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Dissipation and tunneling in heavy-ion reactions near the Coulomb barrier
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Influence of couplings to collective excitations on fusion process has been well established experimentally
and theoretically. Much less is known about the influence of dissipation caused by transfer reactions, even less
due to noncollective excitations. In this paper, we report the results of the comparison of experimental barrier
distributions with the CC + RMT model calculations taking into account noncollective excitations, in which the
stationary coupled channels method is merged with a statistical approach based on the random matrix theory. In
spite of many assumptions and approximations, we find that the model works well for medium systems without
fitting parameters, describing the influence of dissipation on tunneling. On the other hand, for heavier systems
this mechanism does not appear to be sufficient. This points to the importance of other dissipation mechanisms
for these systems, such as nucleon transfer processes.
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I. INTRODUCTION

The basic mechanism of heavy-ion fusion reactions can
be described in terms of a central potential, which depends
on the distance between the centers-of-mass of the target
and projectile nuclei. At some distance the potential has its
maximum value, which is referred to as the Coulomb barrier
height. It arises from the competition between the long-range
repulsive Coulomb force and the short-ranged attractive nu-
clear force. A fusion event requires that the two interacting
nuclei overcome or penetrate through this barrier.

It has been known that the relative motion between the pro-
jectile and target nuclei couples to internal degrees of freedom
of the two interacting nuclei, frequently leading to generation
of a barrier distribution [1–3]. In other words, a single value
of the barrier height gets replaced by a barrier distribution
(BD), Dfus, resulting in a strong enhancement of fusion cross
sections at sub-barrier energies in comparison with the result
of a simple potential penetration model. In some cases, one
observes a prominent structure in a distribution, providing a
fingerprint of the couplings involved during fusion reactions
[1,4].

The barrier distribution, Dfus, can be determined both ex-
perimentally and theoretically studying the energy derivative
of barrier penetrability and may be obtained directly from
fusion excitation function measurements through the relation
[5]:

Dfus ≡ d2

dE2 (Eσfus), (1)

where σfus is the fusion cross section and E is the incident
energy in the center-of-mass (c.m.) frame.
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However, fusion measurements are often rather difficult
and require expensive instrumentation. Since the barrier trans-
mission and reflection are complementary to each other, there
exists an alternative method to measure the barrier height
distribution, namely registering the ions, which do not pen-
etrate the barrier, but are quasielastically reflected from the
barrier [6]. More specifically, one has to register at backward
angles the sum of elastic and inelastic scattering, transfers, and
break-up events, without necessity of identifying particular
reaction channels. It has been shown [6] that the cross section
for quasielastic scattering, σqe, measured at backward angles,
normalized to the cross section for Rutherford scattering,
σRuth, gives the barrier distribution via the following formula
[6–8]:

Dqe(E ) ≡ − d

dE

[
σqe

σRuth
(E )

]
. (2)

Theoretically, the barrier distribution can be calculated in
the framework of the coupled-channels (CC) method. The CC
calculations usually well account for experimental results, in
particular, enhancement of fusion cross sections below the
barrier. Still, the method has some open problems. The model
parameters should be fitted to experimental results or taken
from systematics, as they are difficult to calculate microscopi-
cally. Although this concerns in particular parameters of the
imaginary part of the potential, even the real part, usually
postulated to have a Woods-Saxon (W-S) form, differs in the
value of diffuseness parameter a for describing the fusion or
scattering data [9–11]. This results in that the predictive power
of the CC method is rather limited. Moreover, the role of
imaginary potential is to describe all effects connected with
the inelasticity of interaction taken together: fusion, inelastic
excitations (including DIC), transfers, breakups. This would
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make it difficult to theoretically identify different reaction
channel contributions.

