{0} \bar{D}^{0}$ whether the width is nonzero or not.

DOI: 10.1103/PhysRevC.100.014907

I. INTRODUCTION

The interaction of particles with a medium in relativistic heavy-ion collisions may cause a squeezed back-to-back correlation (SBBC) of detected boson-antiboson pairs [1-8]. This SBBC is related to the in-medium mass modification of the bosons through a Bogoliubov transformation between the annihilation (creation) operators of the quasiparticles in the medium and the corresponding free particles [1-8]. Generally, the in-medium mass modification includes not only a mass shift of the boson but also an increase of its width in the medium. Therefore, the necessity of developing a formulism that can be used to calculate the SBBC between a boson and antiboson with nonzero width in a medium is obvious.

In this work, we derive the formulas for calculating the SBBC function between a boson and antiboson with nonzero width. The influences of the in-medium width on the SBBC functions of $D^{0} \bar{D}^{0}$ and $\phi \phi$ are investigated. We find that the SBBC function of $D^{0} \bar{D}^{0}$ changes obviously for a finite change of width. The SBBC of $\phi \phi$ increases with increasing particle momentum rapidly in a high-momentum region and can exceed the SBBC of $D^{0} \bar{D}^{0}$ at high momenta whether the width is nonzero or not. Because of the presence of a charm or strange quark, which is believed to experience the entire evolution of the quark-gluon plasma (QGP) created in relativistic heavy-ion collisions, the analyses of experimental data of D and ϕ mesons have recently attracted great interest [9-30]. However, the bosons with large masses have strong SBBC [6,31-33]. The study of the heavy-meson SBBC is meaningful in relativistic heavy-ion collisions.

The rest of this paper is organized as follows. In Sec. II, we present the formula derivations of the SBBC function for a boson and antiboson with nonzero in-medium width. Then, we show the results of the SBBC functions of $D^{0} \bar{D}^{0}$ and $\phi \phi$ in Sec. III. Finally, a summary is given in Sec. IV.

[^0]
II. FORMULAS

For a system of a boson with mass m_{0} in vacuum, the Hamiltonian density is given by

$$
\begin{equation*}
\mathcal{H}_{0}(x)=\frac{1}{2}\left\{\dot{\phi}^{2}(x)+[\nabla \phi(x)]^{2}+m_{0}^{2} \phi^{2}(x)\right\} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi(x)=\sum_{\mathbf{p}}\left(2 V \omega_{\mathbf{p}}\right)^{-1 / 2}\left(e^{-i p \cdot x} a_{\mathbf{p}}+e^{i p \cdot x} a_{\mathbf{p}}^{\dagger}\right) \tag{2}
\end{equation*}
$$

where $a_{\mathbf{p}}$ and $a_{\mathbf{p}}^{\dagger}$ are annihilation and creation operators of the free boson, respectively, $p=\left(\omega_{\mathbf{p}}, \mathbf{p}\right)$, and $\omega_{\mathbf{p}}=\sqrt{\mathbf{p}^{2}+m_{0}^{2}}$.

Denoting the in-medium mass shift and width as Δm and Γ, respectively, the boson in-medium energy can be written as

$$
\begin{equation*}
\Omega_{\mathbf{p}}=\sqrt{\mathbf{p}^{2}+\left(m_{0}+\Delta m-i \Gamma / 2\right)^{2}} \equiv\left|\Omega_{\mathbf{p}}\right| e^{i \Theta} \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
\left|\Omega_{\mathbf{p}}\right| & =\left\{\left[\mathbf{p}^{2}+\left(m_{0}+\Delta m\right)^{2}-\frac{\Gamma^{2}}{4}\right]^{2}+\left(m_{0}+\Delta m\right)^{2} \Gamma^{2}\right\}^{1 / 4} \tag{4}\\
\Theta & =\frac{1}{2} \tan ^{-1}\left[\frac{-\left(m_{0}+\Delta m\right) \Gamma}{\mathbf{p}^{2}+\left(m_{0}+\Delta m\right)^{2}-\Gamma^{2} / 4}\right] . \tag{5}
\end{align*}
$$

