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Landau and Eckart frames for relativistic fluids in nuclear collisions
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The quark matter created in relativistic nuclear collisions is interpreted as a nearly perfect fluid. The recent
efforts to explore its finite-density properties in the beam energy scan programs motivate one to revisit the issue
of the local rest frame fixing in off-equilibrium hydrodynamics. I first investigate full second-order relativistic
hydrodynamics in the Landau and the Eckart frames. Then numerical hydrodynamic simulations are performed
to elucidate the effect of frame choice on flow observables in relativistic nuclear collisions. The results indicate
that the flow can differ in the Landau and the Eckart frames but charged particle and net baryon rapidity
distributions are mostly frame independent when off-equilibrium kinetic freeze-out is considered.
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I. INTRODUCTION

The existence of the strongly coupled quark-gluon
plasma [1] as a high-temperature phase of QCD has been
partly motivated by a number of relativistic hydrodynamic
analyses of high-energy nuclear collisions at the BNL Rela-
tivistic Heavy Ion Collider (RHIC) [2–5] and CERN Large
Hadron Collider (LHC) [6–8]. Modern versions of such anal-
yses incorporate the effects of viscosity to take account of
off-equilibrium processes in the system, which play impor-
tant roles in quantitative understanding of the experimental
data [9].

The theoretical framework of relativistic dissipative hy-
drodynamics, however, is still not completely understood,
partially because one has to introduce relaxation effects to
the off-equilibrium processes to avoid violating stability and
causality [10–12]. Such extended frameworks are called the
second-order theory [13–44] as opposed to the traditional
linear response theory [45,46], which is also known as the
first-order theory, because the off-equilibrium correction of
the respective order in terms of dissipative currents is taken
into account in the entropy current of those theories.

Nonrelativistic hydrodynamic flow can be defined as a
local flux of particles. In relativistic systems, however, the
definition of the flow is not trivial because the energy and
the conserved number can flow separately in the presence
of dissipative processes. There are two distinctive ways of
defining the local rest frame for the flow: the Landau (or en-
ergy) frame [45] and the Eckart (or conserved charge/particle)
frame [46]. There have been decades of debate over the
eligibility of the two definitions of the local rest frame [20–24,
47–52]. Most of the numerical analyses of hydrodynamic
models for relativistic nuclear collisions so far do not give
explicit consideration to the frame because the diffusion or
the dissipation current is neglected, but the Landau frame
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is often considered to be a preferred choice when there is
a theoretical need. This could be owing to the fact that the
primary conserved charge in nuclear collisions is the net
baryon number, which is often small at high energies; the
Eckart frame cannot be defined when conserved charges are
approximated to be negligible. There are several calculations
[53–56] that include the effects of baryon diffusion, which
intrinsically implies that the Landau frame is chosen.

The beam energy scan (BES) programs are being per-
formed at RHIC. The exploration of the mid-to-low beam
energy regime is also planned at facilities including the GSI
Facility for Antiprotons and Ion Research (FAIR), the JINR
Nuclotron-based Ion Collider fAcility (NICA), the CERN
Super Proton Synchrotron (SPS), and the JAEA/KEK Japan
Proton Accelerator Research Complex (J-PARC) in order
to elucidate the QCD phase structure at finite densities. It
would be insightful to come back to the question of the
flow frame in hydrodynamic models and investigate whether
the choice of the frame can affect observables in those
experiments.

In this paper, full second-order hydrodynamic equations
are investigated in the Landau and Eckart frames. Stability and
causality conditions in the two frames are shown to be related
to the correspondences between the first- and second-order
transport coefficients in those frames. Then the implications
of a frame choice on the hydrodynamic evolution in heavy-ion
systems are discussed, focusing on the baryon diffusion and
the energy dissipation. Numerical analyses are performed for
rapidity distribution because the effects of the net baryon
number would appear most prominently in the direction of
the collision. Fragments of the shattered nuclei are the source
of the conserved charge.

The paper is organized as follows. Full second-order
relativistic dissipative hydrodynamics is investigated in the
Landau and Eckart frames in Sec. II. Causality and stability
conditions are discussed in Sec. III. Section IV presents
numerical demonstration of the effects of a frame choice in
nuclear collisions. Discussion and conclusions are presented
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in Sec. V. The natural unit c = h̄ = kB = 1 and the mostly
negative Minkowski metric gμν = diag(+,−,−,−) are used
in this paper.

