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Including off-diagonal anisotropies in anisotropic hydrodynamics
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In this paper we present a method for efficiently including the effects of off-diagonal local rest frame
momentum anisotropies in leading-order anisotropic hydrodynamics. The method relies on diagonalization of
the spacelike block of the anisotropy tensor and allows one to reduce the necessary moments of the distribution
function in the off-diagonal case to a linear combination of diagonal-anisotropy integrals. Once reduced to
diagonal-anisotropy integrals, the results can be computed efficiently using techniques described previously in
the literature. We present a general framework for how to accomplish this and provide examples for off-diagonal
anisotropy moments entering into the energy-momentum tensor and viscous update equations which emerge
when performing anisotropic pressure matching.

DOI: 10.1103/PhysRevC.100.014904

I. INTRODUCTION

Ultrarelativistic heavy ion collision (URHIC) experiments,
e.g., at the BNL Relativistic Heavy Ion Collider (RHIC) and
the CERN Large Hadron Collider (LHC), aim to study the dy-
namics and properties of matter at extremely high energy den-
sity. In these experiments, matter is heated to temperatures ex-
ceeding the QCD pseudocritical temperature, Tpc � 155 MeV,
using ultrarelativistic collisions among heavy nuclei, protons,
deuterons, etc. The strongly interacting droplet of matter
produced during high-energy and high-multiplicity URHICs
is called the quark-gluon plasma (QGP). In high-multiplicity
events, the QGP demonstrates strong collective behavior
during evolution from hydrodynamization (τ ≈ 1 fm/c) to
hadronic freeze-out (τ ≈ 10 fm/c). During this time period
it has been found that relativistic fluid dynamics formalisms
can effectively describe the evolution of the system, and one
finds that information about initial state geometry of the target
(average eccentricity and fluctuations) is reflected in final state
observables, e.g., the azimuthal dependence of hadron produc-
tion. In other words, one can track the correlations between
the eccentricity of the initial state’s geometry and the flow
harmonics observed in the final state hadron spectra using
dissipative hydrodynamics. The success of relativistic dissipa-
tive hydrodynamics [1–4] has inspired theoreticians to make
the underlying formalisms more complete and robust with
respect to large deviations from isotropic thermal equilibrium
using standard fixed-order viscous hydrodynamics (vHydro)
treatments [5–32] and resummed anisotropic hydrodynamics
(aHydro) treatments [4,33–54].

The introduction of the aHydro formalism was driven
by the fact that, due to the strong early-stage longitudinal
expansion of the QGP, one finds large momentum-space
anisotropy in the local rest frame (LRF) of the QGP which
persists for many fm/c. The magnitude of the momentum-
space anisotropy has cast some doubt on the quantitative
accuracy of standard vHydro, which assumes that one can
linearize around isotropic equilibrium. aHydro is a nonequi-
librium hydrodynamics model which takes into account the

strong momentum-space anisotropy of the QGP at leading
order and in doing so resums an infinite number of terms in
inverse Reynolds number [55]. In contrast to standard vHydro,
aHydro is based on Taylor expansion about an anisotropic
distribution function instead of an isotropic one. This allows
one to capture the dominant anisotropic contributions to the
distribution function in the leading order term, thereby guar-
anteeing positivity of the one-particle distribution at all space-
time points at leading order. aHydro and vHydro have been
tested against exact solutions of the Boltzmann equation for
systems subject to Bjorken [55–60] and Gubser flows [61–64].
In all cases, it was found that aHydro provided the best
approximation to the exact solutions for both hydrodynamic
and nonhydrodynamic moments of the distribution function
[60].

This provided motivation to compare the aHydro frame-
work with experimental results. Despite the success of these
early comparisons, in all phenomenological applications of
aHydro to date, leading-order aHydro codes have been im-
plemented using an anisotropy tensor which possesses only
diagonal (elliptical) anisotropies (see Ref. [4] for a recent
review). This was done mainly because of the difficulty of
efficiently evaluating the necessary moment integrals in the
presence of off-diagonal anisotropies ξ i j with i �= j. However,
to be complete, one must also include the possibility of off-
diagonal leading-order anisotropies. Near equilibrium, this is
equivalent to including off-diagonal components in the LRF
shear viscous tensor π i j .