Here, $\Theta<0$, indicating the imaginary part of $\Omega_{\mathbf{p}}$ is negative. The in-medium system Hamiltonian is given by [1]

$$
\begin{align*}
H_{\mathrm{M}}= & \int d^{3} x \frac{1}{2}\left\{\dot{\phi}^{2}(x)+[\nabla \phi(x)]^{2}+\left(m_{0}^{2}+m_{1}^{2}\right) \phi^{2}(x)\right\} \\
= & \sum_{\mathbf{p}} \omega_{\mathbf{p}} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}+\frac{1}{4} \sum_{\mathbf{p}} \frac{m_{1}^{2}}{\omega_{\mathbf{p}}}\left[e^{-i 2 \omega_{\mathbf{p}} t} a_{\mathbf{p}} a_{-\mathbf{p}}\right. \\
& \left.+e^{i 2 \omega_{\mathbf{p}} t} a_{\mathbf{p}}^{\dagger} a_{-\mathbf{p}}^{\dagger}+2 a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}\right] \tag{6}
\end{align*}
$$

where

$$
\begin{equation*}
m_{1}^{2}=\left(m_{0}+\Delta m-i \Gamma / 2\right)^{2}-m_{0}^{2}=\Omega_{\mathbf{p}}^{2}-\omega_{\mathbf{p}}^{2} \tag{7}
\end{equation*}
$$

Equation (6) reduces to the case in Ref. [1] when $\Gamma=0$.

To diagonalize H_{M}, we perform the transformation

$$
\begin{align*}
e^{-i \omega_{\mathbf{p}} t} a_{\mathbf{p}} & =c_{\mathbf{p}} e^{-i \Omega_{\mathbf{p}} t} b_{\mathbf{p}}+s_{-\mathbf{p}}^{*} e^{i \Omega_{\mathbf{p}} t} b_{-\mathbf{p}}^{\dagger} \tag{8}\\
e^{i \omega_{\mathbf{p}} t} a_{\mathbf{p}}^{\dagger} & =c_{\mathbf{p}}^{*} e^{i \Omega_{\mathbf{p}} t} b_{\mathbf{p}}^{\dagger}+s_{-\mathbf{p}} e^{-i \Omega_{\mathbf{p}} t} b_{-\mathbf{p}} \tag{9}
\end{align*}
$$

and obtain

$$
\begin{align*}
H_{\mathrm{M}}= & \frac{1}{2} \sum_{\mathbf{p}} \frac{m_{1}^{2}}{\omega_{\mathbf{p}}}\left[\left(\left|c_{\mathbf{p}}\right|^{2}+\left|s_{\mathbf{p}}\right|^{2}+c_{\mathbf{p}} s_{\mathbf{p}}^{*}+c_{\mathbf{p}}^{*} s_{\mathbf{p}}\right)\right. \\
& \left.+\frac{2 \omega_{\mathbf{p}}^{2}}{m_{1}^{2}}\left(\left|c_{\mathbf{p}}\right|^{2}+\left|s_{\mathbf{p}}\right|^{2}\right)\right] b_{\mathbf{p}}^{\dagger} b_{\mathbf{p}} \\
& +\frac{1}{4} \sum_{\mathbf{p}} \frac{m_{1}^{2}}{\omega_{\mathbf{p}}}\left[\left(c_{\mathbf{p}}^{*} c_{-\mathbf{p}}^{*}+s_{\mathbf{p}}^{*} s_{-\mathbf{p}}^{*}+2 c_{\mathbf{p}}^{*} s_{-\mathbf{p}}^{*}\right)\right. \\
& \left.+\frac{4 \omega_{\mathbf{p}}^{2}}{m_{1}^{2}} c_{\mathbf{p}}^{*} s_{-\mathbf{p}}^{*}\right] e^{i 2 \Omega_{\mathbf{p}} t} b_{\mathbf{p}}^{\dagger} b_{-\mathbf{p}}^{\dagger} \tag{10}
\end{align*}
$$

Here, the time-decayed term of $e^{-i 2 \Omega_{\mathrm{p}} t} b_{\mathbf{p}} b_{-\mathbf{p}}$ has been removed. In Eqs. (8) and (9), the transformation coefficients satisfy

$$
\begin{equation*}
\left|c_{\mathbf{p}}\right|^{2}-\left|s_{\mathbf{p}}\right|^{2}=1 \tag{11}
\end{equation*}
$$

to keep the operators b and b^{\dagger} with the same commutation relation as that of a and a^{\dagger}.