II. RELATIVISTIC HYDRODYNAMICS IN LANDAU
AND ECKART FRAMES

The ideal hydrodynamic flow is uniquely determined since
the local fluxes of the energy and charge densities are in the
same direction, i.e., the directions of the eigenvector of the
energy-momentum tensor and the conserved current match
as T μνuν = euμ and Nμ = nuμ. Here e is the energy density
and n is the conserved charge density. On the other hand,
the presence of the vector dissipative currents leads to the
separation of the two local fluxes in relativistic systems. The
Landau frame is chosen in the direction of the total energy
flux so the dissipation of energy does not appear explicitly:
T μνuL

ν = eLuμ
L . The Eckart frame is the choice of flow where

the total conserved charge flux is diffusionless: Nμ = nE uμ
E .

Here the subscripts L and E represent the Landau and Eckart
frames, respectively. The energy-momentum tensor, the con-
served charge current, and the entropy current sμ are assumed
to be invariant under frame transformations [14].

The tensor decompositions read

T μν = eLuμ
L uν

L − (PL + �L )�μν
L + π

μν
L , (1)

Nμ = nLuμ
L + V μ

L (2)

in the Landau frame and

T μν = eE uμ
E uν

E − (PE + �E )�μν
E

+W μ
E uν

E + W ν
E uμ

E + π
μν
E , (3)

Nμ = nE uμ
E , (4)

in the Eckart frame. Here � is the bulk pressure, πμν is
the shear stress tensor, W μ is the energy dissipation, V μ is
the baryon diffusion, and �μν = gμν − uμuν is the spacelike
projection. It can be immediately seen that the two frames
become identical in the ideal hydrodynamic limit. The dis-
sipative corrections to the energy and the conserved charge
densities are neglected for simplicity [32]. Also I consider a
system with a single charge conservation, though the exten-
sion to general systems should be a straightforward task.

In the following arguments, the vector dissipative currents
W μ

E and V μ
L are considered and the shear and bulk viscous

corrections are set aside for simplicity. When the dissipative
corrections are much smaller than the equilibrium variables,
the difference in the thermodynamic variables of the two
frames �nE−L = nE − nL and �eE−L = eE − eL are, at a
given space-time point,

�nE−L = 1

2

V μ
L V L

μ

nL
+ O(δ3), (5)

�eE−L = − W μ
E W E

μ

eE + PE
+ O(δ3), (6)

where the correction is of the second order in dissipative quan-
tities. They indicate that the corrections to other thermody-
namic variables, i.e., the pressure P, the entropy density s, the
temperature T , and the chemical potential μ, are of the second

order. The corrections to the transport coefficients should also
be of the second order because they are functions of the energy
and the conserved charge densities. Hereafter the subscripts L
and E are dropped for those variables for simplicity unless
otherwise required. The flow difference �uμ

E−L = uμ
E − uμ

L is

�uμ
E−L = V μ

L

n
+ O(δ2) = − W μ

E

e + P
+ O(δ2), (7)

where the leading-order correction is of the first order.
The macroscopic variables are estimated using the conser-

vation laws ∂μT μν = 0 and ∂μNμ = 0, the equation of state
P = P(e, nB), and the constitutive relations for the dissipa-
tive currents. In the Landau frame, the second-order causal
expression of the baryon diffusion, based on an extended
Israel-Stewart framework [13,14,31], reads

V μ
L = κV ∇μ

L

μ

T
− τV (�L )μνDLV ν

L

+χa
V V μ

L DL
μ

T
+ χb

V V μ
L DL

1

T
+ χ c

V V μ
L ∇L

ν uν
L

+χd
V V ν

L ∇L
ν uμ

L + χ e
V V ν

L ∇μ
L uL

μ, (8)

where κV � 0 is the baryon conductivity, τV � 0 is the relax-
ation time for the baryon diffusion, and χa,b,c,d,e

V are second-
order transport coefficients. D = uμ∂μ and ∇μ = �μν∂ν are
the timelike and spacelike derivatives, respectively. Similarly,
in the Eckart frame, the energy dissipation reads

W μ
E = −κW

(
∇μ

E

1

T
+ 1

T
DE uμ

E

)
− τW (�E )μνDEW ν

E

+χa
W W μ

E DE
μ

T
+ χb

W W μ
E DE

1

T
+ χ c

W W μ
E ∇E

ν uν
E

+χd
W W ν

E ∇E
ν uμ

E + χ e
W W ν

E ∇μ
E uE

ν , (9)

where κW � 0 is the energy conductivity and τW � 0 is the
relaxation time for the energy dissipation, and χa,b,c,d,e

W are
second-order transport coefficients. For the full expression of
the second-order hydrodynamic equations including the scalar
and tensor dissipative currents, see for example Ref. [31].