Another problem has been noticed when we tried to use
the CC method to describe the barrier distribution obtained
in the series of our experiments with 20Ne interacting with
58,60,61Ni, 90,92Zr, 118,119,122Sn, and 208Pb [12–17]. Namely,
the conventional CC calculations, including collective ex-
citations of Ne and all employed targets, predict that, due
to the very strong 20Ne deformation, the barrier distribution
is determined essentially by properties of this projectile. In
particular, for every medium and heavy target the BD is
predicted to possess a structure, i.e., more than one peak.
Experimentally, however, the structure was observed only for
the 58,60Ni and 90Zr targets, while for the other target nuclei
it was smoothed out. It was in contrary to the expectations
that if one uses the same projectile, which dominates the
shape of barrier distribution, as in the case 20Ne +90,92Zr, one
would obtain very similar barrier distribution, Dqe. However,
the experiment showed a significant target dependence, which
pointed to some deficiency of the model.

Can smoothing of the BD structure be caused by coupling
to transfer channels? In general, this is still an open question
(for a discussion of various approaches see Ref. [18] and
references therein). However, when using the 20Ne beam, we
observed a striking difference between Dqe for the 90Zr and
that for the 92Zr targets, in spite of the fact the total light
particle transfer cross sections at backward angle for near
barrier energies turned out to be small and very similar [14].

The above argument against attributing to the transfer
channels the smoothing out the BD structure in the 20Ne +
92Zr system have been strongly supported by our measure-
ments of BD in the 20Ne + 58,60,61Ni systems. Namely, while
for the 58,60Ni targets the structure is visible, in the case of
61Ni it is smoothed out [12]. Concerning the experimental
transfer cross sections, they are not only much smaller than
in the 20Ne + 90Zr case (where the structure is visible), but
also similar among the three Ni isotopes, with exception of
the little bit larger 1n pick-up cross section for the 61Ni
target. According to many authors, e.g., [18–20], the transfer
influences fusion mainly via 1n and 2n channels, so should be
significant mainly when the ground-state-to-the-ground-state
Q value, Qgg, for these channels, are positive. However, the
Qgg in case of the all these Ni isotopes are negative. Moreover,
the 1n transfer channel in the 20Ne + 61Ni case is a pretty rare
case in which calculation of transfer impact within the CC
method in the fully quantal way was feasible and it turned
out [13] that it practically did not influence the shape of the
Dqe distribution. This points to the other reasons of difference
in shapes of barrier distributions, evidently connected with
target nuclei, and a natural guess is the influence of other weak
channels, namely of noncollective excitations.

This is the hypothesis we advanced in the paper [14]:
the differences in barrier distributions can originate from the
influence of weak but numerous couplings to noncollective
excitations, which are different in various targets. For exam-
ple, due to the fact that the 92Zr target has two neutrons outside
the N = 50 closed shell in 90Zr, for the same excitation energy
the level density of the former nucleus is about an order

of magnitude higher than that of the latter one. This should
result in the much stronger effect of coupling to noncollective
excitations in the 92Zr nucleus. Also in the case of Ni isotopes,
the level density of 61Ni is much higher than of the 58,60Ni
isotopes (see Fig. 1 in Ref. [12]).

Usually in CC calculations only strong reaction channels,
i.e., collective excitations, are taken into account. Weak reac-
tion channels, such as transfer and single-particle excitations,
except for the simplest cases are difficult or impossible to
implement in such calculations. This is not only because
of technical reasons, due to the multitude of s.p. levels,
and lack of knowledge of the necessary coupling strengths
for the sequential transitions involving excited states in the
intermediate and final channels, but also there are some more
fundamental problems. Namely, excitation of many noncol-
lective levels at the cost of partial dissipation of kinetic energy,
being a nonreversible process puts the problem in the field
of open quantum systems [21]. While in the conventional
CC method, irreversible energy dissipation and couplings to
internal degrees of freedom are treated to set in at some
point inside the barrier without affecting quantum coherence,
in fact this would be a gradually increasing process along
the approaching trajectory (see also Ref. [3]). A microscopic
description for such process may require something beyond
an imaginary potential [22].