Letting the terms $b_{\mathbf{p}}^{\dagger} b_{-\mathbf{p}}^{\dagger}$ and $b_{\mathbf{p}}^{\dagger} b_{\mathbf{p}}$ in Eq. (10) equal 0 and $\Omega_{\mathbf{p}} b_{\mathbf{p}}^{\dagger} b_{\mathbf{p}}$, respectively, we have

$$
\begin{equation*}
c_{\mathbf{p}}=\frac{\cosh r_{1}+i \cosh r_{2}}{\sqrt{2}}, \quad s_{\mathbf{p}}=\frac{\sinh r_{1}+i \sinh r_{2}}{\sqrt{2}} \tag{12}
\end{equation*}
$$

where $c_{\mathbf{p}}=c_{-\mathbf{p}}, s_{\mathbf{p}}=s_{-\mathbf{p}}, r_{1}$ and r_{2} are two real functions,

$$
\begin{equation*}
r_{1,2}=\frac{1}{2} \ln \left[\frac{\omega_{\mathbf{p}}(1 \mp \sin \Theta)}{\left|\Omega_{\mathbf{p}}\right| \cos \Theta}\right] \tag{13}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
H_{\mathrm{M}}=\sum_{\mathbf{p}} \Omega_{\mathbf{p}} b_{\mathbf{p}}^{\dagger} b_{\mathbf{p}} \tag{14}
\end{equation*}
$$

i.e., $b_{\mathbf{p}}$ and $b_{\mathbf{p}}^{\dagger}$ are annihilation and creation operators, respectively, of the quasiparticle in the medium with energy $\Omega_{\mathbf{p}}$. For $\Gamma=0$, we have $r_{1}=r_{2}=\frac{1}{2} \ln \left[\omega_{\mathbf{p}} / \sqrt{\mathbf{p}^{2}+\left(m_{0}+\Delta m\right)^{2}}\right]$, and the diagonalization issue reduces to that for the zero-width case.

Next, we further consider the boson with a width Γ_{0} in vacuum. In this case, the boson energy in vacuum is

$$
\begin{equation*}
\omega_{\mathbf{p}}^{\prime}=\sqrt{\mathbf{p}^{2}+\left(m_{0}-i \Gamma_{0} / 2\right)^{2}} \equiv\left|\omega_{\mathbf{p}}^{\prime}\right| e^{i \theta} \tag{15}
\end{equation*}
$$

Introducing the annihilation and creation operators, $a_{\mathbf{p}}^{\prime}$ and $a_{\mathbf{p}}^{\prime \dagger}$, respectively, by a transformation similar to Eqs. (8) and (9) $\left(a_{\mathbf{p}}^{\prime} \rightarrow b_{\mathbf{p}}, a_{\mathbf{p}}^{\prime \dagger} \rightarrow b_{\mathbf{p}}^{\dagger}, \omega_{\mathbf{p}}^{\prime} \rightarrow \Omega_{\mathbf{p}}\right)$, we can diagonalize the Hamiltonian of the boson with Γ_{0}, and therefore write the Hamiltonian density in this case as

$$
\begin{equation*}
\mathcal{H}_{0}^{\prime}(x)=\frac{1}{2}\left\{\dot{\phi}^{\prime 2}(x)+\left[\nabla \phi^{\prime}(x)\right]^{2}+\left(m_{0}-i \Gamma_{0} / 2\right)^{2} \phi^{\prime 2}(x)\right\} \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi^{\prime}(x)=\sum_{\mathbf{p}}\left(2 V \omega_{\mathbf{p}}^{\prime}\right)^{-1 / 2}\left(e^{-i p^{\prime} \cdot x} a_{\mathbf{p}}^{\prime}+e^{i p^{\prime} \cdot x} a_{\mathbf{p}}^{\prime \dagger}\right) \tag{17}
\end{equation*}
$$

where $p^{\prime}=\left(\omega_{\mathbf{p}}^{\prime}, \mathbf{p}\right)$.

