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Squeezed back-to-back correlations of bosons with nonzero widths in relativistic heavy-ion collisions
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We derive the formulas for calculating the squeezed back-to-back correlation (SBBC) between a boson and
antiboson with nonzero width produced in relativistic heavy-ion collisions. The SBBCs of D0 and φ mesons
with finite in-medium widths are studied. We find that the finite width can change the pattern of the SBBC
function of D0D̄0 with respect to mass. However, the SBBC function of φφ is insensitive to the width. In the
high-particle-momentum region, the SBBC function of φφ increases with particle momentum rapidly and can
exceed that of D0D̄0 whether the width is nonzero or not.
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I. INTRODUCTION

The interaction of particles with a medium in relativis-
tic heavy-ion collisions may cause a squeezed back-to-back
correlation (SBBC) of detected boson-antiboson pairs [1–8].
This SBBC is related to the in-medium mass modification of
the bosons through a Bogoliubov transformation between the
annihilation (creation) operators of the quasiparticles in the
medium and the corresponding free particles [1–8]. Generally,
the in-medium mass modification includes not only a mass
shift of the boson but also an increase of its width in the
medium. Therefore, the necessity of developing a formulism
that can be used to calculate the SBBC between a boson and
antiboson with nonzero width in a medium is obvious.

In this work, we derive the formulas for calculating the
SBBC function between a boson and antiboson with nonzero
width. The influences of the in-medium width on the SBBC
functions of D0D̄0 and φφ are investigated. We find that
the SBBC function of D0D̄0 changes obviously for a finite
change of width. The SBBC of φφ increases with increasing
particle momentum rapidly in a high-momentum region and
can exceed the SBBC of D0D̄0 at high momenta whether
the width is nonzero or not. Because of the presence of a
charm or strange quark, which is believed to experience the
entire evolution of the quark-gluon plasma (QGP) created in
relativistic heavy-ion collisions, the analyses of experimental
data of D and φ mesons have recently attracted great interest
[9–30]. However, the bosons with large masses have strong
SBBC [6,31–33]. The study of the heavy-meson SBBC is
meaningful in relativistic heavy-ion collisions.

The rest of this paper is organized as follows. In Sec. II,
we present the formula derivations of the SBBC function for
a boson and antiboson with nonzero in-medium width. Then,
we show the results of the SBBC functions of D0D̄0 and φφ

in Sec. III. Finally, a summary is given in Sec. IV.
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II. FORMULAS

For a system of a boson with mass m0 in vacuum, the
Hamiltonian density is given by

H0(x) = 1
2

{
φ̇2(x) + [∇φ(x)]2 + m2

0φ
2(x)

}
, (1)

where

φ(x) =
∑

p

(2V ωp)−1/2(e−ip·xap + eip·xa†
p), (2)

where ap and a†
p are annihilation and creation operators of the

free boson, respectively, p = (ωp, p), and ωp =
√

p2 + m2
0.

Denoting the in-medium mass shift and width as �m and
�, respectively, the boson in-medium energy can be written as

�p =
√

p2 + (m0 + �m − i�/2)2 ≡ |�p| ei�, (3)

where

|�p| =
{[

p2 + (m0 + �m)2 − �2

4

]2

+ (m0 + �m)2�2

}1/4

,

(4)

� = 1

2
tan−1

[ −(m0 + �m)�

p2+(m0 + �m)2−�2/4

]
. (5)

Here, � < 0, indicating the imaginary part of �p is negative.
The in-medium system Hamiltonian is given by [1]

HM =
∫

d3x
1

2

{
φ̇2(x) + [∇φ(x)]2 + (

m2
0 + m2

1

)
φ2(x)

}
=

∑
p

ωpa†
pap + 1

4

∑
p

m2
1

ωp
[e−i2ωpt apa−p

+ ei2ωpt a†
pa†

−p + 2a†
pap], (6)

where

m2
1 = (m0 + �m − i�/2)2 − m2

0 = �2
p − ω2

p. (7)

Equation (6) reduces to the case in Ref. [1] when � = 0.
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To diagonalize HM, we perform the transformation

e−iωpt ap = cpe−i�pt bp + s∗
−pei�pt b†

−p, (8)

eiωpt a†
p = c∗

pei�pt b†
p + s−pe−i�pt b−p, (9)

and obtain

HM = 1

2

∑
p

m2
1

ωp

[
(|cp|2 + |sp|2 + cps∗

p + c∗
psp)

+ 2ω2
p

m2
1

(|cp|2 + |sp|2)

]
b†

pbp

+ 1

4

∑
p

m2
1

ωp

[
(c∗

pc∗
−p + s∗

ps∗
−p + 2c∗

ps∗
−p)

+ 4ω2
p

m2
1

c∗
ps∗

−p

]
ei2�pt b†

pb†
−p. (10)

Here, the time-decayed term of e−i2�pt bpb−p has been re-
moved. In Eqs. (8) and (9), the transformation coefficients
satisfy

|cp|2 − |sp|2 = 1 (11)

to keep the operators b and b† with the same commutation
relation as that of a and a†.