In Refs. [23–25], the random matrix model was applied
in order to take into account noncollective excitations during
fusion reactions. This approach consists of merging a statis-
tical approach with quantum mechanics by extending the CC
method using a general random matrix theory (RMT), initially
developed by Weidenmüller and collaborators [26]. The RMT
is then used for obtaining the coupling form factor between
the ground state and noncollective levels in a target nucleus.
The method was successfully applied to the 20Ne + 90,92Zr
cases [25], where the authors demonstrated that the couplings
to many noncollective levels in the systems visibly smoothed
the peak structure in the barrier distribution for the 20Ne +
92Zr system while the barrier distribution for the 20Ne + 90Zr
system is altered only slightly.

In this paper, we apply this method systematically to
the 20Ne + 90,92Zr, 58,60,61Ni, 118Sn, 208Pb systems and dis-
cuss the role of dissipation in heavy-ion reactions around the
Coulomb barrier in a much wider mass region than in the
previous work. To this end, we make a few improvements in
the model, e.g., by using theoretical level densities instead of
measured ones, which may be limited by energy resolution of
experimental instrumentation.

II. CC + RMT MODEL

We perform coupled-channels calculations with noncollec-
tive excitations based on Ref. [25]. The standard CC equations
in the isocentrifugal approximation read [3]

[
− h̄2

2μ

d2

dr2
+ J (J + 1)h̄2

2μr2
+ Vrel(r) + εn − E

]
uJ

n(r)

+
∑

m

Vnm(r)uJ
m(r) = 0, (3)
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where εn is the excitation energy for the nth channel and J
is the total angular momentum, while μ and Vrel(r) are the
reduced mass and the optical potential for the relative motion,
respectively. Here, n includes both collective and noncollec-
tive states, together with the entrance channel (n = 0). For
the couplings to collective excitations the coupling matrix
elements are calculated according to the collective model
to all orders of the coupling constant [3,27]. On the other
hand, for the couplings to the noncollective excitations [that
is, the coupling matrix elements Vnm in Eq. (3)], we employ
the random matrix theory. According to it, one considers an
ensemble of coupling matrix elements and require that their
first moment vanishes, while the second moment is given by
the formula developed by Weidenmüller et al. (Eq. (2.8) in
Ref. [28]). That is, for the coupling between a noncollective
state with spin I and a noncollective state with spin I′, one has

V II ′
nn′ (r) = 0 (4)

and

V II ′
nn′ (r)V I ′′I ′′′

n′′n′′′ (r′) = {δnn′′δn′n′′′δII ′′δI ′I ′′′+δnn′′′δn′n′′δII ′′′δI ′I ′′ }

×
√

(2I + 1)(2I ′ + 1)
∑

λ

(
I λ I ′
0 0 0

)2

×αλ(n, n′; I, I ′; r, r′) (5)

with (for n′ = 0 and I ′ = 0)

αλ(n, 0; I, 0; r, r′) = wλ√
ρ(εn)

e− ε2
n

2�2 e− (r−r′ )2

2σ2 h(r)h(r′). (6)

Here, the bars denote an ensemble average, ρ is the level
density, and wλ, �, and σ are adjustable parameters. In
Ref. [25], the function h(r) is assumed to be the derivative
of Woods-Saxon potential. In solving the coupled-channels
equations, the coupling matrix elements are randomly gener-
ated according to Eqs. (4) and (5) for each value of ε and spin
of noncollective level.

In Ref. [25], the Weidenmüller model was applied to
excitations within the same nucleus, limited to the target
nucleus only (an approximation well justified for systems with
projectiles much lighter than the target nuclei). Moreover, in
our implementation only couplings from the ground state to
noncollective states were taken into account.

In this paper, we will improve the previous calculations of
Ref. [25] by taking into account the following points.