Again, with the transformation similar to Eqs. (8) and (9),

$$
\begin{align*}
e^{-i \omega_{\mathbf{p}}^{\prime} t} a_{\mathbf{p}}^{\prime} & =c_{\mathbf{p}} e^{-i \Omega_{\mathbf{p}} t} b_{\mathbf{p}}^{\prime}+s_{-\mathbf{p}}^{*} e^{i \Omega_{\mathbf{p}} t} b_{-\mathbf{p}}^{\prime \dagger} \tag{18}\\
e^{i \omega_{\mathbf{p}}^{\prime} t} a_{\mathbf{p}}^{\prime \dagger} & =c_{\mathbf{p}}^{*} e^{i \Omega_{\mathbf{p}} t} b_{\mathbf{p}}^{\prime \dagger}+s_{-\mathbf{p}} e^{-i \Omega_{\mathbf{p}} t} b_{-\mathbf{p}}^{\prime} \tag{19}
\end{align*}
$$

we can diagonalize the in-medium Hamiltonian

$$
\begin{align*}
H_{\mathrm{M}}^{\prime}= & \sum_{\mathbf{p}} \omega_{\mathbf{p}}^{\prime} a_{\mathbf{p}}^{\prime \dagger} a_{\mathbf{p}}^{\prime}+\frac{1}{4} \sum_{\mathbf{p}} \frac{m_{1}^{\prime 2}}{\omega_{\mathbf{p}}^{\prime}}\left[e^{-i 2 \omega_{\mathbf{p}}^{\prime} t} a_{\mathbf{p}}^{\prime} a_{-\mathbf{p}}^{\prime}\right. \\
& \left.+e^{i 2 \omega_{\mathbf{p}}^{\prime} t} a_{\mathbf{p}}^{\prime \dagger} a_{-\mathbf{p}}^{\prime \dagger}+2 a_{\mathbf{p}}^{\prime \dagger} a_{\mathbf{p}}^{\prime}\right], \quad\left(m_{1}^{\prime 2}=\Omega_{\mathbf{p}}^{2}-\omega_{\mathbf{p}}^{\prime 2}\right) \tag{20}
\end{align*}
$$

to

$$
\begin{equation*}
H_{\mathrm{M}}^{\prime}=\sum_{\mathbf{p}} \Omega_{\mathbf{p}} b_{\mathbf{p}}^{\prime \dagger} b_{\mathbf{p}}^{\prime} \tag{21}
\end{equation*}
$$

In Eqs. (18) and (19), the transformation coefficients $c_{\mathbf{p}}$ and $s_{\mathbf{p}}$ have the same expressions as Eq. (12), but r_{1} and r_{2} are now

$$
\begin{equation*}
r_{1,2}=\frac{1}{2} \ln \left[\frac{\left|\omega_{\mathbf{p}}^{\prime}\right|(1 \mp \sin (\Theta-\theta))}{\left|\Omega_{\mathbf{p}}\right| \cos (\Theta-\theta)}\right] . \tag{22}
\end{equation*}
$$

The SBBC function of the boson-antiboson with momenta \mathbf{p}_{1} and \mathbf{p}_{2} is defined as [2-8]

$$
\begin{equation*}
C\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)=1+\frac{\left|G_{s}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)\right|^{2}}{G_{c}\left(\mathbf{p}_{1}, \mathbf{p}_{1}\right) G_{c}\left(\mathbf{p}_{2}, \mathbf{p}_{2}\right)}, \tag{23}
\end{equation*}
$$

where $G_{c}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)$ and $G_{s}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)$ are the chaotic and squeezed amplitudes, respectively, and

$$
\begin{align*}
& G_{c}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)=\sqrt{\omega_{\mathbf{p}_{1}} \omega_{\mathbf{p}_{2}}}\left\langle a_{\mathbf{p}_{1}}^{\dagger} a_{\mathbf{p}_{2}}\right\rangle, \tag{24}\\
& G_{s}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)=\sqrt{\omega_{\mathbf{p}_{1}} \omega_{\mathbf{p}_{2}}}\left\langle a_{\mathbf{p}_{1}} a_{\mathbf{p}_{2}}\right\rangle, \tag{25}
\end{align*}
$$

where $\langle\cdots\rangle$ indicates the ensemble average and $\omega_{\mathbf{p}}$ is the energy of a boson with average mass m_{0} for nonzero Γ_{0}. The SBBC function for a spatially homogeneous source can be written as [2,3,5-8]