The second law of thermodynamics implies that the en-
tropy production is expressed in a quadratic form. It can be
written in the Landau frame as

∂μsμ = −V μ
L V L

μ

κV
� 0, (10)

and in the Eckart frame as

∂μsμ = −W μ
E W E

μ

κW
� 0, (11)

with the mostly minus metric. The first- and second-order
transport coefficients of the two frames are related by the
identification of the entropy production:

κV = κW

(
n

e + P

)2

, (12)

τV = τW − κW

(e + P)T
, (13)

χa
V = χa

W − τW nT

e + P
, (14)
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χb
V = χb

W + τW T − κW

e + P
, (15)

χ c
V = χ c

W + κW

(e + P)T
, (16)

χd
V = χd

W + κW

(e + P)T
, (17)

χ e
V = χ e

W . (18)

See Appendix A for the derivation. Those relations indicate
that the full second-order terms are necessary in addition to
the conventional Israel-Stewart terms for understanding the
frame dependence of relativistic dissipative hydrodynamics,
because the vanishing second-order transport coefficients in
one frame lead to nonvanishing ones in the other frame, except
for χ e

V and χ e
W .

III. CAUSALITY AND STABILITY OF SECOND-ORDER
HYDRODYNAMICS

In this section, causality and stability conditions of the
relativistic full second-order hydrodynamic equations are in-
vestigated in the Landau and Eckart frames. A plane wave
perturbation δQ = δQ̄ei(ωt−kx) is considered for a macroscopic
variable Q around global equilibrium where uμ = (1, 0, 0, 0).
The perturbed equations of motion are used to analyze the
hydrodynamic modes [11,12].

A. Landau frame

In the Landau frame, the perturbed energy-momentum
tensor and the conserved charge current are

δT μν = (e + P)(δuμuν + uμδuν )

+δeuμuν − δPgμν, (19)

δNμ = nδuμ + δnuμ + δV μ, (20)

which follow the conservation law and the constitutive rela-
tion

δV μ = κV ∇μδα − τV �μνDδVν, (21)

where α = μ/T . The longitudinal and transverse modes rele-
vant to the diffusion are given by

ML
xx

⎛
⎜⎝

δe
δn
δux

δV x

⎞
⎟⎠ = 0 (22)

and

ML
xy

(
δuy

δV y

)
= 0, ML

xz

(
δuz

δV z

)
= 0, (23)

where

ML
xx =

⎛
⎜⎜⎜⎝

iω 0 −ikh 0

−ik ∂P
∂e |n −ik ∂P

∂n |e iωh 0

0 iω −ikn −ik

−ikκV
∂α
∂e |n −ikκV

∂α
∂n |e 0 1 + iωτV

⎞
⎟⎟⎟⎠

(24)

and

ML
xy = ML

xz =
(

iωh 0
0 1 + iωτV

)
, (25)

using the enthalpy density h = e + P. They have nontrivial
solutions when the matrices have vanishing determinants. The
longitudinal equations det(ML

xx ) = 0 lead to

ω2 − c2
s k2 = iκV (c2ω

2 − c4k2)k2

ω(1 + iτV ω)
, (26)

where the sound velocity is defined as

c2
s = ∂P

∂e

∣∣∣∣
n

+ n

h

∂P

∂n

∣∣∣∣
e

, (27)

and the thermodynamic coefficients as

c2 = ∂α

∂n

∣∣∣∣
e

, (28)

c4 = ∂α

∂n

∣∣∣∣
e

∂P

∂e

∣∣∣∣
n

− ∂α

∂e

∣∣∣∣
n

∂P

∂n

∣∣∣∣
e

. (29)