(i) The key factor in the RMT approach is the level
density ρ(E ), where E is the excitation energy. In
Ref. [25] the experimental noncollective level den-
sities have been used, while in the present paper it
will be replaced by theoretical ones. The reason is
that the experimental ρ(E ) data are limited by energy
resolution of instrumentation. With increasing energy
this unavoidably results in losing an ever larger part
of level density. Because of this, the level density
for 92Zr employed in Ref. [25] has a nonphysical
dropping (see Fig. 2 of Ref. [25]), instead of an
exponential-like increasing function.

FIG. 1. Theoretical single particle (s.p.) level densities of the rel-
evant nuclei calculated with the Skyrme-Hartree-Fock-Bogoliubov
(HFB) method, taken from Refs. [29,30].

For the theoretical level densities, we employ the
results of Skyrme-Hartree-Fock-Bogoliubov (HFB)
calculations by Goriely et al. [29,30], which are
shown in Fig. 1. Described there, the combinatorial
method consists in using single-particle (s.p.) HFB
method to construct incoherent particle-hole state
densities, then collective effects are included. Thus
multiparticle states are not taken into account.

As one can see in Fig. 1, the level density for the
20Ne nucleus is much smaller than that for the other
nuclei, so its noncollective excitations can be safely
disregarded.

Besides ρ(E ), the model also requires knowl-
edge of energies and spins of s.p. levels. Since at
low energies experimental resolution is sufficient for
not missing any energy levels, for excitations up to
2.0 MeV we take the experimental energy levels, but
above we generate pseudolevels by drawing them out
from the theoretical distributions ρ(E ). Concerning
the spins of s.p. levels, according to the HFB calcu-
lations for excitations relevant to our problem their
distributions are almost independent of E . On the
other hand, we have checked (by shuffling the s.p.
levels spin values measured for 92Zr) that the calcu-
lated fusion cross sections and barrier distributions
are practically independent of them, so we use the
s.p. spins taken from Ref. [31], as has been done in
Ref. [25].

(ii) With the level density functions so determined, it has
turned out that including 35–75 noncollective levels,
as was done in Ref. [25], is not sufficient. Depending
on the system, we get convergence at 150–200 s.p.
levels (up to ∼1000 channels). For 90Zr this corre-
sponds to the maximum excitation energy of 6.5 MeV,
while for 92Zr it is 4.2 MeV.

(iii) To compare calculations with the experiment, in dis-
tinction with Ref. [25], we do not use the data from a
single angle, but those measured at three angles (130◦,
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TABLE I. The parameters used in the CC+RMT calculations. For the projectile nucleus, 20Ne, we take into account only the rotational
excitations of the ground state band. The high energy 3− vibrational level in this nucleus was omitted since it causes only the adiabatic potential
renormalization [3].

20Ne 58Ni 60Ni 61Ni 90Zr 92Zr 118Sn 208Pb

E (2+) [MeV] (rot) 1.633 (vib) 1.454 (vib) 1.333 (vib) 0.964 (vib) 2.186 (vib) 0.93 (vib) 1.229 (vib) 4.07
β2 (β4) 0.46 (0.27) 0.1828 0.207 0.24 0.089 0.1027 0.114 0.055
The number of phonons/

rotational states 3 2 2 2 2 2 2 1
E (3−) vib. [MeV] 5.62 4.475 4.04 3.9 2.75 2.34 2.325 2.615
β3 0.39 0.19 0.21 0.20 0.211 0.17 0.114 0.11
The number of phonons 0 2 2 2 2 2 2 2
V [MeV] 57.2 57.2 57.2 55.0 62.3 64.1 64.7
rov [fm] 1.15 1.15 1.15 1.15 1.15 1.18 1.18
av [fm] 0.64 0.64 0.64 0.65 0.65 0.66 0.66

140◦, and 150◦in the laboratory system) after scaling
them according to the prescription [6–8].