$$
\begin{equation*}
C(\mathbf{p},-\mathbf{p})=1+\frac{\left|c_{\mathbf{p}} s_{\mathbf{p}}^{*} n_{\mathbf{p}}+c_{-\mathbf{p}} s_{-\mathbf{p}}^{*}\left(n_{-\mathbf{p}}+1\right)\right|^{2}}{n_{1}(\mathbf{p}) n_{1}(-\mathbf{p})}\left|\widetilde{F}\left(\omega_{\mathbf{p}}, \Delta t\right)\right|^{2} \tag{26}
\end{equation*}
$$

where $n_{\mathbf{p}}$ is the Bose-Einstein distribution of the quasiparticle with the energy corresponding to in-medium average $\underset{\sim}{\text { mass }}\left(m_{0}+\Delta m\right), n_{1}(\mathbf{p})=\left|c_{\mathbf{p}}\right|^{2} n_{\mathbf{p}}+\left|s_{-\mathbf{p}}\right|^{2}\left(n_{-\mathbf{p}}+1\right)$, and $\left|\widetilde{F}\left(\omega_{\mathbf{p}}, \Delta t\right)\right|^{2}$ is a time suppression factor. We take $\left|\widetilde{F}\left(\omega_{\mathbf{p}}, \Delta t\right)\right|^{2}=\left(1+4 \omega_{\mathbf{p}}^{2} \Delta t^{2}\right)^{-1}$ in the calculations for a time-profile function of exponential decay as in Refs. $[2-4,8,32,33]$. Generally, $\left|\widetilde{F}\left(\omega_{\mathbf{p}}, \Delta t\right)\right|^{2}$ is also related to the spatial distribution of particle-emitting source for an evolving system [5,6], and there is a large difference between the suppression factors from different time-profile functions [5,34].

III. RESULTS

We plot in Figs. 1(a) and 1(b) the SBBC functions of $D^{0} \bar{D}^{0}$ and $\phi \phi$ with respect to in-medium mass $m_{0}+\Delta m$ for different Γ values, respectively. Here, the particle momentum is fixed at $1000 \mathrm{MeV} / c$ and we take $\Delta t=2 \mathrm{fm} / c$ in calculations as in Refs. [2-5,8]. The mass and width of D^{0} meson in vacuum, m_{0} and Γ_{0}, are taken to be 1864.86 and $0 \mathrm{MeV} / c^{2}$ (Particle Data Group (PDG [35,36]): $1.60 \times 10^{-9} \mathrm{MeV} / c$,

FIG. 1. SBBC functions of $D^{0} \bar{D}^{0}$ (a) and $\phi \phi$ (b) with respect to in-medium particle mass ($m_{0}+\Delta m$) for particle momentum $|\mathbf{p}|=$ $1000 \mathrm{MeV} / c$ and different Γ values.
corresponding to a mean life $4.10 \times 10^{-15} \mathrm{~s}$) respectively, and the m_{0} and Γ_{0} of ϕ meson are taken to be 1019.46 and $4.26 \mathrm{MeV} / c^{2}$ respectively $[35,36]$.

We see from Fig. 1(a) that the pattern of the SBBC function of $D^{0} \bar{D}^{0}$ changes significantly with in-medium width Γ. For $\Gamma=0$, the SBBC function has a typical two-peak structure $[2-4,8]$. It is 1 (no correlation) at $m_{0}(\Delta m=0)$ and approaches 1 when $\Delta m \rightarrow \pm \infty$. However, the two peaks of the SBBC function move to m_{0} and form one peak rapidly with increasing Γ. Then, the peak declines with increasing Γ. For $\Gamma \neq 0$, the SBBC always exists even though $\Delta m=0$. By comparing the SBBC functions in Figs. 1(a) and 1(b), we see that the SBBC functions of $\phi \phi$ with respect to mass are much wider than those of $D^{0} \bar{D}^{0}$. This is because the SBBC function becomes wide with decreasing boson mass [6,32,33]. We also see that the influence of Γ on the SBBC function of $\phi \phi$ is small. Because the SBBC function of $\phi \phi$ has a wide mass distribution, it is insensitive to a mass-distribution change caused by a change of Γ. However, the nonzero Γ_{0} of ϕ will also counteract the effect of Γ on the SBBC function [see Eq. (22) $\theta \neq 0$].