The Routh-Hurwitz stability criteria [57,58] indicate that
Im(ω) stays semipositive when c2 � 0 and c2

s c2 − c4 � 0.
Those conditions are satisfied in thermodynamic systems,
since the former follows from the thermodynamic requirement
that the fugacity should increase as the number density in-
creases at a fixed energy density, and the latter from

c2
s c2 − c4 = β

h

(
∂P

∂α

∣∣∣∣
β

∂α

∂n

∣∣∣∣
e

− ∂P

∂β

∣∣∣∣
β

∂α

∂e

∣∣∣∣
n

)2

� 0, (30)

where β = 1/T , using the definition of the sound velocity (27)
and the thermodynamic properties

∂P

∂α

∣∣∣∣
β

= n

β
,

∂P

∂β

∣∣∣∣
α

= − h

β
, (31)

and

∂β

∂n

∣∣∣∣
e

= −∂α

∂e

∣∣∣∣
n

. (32)

Although it is possible to analytically solve the quartic
equation, the general solutions are complicated. Here asymp-
totic forms at small k are considered for more physical argu-
ments. The propagating modes are, up to the leading order in
real and imaginary parts,

ω = ±csk + i
κV

(
c2

s c2 − c4
)

2c2
s

k2, (33)

and the nonpropagating mode is

ω = i

τV
, (34)

aside from the trivial ω = 0. They satisfy the causality condi-
tion ∣∣∣∣∂Re(ω)

∂k

∣∣∣∣ � 1. (35)

The stability condition

Im(ω) � 0 (36)
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is satisfied for c2c2
s − c4 � 0, which is consistent with the

Routh-Hurwitz stability conditions.
The solutions to the transverse equations

det
(ML

xy

) = det
(ML

xz

)
= iωh(1 + iωτV ) = 0 (37)

are the nonpropagating modes ω = 0 and ω = i/τV . The
causality and stability conditions are trivially satisfied. Those
results of the longitudinal and the transverse modes indicate
that the second-order diffusive hydrodynamics is causal and
stable in the Landau frame.

B. Eckart frame

In the Eckart frame, the energy-momentum tensor and the
conserved charge current are expressed as

δT μν = (e + P)(δuμuν + uμδuν ) + δeuμuν

−δPgμν + δW μuν + δW νuμ, (38)

δNμ = nδuμ + δnuμ, (39)

and the energy dissipation current as

δW μ = −κW βeqDδuμ − κW ∇μδβ − τW �μνDδWν .

(40)

The perturbed equations of motion are

ME
xx

⎛
⎜⎝

δe
δn
δux

δW x

⎞
⎟⎠ = 0 (41)

and

ME
xy

(
δuy

δW y

)
= 0, ME

xz

(
δuz

δW z

)
= 0, (42)

where

ME
xx =

⎛
⎜⎜⎜⎝

iω 0 −ikh −ik

−ik ∂P
∂e |n −ik ∂P

∂n |e iωh iω

0 iω −ikn 0

ikκW
∂β

∂e |n ikκW
∂β

∂n |e iωκW β 1 + iωτW

⎞
⎟⎟⎟⎠

(43)

and

ME
xy = ME

xz =
(

iωh iω
iωκW β 1 + iωτV

)
. (44)

The longitudinal equations det(ME
xx ) = 0 lead to

ω2 − c2
s k2 = iκW (d2ω

2 − d4k2)k2

ω[1 + i(τW − κW β/h)ω]
, (45)

where

d2 = n

h

(
∂β

∂n

∣∣∣∣
e

+ β

h

∂P

∂n

∣∣∣∣
e

)
, (46)

d4 = n

h

(
∂β

∂n

∣∣∣∣
e

∂P

∂e

∣∣∣∣
n

− ∂β

∂e

∣∣∣∣
n

∂P

∂n

∣∣∣∣
e

)
. (47)

Here, Im(ω) stays semipositive when d2 � 0, c2
s d2 − d4 � 0,

and

τW − β

h
κW � 0, (48)

according to the Routh-Hurwitz stability criteria. The first two
conditions are again satisfied in thermodynamic systems as

d2 = n2

h2

∂α

∂n

∣∣∣∣
e

� 0, (49)

c2
s d2 − d4 = n2β

h3

(
∂P

∂α

∣∣∣∣
β

∂α

∂n

∣∣∣∣
e

− ∂P

∂β

∣∣∣∣
β

∂α

∂e

∣∣∣∣
n

)2

� 0,

(50)

using the relations (31) and (32). Note that d2 = c2n2/h2 and
d4 = c4n2/h2. The third condition is also consistent with the
ones reported in Ref. [12,49].