Eeff = 2Ec.m. sin(θc.m./2)

1 + sin(θc.m./2)
. (7)

(iv) Because cyclotron beams having a non-negligible en-
ergy resolution were used in the experiments, to com-
pare theory with the experiment we fold theoretical
distributions with a Gaussian function of appropriate
widths, which influences the results significantly.

(v) Finally, in addition to calculations performed for the
20Ne + 90,92Zr systems, we carry them out also for the
58,60,61Ni, 118Sn, and 208Pb targets. Results of these
calculations are compared with our measurements
published in Refs. [12,15,17,32,33].

III. CALCULATION PARAMETERS

Concerning the parameters used in the calculations, we
avoided any fitting as much as possible and employed the
values taken from external sources. Due to this, we will be
able to check the predictive power of the model. For the real
part of the potentials we assumed the Woods-Saxon shape
with parameters V , r0v , and av given by the Akyuz-Winther
potential [34]. Concerning the imaginary part of the potential,
also of the W-S form, we always assumed that it is well
localized inside the barrier, using it only to ascertain internal
absorption after tunneling the barrier. In our application,
with this assumption, the precise values of W , r0w, and aw

(for which we have assumed 30 MeV, 0.9 fm, and 0.5 fm,
respectively) have a very weak influence on results. The radius
parameter for the couplings is set in all cases to be 1.20
fm. Concerning the deformation parameter of 92Zr according
to the Ref. [35] the values of βN

2 of 92Zr = 0.144 or 0.20
give similar fits to the experimental fusion barrier distribution
of the 16O + 92Zr system, while according to Ref. [36] the
βC

2 = 0.1027. To our opinion this large difference between βN
2

and βC
2 can be caused by fitting parameters of the CC model

not taking into account couplings to the noncollective levels,
which could be mocked up by enlarging the βN

2 . Because of
this we prefer to assume that βN

2 = βC
2 = 0.1027. The values

for the other parameter, taken from Refs. [36–38], are shown
in Table I.

A somewhat more complicated was the case of 61Ni.
Because this is an odd-A nucleus, the ground-state spin is not
0 and there is no single level with 2+ in an excited state, as
in the 58,60Ni isotopes. Instead, there is a multiplet, formed by
the coupling of the valence neutron in the 2p3/2 orbit with the
one-phonon state in 60Ni [39]. As we argued in Ref. [12], in
calculations the multiplet is replaced by a single effective state
given as a spin average of the multiplet states. In Ref. [12],
the energy was calculated well (0.9643 MeV), however, its β2

value was largely underestimated. The reason is that in such
a case the relation between an experimental B(E2) and β2

is different from that for a transition from the g.s. 0+ to the
2+ state in even-even nuclei. A general formula is given in
the Appendix and based on it we determined the β2 for the
effective collective state in 61Ni as 0.24(1).

The values for the global RMT parameters in Eq. (6),
� and σ , were roughly estimated already in the paper of
Weidenmüller et al., as 7 MeV and 4 fm, respectively [28], and
we took them without any changes as was done in Ref. [25]. In
fact, we have checked that results are surprisingly insensitive
to values of these parameters. The global coupling strength
parameter wλ was fitted in Ref. [25] as 200 MeV2/3. We
employed the same value for the systems in our study as well.
Since the calculations were computationally very demanding,
we have used parallely 50 CPUs of the PL-Grid Infrastructure.

IV. RESULTS

Let us now numerically solve the coupled-channels
equations with noncollective excitations and discuss the role
of nuclear dissipation. The influence of dissipation on the
excitation function of quasielastic backscattering for the
20Ne + 90,92Zr systems is shown in Fig. 2. In this figure,
we present a comparison of the results of the CC + RMT
calculations with the experimental data published in Ref. [14].
It is seen that, in agreement with expectations, the higher level
density of 92Zr influences stronger the shape of the excitation
function than in the case of the 90Zr target.