We plot in Fig. 2 the SBBC functions of $D^{0} \bar{D}^{0}$ and $\phi \phi$ with respect to particle momentum for the in-medium mass shift $\Delta m=-10 \mathrm{MeV} / c^{2}$ and in-medium width $\Gamma=\Gamma_{0}$ and $10 \mathrm{MeV} / c^{2}$. We see that the SBBC functions increase with increasing particle momentum, and the influence of Γ increases with increasing particle momentum. Because the momentum distribution $n_{\mathbf{p}}=n_{-\mathbf{p}}$ approaches zero when $|\mathbf{p}| \rightarrow \infty$, the behavior of the SBBC function at very high momenta is mainly determined by $\left(\left|c_{\mathbf{p}} s_{\mathbf{p}}^{*}\right|^{2} /\left|s_{\mathbf{p}}\right|^{4}\right)[2,6]$, which is approximately $16 \mathbf{p}^{4} /\left[4 m_{0}^{2} \Delta m^{2}+m_{0}^{2}\left(\Gamma-\Gamma_{0}\right)^{2}\right]$. Therefore, the SBBC functions of $\phi \phi$ increase with increasing particle momentum more rapidly than that of $D^{0} \bar{D}^{0}$ in the highmomentum region and can exceed the SBBC of $D^{0} \bar{D}^{0}$ at high momenta.

IV. SUMMARY AND DISCUSSION

We derived the formulas for calculating the SBBC between a boson and antiboson with nonzero width produced
in relativistic heavy-ion collisions. The influences of the inmedium width on the SBBC functions of $D^{0} \bar{D}^{0}$ and $\phi \phi$ are investigated. It is found that the pattern of the SBBC function of $D^{0} \bar{D}^{0}$ with respect to mass changes significantly with the width. However, the SBBC function of $\phi \phi$ changes slightly with the width. The influence of the width on the SBBC increases with particle momentum. Whether the width is nonzero or not, the SBBC function of $\phi \phi$ increases with increasing particle momentum more rapidly than that of $D^{0} \bar{D}^{0}$ in the high-momentum region and can exceed the SBBC function of $D^{0} \bar{D}^{0}$ at high momenta.

Finally, it is necessary to mention that we have removed the time-decayed term of $e^{-i 2 \Omega_{\mathbf{p}} t} b_{\mathbf{p}} b_{-\mathbf{p}}$ in diagonalizing the in-medium Hamiltonian [Eq. (10)]. Therefore, the diagonalization is an approximation unless the imaginary part of $-2 \Omega_{\mathbf{p}}\left[\operatorname{Im}\left(-2 \Omega_{\mathbf{p}}\right) \sim m_{0} \Gamma / \omega_{\mathbf{p}} \sim \Gamma\right.$ for $\left.\mathbf{p}^{2}<m_{0}^{2}\right]$ is very large. This problem does not appear in the diagonalization for the

FIG. 2. SBBC functions of $D^{0} \bar{D}^{0}$ and $\phi \phi$ with respect to particle momentum for the in-medium mass shift $\Delta m=-10 \mathrm{MeV} / c^{2}$ and in-medium widths $\Gamma=\Gamma_{0}$ and $10 \mathrm{MeV} / c^{2}$.
bosons without width. There, the terms of $b_{\mathbf{p}} b_{-\mathbf{p}}$ and $b_{\mathbf{p}}^{\dagger} b_{-\mathbf{p}}^{\dagger}$ can become zero simultaneously with the reduced transform quantity, $r_{1}=r_{2}=\frac{1}{2} \ln \left[\omega_{\mathbf{p}} / \sqrt{\mathbf{p}^{2}+\left(m_{0}+\Delta m\right)^{2}}\right]$. The recent measurements of D^{0} in heavy-ion collisions at the RHIC and LHC indicate that the average width of D^{0} is approximately $30 \mathrm{MeV} / c^{2}$ [9-16]. The corresponding characteristic size is $c \tau \sim 6.6 \mathrm{fm}$, which is smaller than the typical size of the particle-emitting source in relativistic heavy-ion collisions. Therefore, the diagonalization is a good approximation and the influence of the in-medium width on the SBBC of $D^{0} \bar{D}^{0}$ must be considered in the heavy-ion collisions. For the ϕ meson, its $c \tau$ is comparable to the typical size of the source. Our
work is a key step forward to solve the problem. In addition, it will be of interest to expand the approach presented in the case that the particle and antiparticle with different in-medium mass modifications.