In this paper, we present a technique that can be used to
efficiently include nonvanishing ξ i j . This is done by a change
of variables in the generic moment integrals which diagonal-
izes the anisotropy tensor. Once cast into diagonal form, a
previously developed technique for the efficient application
of diagonal moment integrals can be used to compute the
necessary off-diagonal moment integrals (see Appendix B of
Ref. [53]). We present the general method of diagonaliza-
tion and provide some concrete examples for the application
to aHydro frameworks which use the so-called anisotropic-
pressure or Tinti matching [43,48].
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Conventions and notation

The Minkowski metric tensor is taken to be “mostly mi-
nus”, i.e., gμν = diag(+,−,−,−). The vector uμ is the flow
velocity which satisfies the normalization condition uμuμ =
1. The transverse projection operator �μν ≡ gμν−uμuν is
used to project four-vectors and/or tensors into the space
orthogonal to uμ. Parentheses and square brackets on indices
denote symmetrization and antisymmetrization, respectively,
i.e., A(μν) ≡ 1

2 (Aμν+Aνμ) and A[μν] ≡ 1
2 (Aμν−Aνμ). Angle

brackets on indices indicate projection with a four-index trans-
verse projector, A〈μν〉 ≡ �

μν
αβAαβ , where �

μν
αβ ≡ �(μ

α �
ν)
β −

�μν�αβ/3 projects out the traceless and uμ-transverse com-
ponents of a rank-2 tensor. The Lorentz-invariant momentum-
space integration measure is indicated as dP = Ñd3p/E , with
Ñ = Ndof/(2π )3, where Ndof is the number of degrees of
freedom.

In order to write the equations of motion in a manifestly
Lorentz-covariant manner it is useful to introduce the LRF
basis vectors as uμ

LRF = (1, 0) and X μ
i,LRF = (0, δ

μ
i ) with i ∈

{1, 2, 3}. By applying a sequence of Lorentz transformations,
one can construct the laboratory frame basis vectors, i.e.,
uμ and X μ

i with i ∈ {1, 2, 3}, where the dynamical equations
are solved and particle spectra are computed [35,37]. It is
also useful to define the transverse projection operator in
terms of the spacelike basis vectors, i.e., �μν = −∑

i X μ
i X ν

i .
Finally, note that the latin indices sum over spacelike indices
(components of three-vectors) and greek indices sum over
components of four-vectors.

II. LEADING-ORDER ANISOTROPIC HYDRODYNAMICS

In leading-order aHydro, the one-particle distribution func-
tion is parametrized by an anisotropy tensor which results in
the deformation of the argument of an isotropic distribution
function into an anisotropic one [37,41]:

f g
a (x, p) = fiso

(
1

λ

√
pμ
μν pν

)
, (1)

where λ has dimensions of energy and can be identified with
temperature only in the isotropic equilibrium limit. The super-
script g above denotes that this form of distribution function
is general, i.e., is not limited to any specific frame. In prac-
tice, fiso can be a Bose-Einstein, Fermi-Dirac, or Maxwell-
Boltzmann distribution depending on particle statistics and/or
energy. In the nonconformal (massive) case, the rank-2 tensor

μν specifying the shape of the distribution in momentum
space is defined as [37,41]


μν = uμuν + ξμν − ��μν, (2)

where ξμν denotes a symmetric traceless anisotropy tensor,
i.e., ξx + ξy + ξz = 0 in the LRF.

The quantities λ, uμ, and ξμν are space-time fields which
satisfy the identities

uμuμ = 1, (3)

ξμ
μ = 0, (4)

uμξμν = 0. (5)

The third condition above, indicating orthogonality of ξμν to
uμ, implies that, in the LRF, ξμν obeys the conditions

ξ 00 = ξ 0i = ξ i0 = 0. (6)