The results indicate that second-order dissipative hydrody-
namics is stable in the Eckart frame if the transport coeffi-
cients satisfy the condition (48). It can be immediately seen
that the first-order theory is unstable in the Ecakrt frame by
taking the limit of vanishing relaxation time τW → 0.

It is important to note that the spacelike projection of the
energy-momentum conservation law leads to

(e + P)Duμ = ∇μP − W μ∇νuν

−W ν∇νuμ − �μνDWν, (51)

which is also used to convert the thermodynamic forces (A4).
The higher order terms in the identity are important even in
the stability analyses of the first-order theory because, if one
neglects the correction by truncation and uses it to remove
the acceleration term in the energy dissipation current, the
equation can become seemingly “stable” at the first order.
This is because the relaxation-term-like correction originating
from the last term in Eq. (51) is effectively introduced by the
procedure at the second order even though it is not apparent.
The prefactor before this effective relaxation term is κW /(e +
P)T , which is the minimum value of the relaxation time
required for hydrodynamic stability. The constitutive relation
is qualitatively modified and thus cannot be regarded as a
first-order theory.

The asymptotic forms of the propagating and the nonprop-
agating modes at small k are

ω = ±csk + i
κW

(
c2

s d2 − d4
)

2c2
s

k2 (52)

and

ω = i

τW − κW β/h
, (53)

aside from ω = 0. Those modes are causal and stable if the
Routh-Hurwitz criteria are satisfied.

The transverse equations

det
(ME

xy

) = det
(ME

xz

)
= iω[h + iω(τV − κW β )] = 0, (54)

have the nonpropagating solutions ω = i/(τW − κW β/h) and
ω = 0. One can see that all the modes satisfy the stability and

014901-4



LANDAU AND ECKART FRAMES FOR RELATIVISTIC … PHYSICAL REVIEW C 100, 014901 (2019)

causality conditions if the relaxation time is sufficiently larger
than the conductivity (48).

Comparing the two frames, the characteristic equations
in the Landau frame (26) and (37) and their solutions are
equivalent to those in the Eckart frame (45) and (54) under
the identification of the conductivities (12) and the relaxation
times (13) that follow from the matching of the entropy pro-
duction. The relation of the relaxation times in the two frames
implies that the Eckart stability condition on τW is closely
related with the fact that τV is semipositive in the other frame.

IV. NUMERICAL APPLICATION TO HEAVY-ION
COLLISIONS

The effects of a frame choice on relativistic nuclear col-
lisions are demonstrated by solving the energy dissipative
and the baryon diffusive hydrodynamic equations. For this
purpose, a non-boost-invariant (1 + 1)-dimensional hydrody-
namic system is considered [53]. Full (3 + 1)-dimensional
calculations for quantitative analyses of the data sets from the
beam energy scan experiments are beyond the scope of the
current study and will be presented elsewhere.

A. The hydrodynamic model

Hydrodynamics system are characterized with the equation
of state and the transport coefficients. The equation of state at
finite baryon density [59] is based on lattice QCD [60–63]
and the hadron resonance gas model. The strangeness and the
electric charge are not considered here for simplicity and left
for future studies.

The transport coefficients are chosen as κW = cW (e + P),
τW = c̃W κW /(e + P)T , and χa,b,c,d,e

W = 0 in the Eckart frame.
The model conductivity is motivated by the non-equilibrium
statistical operator method for the φ4-theory [64] coupled with
the lower bound of shear viscosity conjectured in the gauge-
string correspondence [65]. cW = 10 and c̃W = 2 are used for
demonstration. Those in the Landau frame is obtained using
the relations (12)–(18).