ACKNOWLEDGMENTS

W.-N.Z. thanks Y. Zhang for helpful discussions. This research was supported by the National Natural Science Foundation of China under Grants No. 11675034 and No. 11275037.
[1] M. Asakawa and T. Csörgő, Heavy Ion Phys. 4, 233 (1996).
[2] M. Asakawa, T. Csörgő, and M. Gyulassy, Phys. Rev. Lett. 83, 4013 (1999).
[3] S. S. Padula, G. Krein, T. Csörgő, Y. Hama, and P. K. Panda, Phys. Rev. C 73, 044906 (2006).
[4] D. M. Dudek and S. S. Padula, Phys. Rev. C 82, 034905 (2010).
[5] Y. Zhang, J. Yang, and W. N. Zhang, Phys. Rev. C 92, 024906 (2015).
[6] Y. Zhang and W. N. Zhang, Eur. Phys. J. C 76, 419 (2016).
[7] A. G. Yang, Y. Zhang, L. Cheng, H. Sun, and W. N. Zhang, Chin. Phys. Lett. C 35, 052501 (2018).
[8] P. Z. Xu, W. N. Zhang, and Y. Zhang, Phys. Rev. C 99, 011902(R) (2019).
[9] J. Adam et al. (STAR Collaboration), Phys. Rev. C 99, 034908 (2019).
[10] A. M. Sirunyan et al. (CMS Collaboration), Phys. Rev. Lett. 120, 202301 (2018).
[11] A. M. Sirunyan et al. (CMS Collaboration), Phys. Lett. B 782, 474 (2018).
[12] S. Acharya et al. (ALICE Collaboration), J. High Energy Phys. 10 (2018) 174.
[13] J. Adam et al. (ALICE Collaboration), J. High Energy Phys. 03 (2016) 081.
[14] J. Adam et al. (ALICE Collaboration), J. High Energy Phys. 11 (2015) 205.
[15] B. Abelev et al. (ALICE Collaboration), Phys. Rev. C 90, 034904 (2014).
[16] B. Abelev et al. (ALICE Collaboration), Phys. Rev. Lett. 111, 102301 (2013).
[17] S. Acharya et al. (ALICE Collaboration), Eur. Phys. J. C 78, 559 (2018).
[18] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 116, 062301 (2016).
[19] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 93, 021903(R) (2016).
[20] A. Adare et al. (PHENIX Collaboration), Phys. Rev. C 93, 024904 (2016).
[21] B. Abelev et al. (ALICE Collaboration), Phys. Rev. C 91, 024609 (2015).
[22] A. Adare et al. (PHENIX Collaboration), Phys. Rev. C 83, 024909 (2011).
[23] B. I. Abelev et al. (STAR Collaboration), Phys. Lett. B 673, 183 (2009).
[24] B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 79, 064903 (2009).
[25] B. I. Abelev et al. (STAR Collaboration), Phys. Rev. Lett. 99, 112301 (2007).
[26] S. Afanasiev et al. (PHENIX Collaboration), Phys. Rev. Lett. 99, 052301 (2007).
[27] S. S. Adler et al. (PHENIX Collaboration), Phys. Rev. C 72, 014903 (2005).
[28] B. Alessandro et al. (NA50 Collaboration), Phys. Lett. B 555, 147 (2003).
[29] C. Adler et al. (STAR Collaboration), Phys. Rev. C 65, 041901(R) (2002).
[30] S. V. Afanasiev et al. (NA49 Collaboration), Phys. Lett. B 491, 59 (2000).
[31] S. S. Padula, D. M. Dudek, and O. Socolowski Jr., J. Phys. G 37, 094056 (2010).
[32] Y. Zhang, J. Yang, and W. N. Zhang, Chin. Phys. C 39, 034103 (2015).
[33] Y. Zhang, J. Yang, and W. N. Zhang, Int. J. Mod. Phys. 24, 1550071 (2015).
[34] J. Knoll, Phys. Rev. C 83, 044914 (2011).
[35] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).
[36] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).

[^0]: *wnzhang@hit.edu.cn; wnzhang@dlut.edu.cn