Working in the LRF, this allows us to focus on the nontrivial
spacelike components of ξμν as ξ, which is a 3 × 3 matrix.
The argument of distribution function subject to the mass-
shell condition can be simplified as

p · 
· p = p · κ · p + m2, (7)

which gives

fa(x, p) = fiso

(
1

λ

√
p · κ · p + m2

)
, (8)

where

κ ≡ I(1 + �) + ξ, (9)

with I being a 3 × 3 identity matrix.
If ξ is diagonal, i.e.,

ξ = diag(ξx, ξy, ξz ), (10)

which implies the ellipsoidal distribution, the κ matrix is
automatically diagonal, i.e., κ = diag(1/α2

x , 1/α2
y , 1/α2

z ) with
αi = (1 + ξi + �)−1/2 [41]. For a nonellipsoidal distribution
function, generalizing ξ to include off-diagonal components,
one has

κ =

⎛
⎜⎝

1/α2
x ξxy ξxz

ξxy 1/α2
y ξyz

ξxz ξyz 1/α2
z

⎞
⎟⎠. (11)

Note that in a general frame one has ξμν = κi jX
μ
i X ν

j , where
the summation over i and j is implied.

III. DIAGONALIZATION

Calculating the bulk variables in aHydro requires comput-
ing momentum-space moments of the distribution function.
However, the distribution function in Eq. (8) is a complicated
function of momentum and there is no way to perform the
integrals analytically except in some special cases. In this
section, we introduce an algebraic method to diagonalize the
κ matrix so that we can reduce the computation of moment
integrals including off-diagonal anisotropies to a linear com-
bination of diagonal momentum-space moment integrals.

For any N × N real and symmetric matrix κ there exists a
unitary matrix A such that

κ = A κDA†, (12)

where A is constructed such that its columns are the eigenvec-
tors of κ . The combination p · κ · p can be written as

p · κ · p = pT κ p = [pT A][A†κA][A†p] = p̃T κD p̃

= p̃ · κD · p̃, (13)

with p̃ ≡ A†p.1 By definition we have

p = Ap̃ ⇒ pi =
∑

j

Ai j p̃ j . (14)

1Note that herein the vector p is real and A is orthogonal.
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For example

pi =
∑

j

Ai j p̃ j =
∑

j

v
( j)
i p̃ j, (15)

where the vector v(i) = (v(i)
x , v(i)

y , v(i)
z ) is the ith eigenvector

of κ . Therefore, we have two frames, i.e., the original frame
and the rotated frame, where the components of the mo-
mentum vector are pi and p̃i, respectively. The κ matrix in
the original frame is defined in Eq. (11) and, in the rotated
frame, is defined as κD ≡ diag(1/α̃2

i ). These two frames are
connected by rotations through a set of Euler angles. Note
that the Jacobian for transforming between two frames is
unity.

It is obvious that the length of p is invariant under this
coordinate transformation. Accordingly, as expected, E is the
same in both coordinate systems:

E =
√

p2 + m2 =
√

p̃2 + m2 = Ẽ . (16)

Using Eq. (15), one can simplify the general anisotropic
distribution function to the anisotropic distribution func-
tion (8) with diagonal anisotropy tensor (11) in the rotated
frame:

fa(x, p) = fiso

(
1

λ

√
p · κ · p + m2

)

= fiso

(
1

λ

√
p̃ · κD · p̃ + m2

)
≡ f D

a (x, p̃). (17)

IV. THE ENERGY-MOMENTUM TENSOR

We begin by demonstrating how this method can be used to
efficiently evaluate the components of the energy-momentum
tensor including off-diagonal anisotropies. In the general case,
we have six independent anisotropy parameters (αx, αy, αz,
ξxy, ξxz, and ξyz), one momentum-scale parameter (λ), and
the three independent components of the fluid four-velocity
(ui), resulting in ten space-time fields for which we must
obtain equations of motion. In the LRF, the nonvanishing
components of the energy-momentum tensor arev

T 00 = E =
∫

dP E2 fa(x, p), (18)

T i j =
∫

dP pi pj fa(x, p). (19)

Using the techniques introduced in the previous section, one
finds

E =
∫

dP E2 fa(x, p) = Ñ
∫

d3p̃
√

p̃2 + m2 f D
a (x, p̃)

= α̃λ4Q3
(
α̃2

x , α̃
2
y , α̃

2
z , m̂

)
, (20)

and

T i j =
∫

dP pi pj fa(x, p)

= Ñ
∫

d3p̃√
p̃2 + m2

f D
a (x, p̃)