The initial conditions are parametrically constructed as

e(τth, ηs) = a1 exp
( − a2η

2
s − a3η

4
s

)
, (55)

nB(τth, ηs) = n+
B (ηs) + n−

B (ηs), (56)

where

n±
B (ηs) =

{
b1 exp[−b2(ηs ∓ η0)2 − b3(ηs ∓ η0)4] for ± ηs > η0,

b1 exp[−b̃2(ηs ∓ η0)2 − b̃3(ηs ∓ η0)4] for ± ηs � η0,
(57)

at τth = 3 fm/s. The parameters are tuned to roughly re-
produce the SPS data for 17.3 GeV Pb + Pb collisions [66]
without dissipative corrections. Here a1 = 7.19 (GeV/fm3),
a2 = 0.8, and a3 = 0.05 for the energy density and b1 = 0.45
(1/fm3), b2 = 0.4, b3 = 4.0, b̃2 = 0.55, b̃3 = 2.3, and η0 =
0.69 for the net baryon density. It should be noted again
that they are for demonstration and not for full quantitative
analyses of the data because, even though the results exhibit
fair agreement with the data, the transverse expansion and the
hadronic transport are not taken into account here. The pro-
longed space-time evolution may partially mimic the transport
effects. The initial values of the energy dissipation and the
baryon diffusion currents are set to zero to allow comparison
of the effects of those processes coming from hydrodynamic
evolution.

The kinetic freeze-out is estimated using the Cooper-Frye
formula [67] with off-equilibrium corrections to the phase-
space distribution functions [68,69]. It reads

Ei
dNi

d3 p
= gi

(2π )3

∫
�

pμ
i dσμ

(
f 0
i + δ fi

)
, (58)

where gi is the degeneracy, � is the freeze-out hypersur-
face, and dσμ is the freeze-out hypersurface element. f 0

i is
the equilibirum (Bose-Einstein or Fermi-Dirac) phase-space
distribution function for the ith particle species and δ fi is
the off-equilibrium distortion of the distribution function. The
expressions of δ f in the Landau and the Eckart frames are
shown in Appendix B. The hypersurface is determined with
the freeze-out energy density ef = 0.4 GeV/fm3.

B. Space-time evolution

First, I investigate the off-equilibrium hydrodynamic evo-
lution in the Landau and the Eckart frames and compare them
with the ideal hydrodynamic evolution. The entropy and the
net baryon distributions at the initial time and τ = 20 fm/c
are shown in Fig. 1. It should be noted that the lifetime of
the fireball is longer in the current geometry owing to the
lack of transverse expansion. The effect of baryon diffusion
or energy dissipation is small on the entropy density for the
current choice of transport coefficients.

The effect on the net baryon density, on the other hand,
is visible. The baryon diffusion causes stronger stopping be-
cause the fugacity gradients induce net baryon diffusion from
forward to mid-rapidity regions. At the edges near |ηs| ≈ 2,
the baryon diffusion is in the outward direction. The energy
dissipation, on the other hand, is less trivial because of the
interplay of the temperature gradient and the acceleration
terms. The temperature gradients carry the energy density
towards forward rapidity regions while the acceleration cor-
rection prevents flow convection and keep the density in the
mid-rapidity region. The effects cancel at the first order in the
limit of vanishing chemical potential, as seen in (A4). The
off-equilibrium deformation of the net baryon distribution in
the Eckart frame can be mainly caused by the deceleration of
flow, as seen in Fig. 2 near mid-rapidity. The off-equilibrium
evolutions of the net baryon distribution in the Landau frame
and in the Eckart frame are quantitatively similar to each
other. This can be a consequence of the fact that the frame
dependence of the thermodynamic quantities are of second
order.
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FIG. 1. The space-time rapidity dependences of (a) the entropy
density and (b) the net baryon density at the initial time (thin solid
line) and those after ideal (thick solid line), baryon diffusive (dashed
line), and energy dissipative (dotted line) hydrodynamic evolutions
at τ = 20 fm/c.