We would like to point out that the internucleus potential,
which we use, is a phenomenological one, and there is a
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FIG. 2. Excitation functions of quasielastic scattering for the
20Ne + 90,92Zr systems calculated for �c.m. = 148◦ (�lab = 140◦).
The experimental results (the dots), taken from Ref. [14], were
measured at �lab = 130◦, 140◦, and 150◦. The dot-dot-dashed curves
were calculated without taking into account any couplings, and
the dashed curves were calculated by taking into account only the
collective excitations of the projectile and target nuclei. The solid
lines show the results with the additional including of 200 s.p.
excitations.

freedom to change the parameters of the potential depending
on the model space employed in a calculation. That is, if we
include the noncollective excitations, in principle, we would
have to change the potential parameters in order to reproduce
the experimental data, e.g., changing the r0v parameter from
1.15–1.2 fm. However, we do not want to fit any parameters
to have some predictive possibilities. In general, the coupling
to states with large excitation energy leads to a shift of
fusion excitation function. This is referred to as a barrier
renormalization [3,40]. One important thing is that such a
change in the potential parameters mainly changes the height
of the Coulomb barrier (if we keep the diffuseness parameter
to be the same), which can be well mocked up by shifting
the excitation function. It is important that the change in the
real potential parameters does not influence much the shape
of barrier distribution, that is what interests us in this paper,
even though the absolute values of cross sections are altered.

FIG. 3. Experimental (points) and theoretical quasielastic bar-
rier distributions (BDs) for the 20Ne + 90,92Zr systems. The dashed
curves show results of the standard CC calculations taking into
account the collective excitations only. The solid curves show the
results of including in addition 200 s.p. excitations in the target
nuclei. The experimental energy resolution of 1.2 MeV was taken
into account by folding the calculated distributions with a Gaussian
function of this FWHM. Since we are more interested in the shapes
than the absolute positions of BD, the theoretical curves were nor-
malized to the experimental data in the peaks, and also shifted to
higher energy by 1.3 MeV – 1.6 MeV. The experimental data are
taken from Ref. [14].

To better see the evolution of barrier distributions after
adding two neutrons to 90Zr and after switching on dissipa-
tion, Fig. 3 plots the corresponding quasielastic barrier distri-
butions. The effect of noncollective excitations is qualitatively
the same as in the previous calculations presented in Ref. [25].

In Fig. 4 we show the corresponding comparison of BD for
the 20Ne + 58,60,61Ni systems. The influence of noncollective
excitations (dissipation) on barrier distributions is clearly
seen: the barrier distributions are evidently smoothed in com-
parison with CC expectations, moreover, without any fitting
the calculated BD agree with experimental results.

In contrast, there is no agreement for the 20Ne + 118Sn
and 20Ne + 208Pb systems, as shown in Figs. 5 and 6. The
possible reason can be that the width of the barrier distribution
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FIG. 4. Experimental (points) and theoretical barrier distribu-
tions for the 20Ne + 58,60,61Ni. The dashed lines show results of
the standard CC calculations taking into account couplings to the
collective excitations only, and the solid lines were obtained after
including also couplings to 200 noncollective ones. This corresponds
to excitation energy up to 6.2 MeV in 58,60Ni and 4.2 MeV in 61Ni.
The experimental resolution of 1.0 MeV (FWHM) was taken into
account. The β2 value of 0.24 for the 61Ni target (see text) was crit-
ically important to achieving agreement between the experimental
data and the calculations. To overlap the experimental and calculated
peaks we shifted the latter ones to higher energy by 0.1–1.0 MeV.
The experimental data originate from Ref. [12].

is approximately proportional to the product of the projectile
and target atomic numbers [1], which can be called Coulomb
zoom. Due to this for heavier targets the standard CC calcu-
lations predict the structure peaks so far away, that in spite
of the high level density of the 118Sn nucleus (see Fig. 1)
couplings to s.p. excitations are not sufficient to smooth out
the structure completely, even though the peak-to-valley ratio
in the calculated distribution is significantly decreased due
to dissipation. Notice that similar (no structure) experimental
distributions were observed for other Sn isotopes as well
[32,33].