3∑
k,l=1

v
(k)
i v

(l )
j p̃k p̃l

= α̃λ4
3∑

k=1

v
(k)
i v

(k)
j α̃2

k Qk
3

(
α̃2

x , α̃
2
y , α̃

2
z , m̂

)
. (21)

The Q functions appearing above only depend on the diagonal
anisotropies α̃ and are defined in the Appendix. The scaled
mass variable is defined as m̂ ≡ m/λ and we have introduced
a compact notation as α̃ ≡ α̃xα̃yα̃z. Based on the symmetry of
T i j under exchanging the indices, out of nine possible values
there are only six unique terms that must be calculated. Note
that for the diagonal terms (pressures) one obtains

Pi = T ii = α̃λ4
3∑

k=1

[
v

(k)
i

]2
α̃2

k Qk
3

(
α̃2

x , α̃
2
y , α̃

2
z , m̂

)
. (22)

In all cases above, we have reduced the problem to computing
Q functions with only diagonal anisotropies. The diagonal
anisotropy tensor integrals can be well approximated by
Taylor expanding to high order around an isotropic point,
e.g., α̃iso = (α0, α0, α0). At each order in this expansion the
required integrals can be performed analytically. In order
to cover the space using truncated Taylor expansions, one
can utilize multiple expansion points which are then pieced
together to accurately span the range of diagonal anisotropies
which are generated in typical simulations. Using modern
computerized algebra systems one can extend the Taylor ex-
pansion expressions described above to high order. In practice,
phenomenological codes have used 12th-order truncations in
δ̃ = α̃ − α̃iso (see Appendix B of Ref. [53]).

V. DYNAMICAL EQUATIONS: ANISOTROPIC
PRESSURE MATCHING

To further demonstrate the utility of this method, we
now consider equations for the viscous tensor obtained by
anisotropic pressure matching [43]. In the relaxation-time
approximation (RTA) the dynamical equations for the shear
and bulk viscous corrections based on anisotropic matching
are

∂μT μν = 0, (23)

Duπ
〈μν〉 + 1

τeq
πμν = −

(
σρσ + 1

3
θ �ρσ

) ∫
dP

p〈μ pν〉 pρ pσ f g
a

(p · u)2
− 2 π 〈μ

α σ ν〉α + 2P σμν − 5

3
θ πμν + 2 π 〈μ

α ων〉α, (24)

DuP + 1

τeq
(P − Peq ) = 1

3

(
σρσ + 1

3
θ �ρσ

)∫
dP

(p · � · p)pρ pσ f g
a

(p · u)2
+ 2

3
πμνσ

μν − 5

3
P θ. (25)
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The above equations are independent of the reference frame,
with f g

a being the general distribution function defined
in Eq. (1). Below we will expand these reference-frame-
independent equations and obtain the integrals involving the
general anisotropy tensor. In order to evaluate the resulting s
most efficiently, we will then evaluate them in the local rest
frame. The tensor πμν is the shear tensor, which is traceless
and orthogonal to flow velocity uμ. In the relations above
one has P = Peq + � with Peq being the LRF equilibrium
pressure, which can be obtained by evaluating any component
of Eq. (22) with κ equal to an identity matrix and λ set to the
local effective temperature T . The other symbols appearing in
Eqs. (24) and (25) above are defined as

Du = uμ∂μ,

Di = X μ
i ∂μ,

θ = ∇μuμ,

∇μ = �μν∂ν,

ωμν = (∇μuν − ∇νuμ)/2,

σμν = �
μν
αβ∂αuβ.

(26)

Equations (25) represent a set of ten dynamical equations
for the ten independent macroscopic variables of the system.
Microscopically, one has three components of flow velocity
ui, six independent anisotropy parameters, and the temper-
aturelike scale λ, resulting in ten dynamical microscopic
variables. Correspondingly, when coding these equations, one
can choose between using macroscopic or microscopic vari-
ables. In addition, if using the macroscopic variables, one can
evolve the ten independent components of the (symmetric)
energy-momentum tensor T μν or one can use the standard
decomposition [43,65]

T μν = T μν
eq + πμν + ��μν, (27)

which has as dynamical variables E , three components of flow
velocity ui, five independent components of shear tensor πμν ,
and the bulk viscous correction �, again adding up to ten
variables.