The difference between the flow rapidity Yf and the space-
time rapidity ηs (Fig. 2) implies that the Landau flow is closer
to the ideal flow than the Eckart flow. Here the flow rapidity is
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FIG. 2. The space-time rapidity dependence of the difference
between the flow and space-time rapidities at the initial time (thin
solid line) and those after ideal (thick solid line), baryon diffusive
(dashed line), and energy dissipative (dotted line) hydrodynamic
evolutions at τ = 20 fm/c.
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FIG. 3. The rapidity distributions of charged particles (a) without
and (b) with δ f correction at freeze-out for the ideal hydrodynamic
system (solid line) compared to those for the systems with baryon
diffusion in the Landau frame (dashed line) and with energy dissipa-
tion in the Eckart frame (dotted line).

defined as

uμ = (cosh Yf , 0, 0, sinh Yf ), (59)

which reduces to the boost-invariant flow when Yf − ηs =
0. The flow is affected more in the Eckart frame, possibly
because the energy dissipation is directly coupled to the
equation of motion for flow acceleration (51). At forward
space-time rapidity |ηs| > 1.5, the Eckart flow is faster than
the Landau flow because of the peak position in the net baryon
distribution.

C. Charged particle and net baryon rapidity distributions

The charged hadron rapidity distributions are shown in
Fig. 3. The effect of energy dissipation in the Eckart frame
is visible while that of baryon diffusion is negligible when
the off-equilibrium correction at freeze-out (58) is not taken
into account. The difference comes from the difference in
the Landau and the Eckart flow and the lack of the δ f
corrections. When the correction is incorporated, the effect of
energy dissipation becomes small and similar to that of baryon
diffusion as found in Fig. 3(b).

The net baryon rapidity distribution with baryon diffusion
in the Landau frame and with energy dissipation in the Eckart
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FIG. 4. The rapidity distributions of net baryon number (a) with-
out and (b) with δ f correction at freeze-out for the ideal hydrody-
namic system (solid line) compared to those for the systems with
baryon diffusion in the Landau frame (dashed line) and with energy
dissipation in the Eckart frame (dotted line).

frame are shown in Fig. 4. The off-equilibrium effects are
visible in both frames without the δ f correction. This is
consistent with the observation of hydrodynamic evolution of
the net baryon density in Sec. IV B. The baryon stopping is
larger in the Eckart frame because of the flow deceleration.
The effect of δ f correction at freeze-out is found to enhance
the baryon stopping caused by the baryon diffusion. Again
the net baryon distributions in the two frames become close to
each other once the off-equilibrium correction at freeze-out is
properly taken into account.

It is worth noting that the effect of the δ f correction is
larger in the Eckart frame for the charged particle distribution
while it is larger in the Landau frame for the net baryon distri-
bution (Fig. 5). The results suggest that an adequate treatment
of δ f corrections is important for qualitative understanding of
the flow observables.

V. DISCUSSION AND CONCLUSIONS

The baryon diffusive and the energy dissipative hydrody-
namics at the second-order in the Landau and Eckart frames
have been discussed. The system is stable at the second order
when the relaxation time is semipositive in the Landau frame
and it is larger than the minimum value in the Eckart frame.

FIG. 5. The ratios of the rapidity distributions with and without
δ f correction for (a) charged particles and (b) for net baryon number
in the Landau frame (dashed line) and in the Eckart frame (dotted
line).

The mode analyses implies that causality is also satisfied
in the long-wavelength limit. The transport coefficients of
the two frames at the linear and second orders are shown
to be related. The full second-order terms are found to be
necessary for a consistent matching. The results are generic
and independent of the individual derivation method of the
hydrodynamic equations of motion.

The frame dependence is tested in a numerical hydro-
dynamic model of relativistic heavy-ion collisions. The net
baryon number is chosen as the conserved charge of the
system, and the space-time evolutions of a QCD medium in
the Landau and the Eckart frames are compared to that of
the inviscid system. The space-time rapidity distribution of
the entropy density is not much affected by the dissipative
currents, while that of net baryon density is visibly modified.
The effects of the baryon diffusion and the energy dissipation
are found to be quantitatively similar for those thermodynamic
variables. The flow, on the other hand, is implied to be
different in the Landau and Eckart frames.

The charged particle distribution is estimated in both
frames. The result is found to be mostly unaffected by the
baryon diffusion for the chosen set of transport coefficients.
The distribution for the energy dissipation is also not modified
much owing to the cancellation of the effects of the flow
deceleration and the off-equilibrium correction at freeze-out.
A larger baryon stopping is observed in the net baryon dis-
tribution owing to the fugacity gradient for the Landau frame
and also to the flow deceleration in the Eckart frame. The δ f
correction is found to increase the baryon stopping effect of
baryon diffusion so that the difference between the net baryon
distributions of the two frames becomes small.
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The results indicate that the hydrodynamic estimation of
the observables may not depend much on the choice of the
local rest frame in relativistic nuclear collisions. It would be
important to investigate other observables that are directly
dependent on the flow, such as thermal photons with blueshift-
ing, to elucidate the issue of the Landau and Eckart frames in
hydrodynamic models.