Letting the terms b†
pb†

−p and b†
pbp in Eq. (10) equal 0 and

�pb†
pbp, respectively, we have

cp = cosh r1 + i cosh r2√
2

, sp = sinh r1 + i sinh r2√
2

, (12)

where cp = c−p, sp = s−p, r1 and r2 are two real functions,

r1,2 = 1

2
ln

[
ωp(1 ∓ sin �)

|�p| cos �

]
, (13)

and therefore

HM =
∑

p

�pb†
pbp, (14)

i.e., bp and b†
p are annihilation and creation operators, respec-

tively, of the quasiparticle in the medium with energy �p. For
� = 0, we have r1 = r2 = 1

2 ln[ωp/
√

p2 + (m0 + �m)2], and
the diagonalization issue reduces to that for the zero-width
case.

Next, we further consider the boson with a width �0 in
vacuum. In this case, the boson energy in vacuum is

ω′
p =

√
p2 + (m0 − i�0/2)2 ≡ |ω′

p|eiθ . (15)

Introducing the annihilation and creation operators, a′
p and

a′†
p , respectively, by a transformation similar to Eqs. (8) and

(9) (a′
p → bp, a′†

p → b†
p, ω

′
p → �p), we can diagonalize the

Hamiltonian of the boson with �0, and therefore write the
Hamiltonian density in this case as

H′
0(x) = 1

2 {φ̇′2(x) + [∇φ′(x)]2 + (m0 − i�0/2)2φ′2(x)},
(16)

where

φ′(x) =
∑

p

(2V ω′
p)−1/2(e−ip′ ·xa′

p + eip′ ·xa′†
p ), (17)

where p′ = (ω′
p, p).

Again, with the transformation similar to Eqs. (8) and (9),

e−iω′
pt a′

p = cpe−i�pt b′
p + s∗

−pei�pt b′†
−p, (18)

eiω′
pt a′†

p = c∗
pei�pt b′†

p + s−pe−i�pt b′
−p, (19)

we can diagonalize the in-medium Hamiltonian

H ′
M =

∑
p

ω′
pa′†

p a′
p + 1

4

∑
p

m′2
1

ω′
p

[e−i2ω′
pt a′

pa′
−p

+ ei2ω′
pt a′†

p a′†
−p + 2a′†

p a′
p],

(
m′2

1 = �2
p − ω′2

p

)
(20)

to

H ′
M =

∑
p

�pb′†
p b′

p. (21)

In Eqs. (18) and (19), the transformation coefficients cp and sp
have the same expressions as Eq. (12), but r1 and r2 are now

r1,2 = 1

2
ln

[ |ω′
p|(1 ∓ sin(� − θ ))

|�p| cos(� − θ )

]
. (22)

The SBBC function of the boson-antiboson with momenta
p1 and p2 is defined as [2–8]

C(p1, p2) = 1 + |Gs(p1, p2)|2
Gc(p1, p1)Gc(p2, p2)

, (23)

where Gc(p1, p2) and Gs(p1, p2) are the chaotic and squeezed
amplitudes, respectively, and

Gc(p1, p2) = √
ωp1ωp2

〈
a†

p1
ap2

〉
, (24)

Gs(p1, p2) = √
ωp1ωp2

〈
ap1 ap2

〉
, (25)

where 〈· · · 〉 indicates the ensemble average and ωp is the
energy of a boson with average mass m0 for nonzero �0. The
SBBC function for a spatially homogeneous source can be
written as [2,3,5–8]

C(p,−p)=1+ |cps∗
pnp+c−ps∗

−p(n−p+1)|2
n1(p)n1(−p)

|F̃ (ωp,�t )|2,
(26)

where np is the Bose-Einstein distribution of the quasi-
particle with the energy corresponding to in-medium
average mass (m0+�m), n1(p)=|cp|2np+|s−p|2(n−p+1),
and |F̃ (ωp,�t )|2 is a time suppression factor. We take
|F̃ (ωp,�t )|2 = (1 + 4ω2

p�t2)−1 in the calculations for a
time-profile function of exponential decay as in Refs.
[2–4,8,32,33]. Generally, |F̃ (ωp,�t )|2 is also related to the
spatial distribution of particle-emitting source for an evolving
system [5,6], and there is a large difference between the sup-
pression factors from different time-profile functions [5,34].