In practice, it is preferable to evolve the macroscopic
(thermodynamics) variables, since modern flux-conserving
algorithms are better suited to these equations than the micro-
scopic ones. However, this procedure is nontrivial because,
although the above equations evolve macroscopic variables,
they explicitly contain microscopic ones as well, e.g., the
distribution function f g

a appearing in Eq. (8). Therefore, in

order to close the system of equations one must update the
microscopic variables in parallel to the macroscopic ones
during the evolution. Roughly speaking, the procedure is as
follows: The equation ∂μT μν = 0 provides the evolution of
E and ui. The other equations evolve the components of the
shear tensor. Using these, one can construct the full T μν using
(27). Once the laboratory frame T μν is evolved forward one
time step, the updated microscopic variables can be obtained
by boosting to the LRF and solving a set of seven coupled
matching equations which match T 00

LRF, and setting six com-
ponents of the upper diagonal spacelike block of T μν

LRF to their
microscopic definitions as a function of αi, ξi j , and λ, i.e.,
Eqs. (20) and (21).

In order to further develop the necessary formalism, one
must expand and simplify the dynamical equations (25) for
the case of a nonellipsoidal anisotropic distribution function.
Note that we will expand the equations in the laboratory
frame, where the dynamical equations are solved. However,
whenever a scalar quantity is obtained, we have the freedom
to choose a covariant Lorentz frame, e.g., a local reference
frame, where the calculation is simpler.

There are two terms in Eqs. (24) and (25) needing detailed
expansion. The first one is(

σρσ + 1

3
θ�ρσ

)
pρ pσ = pρ pσ ∇ρuσ = pσ (p · D)uσ , (28)

where D is defined in (26). We also have

p〈μ pν〉 = pα pβ�μ
α�ν

β + 1
3�μνp2 = pi pjX μ

i X ν
j + 1

3�μνp2,

(29)

where the Einstein summation convention for repeated spatial
indices is applied. The very last step is performed in order
to make the dependence of components of momentum three-
vector explicit, which is useful in evaluating the integrals
necessary.

The other term is

p · � · p = −p2. (30)

Using the above relations, one can expand the following
integrals:

−
(

σρσ + 1

3
θ�ρσ

) ∫
dP

E2
pρ pσ p〈μ pν〉 fa

= −
∫

dP

E2
fa pi pjX μ

i X ν
j pσ (p · D)uσ − �μν

3

∫
dP

E2
fa p2 pσ (p · D)uσ

=
∫

dP

E2
fa pi pjX μ

i X ν
j pl (p · D)ul + �μν

3

∫
dP

E2
fa p2 pl (p · D)ul

=
[
F i jkl X μ

i X ν
j + �μν

3
F iikl

]
Dkul , (31)

where the four-index function introduced above is defined as

F i jkl ≡
∫

dP

E2
pi pj pk pl fa(x, p). (32)

Note that for Eq. (31) to be nonvanishing one must have an even number of spatial momenta with matching indices, appearing
in F i jkl . To see this, consider the integral above containing an odd number of spatial momenta. Using the map (15) it will
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contain an odd number of p̃i even in the rotated frame and the rest of the integrand will be an even function of the momenta.
Therefore, the integral will vanish by symmetry in this case. This suggests that, in the third line of the equation (31) defined
above, pσ uσ → −piui.

Similarly, the nontrivial term appearing in the bulk viscous equation of motion (25) is

1

3

(
σρσ + 1

3
θ�ρσ

) ∫
dP

E2
fa pρ pσ (p · � · p) = −1

3

∫
dP

E2
fa p2 pβ (p · D)uβ = 1

3

∫
dP

E2
fa p2 pl (p · D)ul = 1

3
F iikl ∂kul . (33)

To complete the simplification of the nontrivial terms in (31) and (33), we now consider the F function. Using techniques similar
to those used for the T i j , one obtains

F i jkl = Ñ
∫

d3p
E3

pi pj pk pl fa(x, p) = Ñ
∫

d3p̃
E3

f D
a (x, p̃)Pmn

[
v

(m)
i v

(m)
j v

(n)
l v

(n)
k

]
p̃2

m p̃2
n,

= α̃λ4Pmn
[
v

(m)
i v

(m)
j v

(n)
l v

(n)
k

]
α̃2

mα̃2
n Qmn

3

(
α̃2

x , α̃
2
y , α̃

2
z , m̂

)
. (34)

The operator Pmn introduced above is the permutation op-
erator which sums over all possible permutations of m and
n in the operand (including repeated ones). Based on the
symmetry of F i jkl under exchanging the indices, out of 81
possible values there are only 15 unique terms that must be
calculated. The function Qmn introduced above is defined in
the Appendix.