It is worth noting that studied in the present numerical
analyses are the finite temperature and chemical potential re-
gions near the QCD transition explored by relativistic nuclear
collisions. One should be careful when determining a frame
in the zero-temperature or chemical potential limit. A careful
treatment of the equation of state and the transport coefficients
may also become important in such cases.

Future prospects include the application to the full (3 + 1)-
dimensional analyses of the beam energy scan data of flow-
related observables to extract relations between the initial
conditions and the transport coefficients in each frame to
investigate the validity of the choice of the local rest frame
more quantitatively.
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APPENDIX A: ENTROPY PRODUCTION IN LANDAU
AND ECKART FRAMES

The relation between the transport coefficients can be
determined by the identification of the entropy production of
the Landau and Eckart frames:

∂μsμ = −V μ
L V L

μ

κV
= −W μ

E W E
μ

κW
. (A1)

The entropy production in the Landau frame up to the next-to-
leading order is

∂μsμ = − κV ∇L
μ

μ
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(A2)

The entropy production in the Eckart frame can be ex-
pressed using the variables in the Landau frame as, up to the
same order,
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It should be noted that the thermodynamic forces of the energy
dissipation and the baryon diffusion are mutually convertible
using the hydrodynamic identity derived from the Gibbs-
Duhem relation and energy-momentum conservation as

(
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where

DL
e + P

n
= −e + P

n
T DL

1

T
+ T DL

μ

T
. (A5)

The correspondences between the transport coefficients in the
two frames can be obtained as Eqs. (12)–(18).

APPENDIX B: FREEZE-OUT WITH OFF-EQUILIBRIUM
DISTRIBUTION

The distribution function in relativistic systems with the
energy dissipation and the baryon diffusion is estimated using
the Grad’s moment method [70] based on Ref. [14,31]. The
distribution can be decomposed into the equilibrium and off-
equilibrium parts as

f i
0 = {exp[(pμuμ − biμB)/T ] ∓ 1}−1, (B1)

δ f i = − f i
0

(
1 ± f i

0

)(
bi p

μ
i εB

μ + pμ
i pν

i εμν

)
, (B2)

where bi is the quantum number for baryons. The upper
sign is for bosons and the lower one for fermions. If the
auxiliary vector and tensor εB

μ and εμν are expressed in terms
of macroscopic dissipative currents,

εL;B
μ = DV V L

μ , εL
μν = BV

(
V L

μ uL
ν + V L

ν uL
μ

)
(B3)

014901-8



LANDAU AND ECKART FRAMES FOR RELATIVISTIC … PHYSICAL REVIEW C 100, 014901 (2019)

in the Landau frame and

εE ;B
μ = DW W E

μ , εE
μν = BW

(
W E

μ uE
ν + W E

ν uE
μ

)
(B4)

in the Eckart frame. The coefficients can be determined
by the self-consistency condition that the off-equilibrium
distribution reproduces the respective dissipative current
within the framework of kinetic theory. They are

DW = −2JB
31J −1

2 , BW = JBB
21 J −1

2 (B5)

and

DV = 2J41J −1
2 , BV = −JB

31J −1
2 , (B6)

where

J2 = 2
(
JB

31JB
31 − J41JBB

21

)
. (B7)

Here the moments are defined as

JB···B
kl = 1

(2l + 1)!!

∑
i

∫
(bi · · · bi )d3 p

(2π )3Ei

×[
m2

i − (p · u)2]l
(p · u)k−2l f i

0

(
1 ± f i

0

)
. (B8)

The off-equilibrium corrections are essential for conserv-
ing the energy-momentum and the net baryon number during
the conversion from fluid to particles at freeze-out. The un-
derlying equations of state for the hydrodynamic model and
relativistic kinetic theory should be the same for successful
conversion. The hadron gas with all resonances below 2 GeV
in mass [71] is used for the numerical estimation of the
distortion coefficients to match the constructions of δ f and
the equation of state.
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