III. RESULTS

We plot in Figs. 1(a) and 1(b) the SBBC functions of
D0D̄0 and φφ with respect to in-medium mass m0 + �m for
different � values, respectively. Here, the particle momentum
is fixed at 1000 MeV/c and we take �t = 2 fm/c in calcula-
tions as in Refs. [2–5,8]. The mass and width of D0 meson in
vacuum, m0 and �0, are taken to be 1864.86 and 0 MeV/c2

(Particle Data Group (PDG [35,36]): 1.60 × 10−9 MeV/c,
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FIG. 1. SBBC functions of D0D̄0 (a) and φφ (b) with respect to in-medium particle mass (m0 + �m) for particle momentum |p| =
1000 MeV/c and different � values.

corresponding to a mean life 4.10 × 10−15 s) respectively,
and the m0 and �0 of φ meson are taken to be 1019.46 and
4.26 MeV/c2 respectively [35,36].

We see from Fig. 1(a) that the pattern of the SBBC
function of D0D̄0 changes significantly with in-medium width
�. For � = 0, the SBBC function has a typical two-peak
structure [2–4,8]. It is 1 (no correlation) at m0 (�m = 0) and
approaches 1 when �m → ±∞. However, the two peaks of
the SBBC function move to m0 and form one peak rapidly
with increasing �. Then, the peak declines with increasing
�. For � �= 0, the SBBC always exists even though �m = 0.
By comparing the SBBC functions in Figs. 1(a) and 1(b), we
see that the SBBC functions of φφ with respect to mass are
much wider than those of D0D̄0. This is because the SBBC
function becomes wide with decreasing boson mass [6,32,33].
We also see that the influence of � on the SBBC function
of φφ is small. Because the SBBC function of φφ has a
wide mass distribution, it is insensitive to a mass-distribution
change caused by a change of �. However, the nonzero �0 of
φ will also counteract the effect of � on the SBBC function
[see Eq. (22) θ �= 0].

We plot in Fig. 2 the SBBC functions of D0D̄0 and
φφ with respect to particle momentum for the in-medium
mass shift �m = −10 MeV/c2 and in-medium width � = �0

and 10 MeV/c2. We see that the SBBC functions increase
with increasing particle momentum, and the influence of
� increases with increasing particle momentum. Because
the momentum distribution np = n−p approaches zero when
|p| → ∞, the behavior of the SBBC function at very high
momenta is mainly determined by (|cps∗

p|2/|sp|4) [2,6], which
is approximately 16p4/[4m2

0�m2 + m2
0(� − �0)2]. Therefore,

the SBBC functions of φφ increase with increasing particle
momentum more rapidly than that of D0D̄0 in the high-
momentum region and can exceed the SBBC of D0D̄0 at high
momenta.

IV. SUMMARY AND DISCUSSION

We derived the formulas for calculating the SBBC be-
tween a boson and antiboson with nonzero width produced

in relativistic heavy-ion collisions. The influences of the in-
medium width on the SBBC functions of D0D̄0 and φφ

are investigated. It is found that the pattern of the SBBC
function of D0D̄0 with respect to mass changes significantly
with the width. However, the SBBC function of φφ changes
slightly with the width. The influence of the width on the
SBBC increases with particle momentum. Whether the width
is nonzero or not, the SBBC function of φφ increases with
increasing particle momentum more rapidly than that of D0D̄0

in the high-momentum region and can exceed the SBBC
function of D0D̄0 at high momenta.

Finally, it is necessary to mention that we have removed
the time-decayed term of e−i2�pt bpb−p in diagonalizing the
in-medium Hamiltonian [Eq. (10)]. Therefore, the diagonal-
ization is an approximation unless the imaginary part of
−2�p [Im(−2�p)∼m0�/ωp ∼ � for p2 < m2

0] is very large.
This problem does not appear in the diagonalization for the
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FIG. 2. SBBC functions of D0D̄0 and φφ with respect to particle
momentum for the in-medium mass shift �m = −10 MeV/c2 and
in-medium widths � = �0 and 10 MeV/c2.

014907-3



PENG-ZHI XU AND WEI-NING ZHANG PHYSICAL REVIEW C 100, 014907 (2019)

bosons without width. There, the terms of bpb−p and b†
pb†

−p
can become zero simultaneously with the reduced transform
quantity, r1 = r2 = 1

2 ln[ωp/
√

p2 + (m0 + �m)2]. The recent
measurements of D0 in heavy-ion collisions at the RHIC and
LHC indicate that the average width of D0 is approximately
30 MeV/c2 [9–16]. The corresponding characteristic size is
cτ ∼ 6.6 fm, which is smaller than the typical size of the
particle-emitting source in relativistic heavy-ion collisions.
Therefore, the diagonalization is a good approximation and
the influence of the in-medium width on the SBBC of D0D̄0

must be considered in the heavy-ion collisions. For the φ me-
son, its cτ is comparable to the typical size of the source. Our

work is a key step forward to solve the problem. In addition,
it will be of interest to expand the approach presented in the
case that the particle and antiparticle with different in-medium
mass modifications.
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[2] M. Asakawa, T. Csörgő, and M. Gyulassy, Phys. Rev. Lett. 83,

4013 (1999).
[3] S. S. Padula, G. Krein, T. Csörgő, Y. Hama, and P. K. Panda,
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