VI. DISCUSSION AND SUMMARY

As we demonstrated in the previous two sections, one can
reduce the problem of evaluating complicated off-diagonal
anisotropy moment integrals to a sum of diagonal anisotropy
integrals. In practice, one can use Eqs. (23), (24), and (25)
to evolve the energy-momentum tensor, shear viscous tensor,
and the bulk viscous correction, respectively. Given an initial
condition specified in terms of all anisotropies and the mo-
mentum scale λ, one can construct the full energy-momentum
tensor at the initial time. One can then evolve the coupled
partial differential equations (23), (24), and (25) forward in
time by one infinitesimal step, making use of the methods
explained in the previous section to evaluate the nontrivial
integrals involving f g

a in Eqs. (24) and (25).
Once the update is complete, one can solve a set of seven

nonlinear equations to extract the updated LRF anisotropies
and scale parameter. These can then be used to compute
the nontrivial integrals involving fa in the next time step.
Repeating this procedure, one can evolve all dynamical fields
using Eqs. (23), (24), and (25). Critical to accomplishing this
is the efficient evaluation of the integrals involving f g

a in
Eqs. (24) and (25) and the subsequent extraction of the local
anisotropy tensor from the full energy-momentum tensor. The
diagonalization method described in the previous two sections
solves this problem by removing the bottleneck of evaluating
complicated three-dimensional integrals on demand.

VII. CONCLUSIONS

In this paper we presented a method for efficiently in-
cluding the effects of off-diagonal local rest frame momen-
tum anisotropies in leading-order anisotropic hydrodynam-
ics. The method relies on diagonalization of the spacelike
block of the anisotropy tensor and allows one to reduce

the necessary moments of the distribution function in the
off-diagonal case to a linear combination of diagonal-
anisotropy integrals. Once reduced to diagonal-anisotropy
integrals, the results can be computed efficiently using tech-
niques described previously in the literature [53]. We pre-
sented a general framework for how to accomplish this and
provided examples for off-diagonal anisotropy moments en-
tering into the energy-momentum tensor and viscous up-
date equations which emerge when performing anisotropic
pressure matching [43]. With this method in hand one can
implement a leading-order anisotropic hydrodynamics code
that takes into account off-diagonal anisotropies nonpertur-
batively. Additionally, since the equations are formulated at
the level of the energy-momentum tensor and shear viscous
tensor, this more easily allows for the use of advanced numer-
ical techniques for solving the necessary partial differential
equations (see, e.g., [66]).
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APPENDIX: Q FUNCTIONS

The Q functions used in expanding the equations are
defined as follows:

Q3
(
α2

x , α
2
y , α

2
z , m̂

)
= Ñ

∫
d3p

√∑
k

α2
k p2

k + m̂2 fiso(
√

p2 + m̂2), (A1)

Qi
3

(
α2

x , α
2
y , α

2
z , m̂

)
= Ñ

∫
d3p

p2
i√∑

k α2
k p2

k + m̂2
fiso(

√
p2 + m̂2), (A2)

Qi j
3

(
α2

x , α
2
y , α

2
z , m̂

)
= Ñ

∫
d3p

p2
i p2

j( ∑
k α2

k p2
k + m̂2

)3/2 fiso(
√

p2 + m̂2). (A3)
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We note that the above functions are related, e.g.,

Qi
3 = 2

∂Q3

∂α2
i

, (A4)

Qi j
3 = −2

∂Qi
3

∂α2
j

= −4
∂2Q3

∂α2
i ∂α2

j

. (A5)

This fact allows us to reduce the number of underlying Q functions that have to be computed to the “master function” Q3.
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