Also in the case of 20Ne + 208Pb we observed the smooth
Gaussian-like barrier distribution (of both experimental Dqe

and Dfus) [15], although for this system, the doubly magic
target nucleus 208Pb has so low level density that according

FIG. 5. Experimental (points) and theoretical barrier distribu-
tions for the 20Ne + 118Sn system. The dashed line show results of
the standard CC calculations taking into account the couplings to the
collective levels only, and the solid line was obtained after including
also couplings to 150 s.p. ones, what corresponds to excitation
energies up to 3.7 MeV. The experimental resolution of 1.5 MeV
(FWHM) was taken into account. The calculated distributions were
normalized and shifted (by ∼0.5 MeV) to overlap the peaks. The
experimental data (for �c.m. = 135◦, 145◦, and 155◦) are taken from
Refs. [32,33].

to the calculations one would expect a prominent structure
in the barrier distribution (Fig. 6). In this situation the only
weak reaction channels that could be responsible for the BD
widening and complete smoothing of the structure could be
the transfer ones. In fact, according to our measurements [15]
the transfer cross sections in 20Ne + 118Sn and particularly
in 20Ne + 208Pb are much stronger than that for the lighter
targets.

The predicted effect of dissipation on fusion cross sections
for the 20Ne + 90,92Zr systems is shown in Figs. 7–10 for

FIG. 6. The same as Fig. 5, but for the 20Ne + 208Pb system.
150 s.p. levels corresponds to excitation energies up to 6.1 MeV.
The experimental resolution of 0.7 MeV (FWHM) was taken into
account. The experimental data taken from Ref. [15].The calculated
distributions were normalized and shifted (by ∼1.3 MeV) to overlap
the peaks.
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FIG. 7. Fusion excitation functions for the 20Ne + 90,92Zr sys-
tems calculated with several coupling schemes. The red dashed lines
were obtained without any couplings. The red solid lines were ob-
tained by taking into account couplings to the collective levels, while
the blue dash-dot lines show the results with including dissipation:
200 s.p. levels.

which the calculations were performed with the parameters
given in Table I. Since they are not compared to experimental
data, neither energy shifts nor resolution corrections were
applied.

It is seen that couplings to s.p. levels modify quasielastic
and fusion barrier distributions to different extent, which is
caused by different resolution of theoretical test functions (1)
and (2), however, their maxima are at the same energy. The
effect of coupling to collective and noncollective levels on the
fusion barrier penetrability is shown in Fig. 10.

The penetrability is proportional to the derivative of the
product of E and fusion cross section:

P ∼ d (Eσfus(E ))
dE

and is seen (Fig. 10) that, according to the CC + RMT model,
it is enhanced below the barrier (∼52 MeV) due to the
couplings to s.p. levels.

FIG. 8. Fusion barrier distributions Dfus of the 20Ne + 90,92Zr
systems. The black dotted lines show the distributions calculated
without any couplings taken into account, the blue dashed lines
were calculated with collective excitation included. The red dash-dot
and solid lines show results of including 150 and 200 s.p. levels,
correspondingly.

V. DISCUSSION

Even though the standard coupled-channels method ap-
pears to be successful for many heavy-ion fusion reactions
[3], one has to be aware that several assumptions and approx-
imations are used in this approach. Some of them are listed
below:

(i) Ambiguities and uncertainties of the optical model
parameters: a particularly difficult problem concern-
ing the imaginary part of the internuclear potential,
which is rather a measure of our ignorance and model
approximations;

(ii) Disregarding energy and angular momentum depen-
dences in an internuclear potential;

(iii) Uncertainty of coupling length parameters δ =
Rcouplβ, where Rcoupl is not necessarily the same as
the charge or the matter radii. Also, the nuclear de-
formation parameter βN

2 is not necessarily the same
as the electromagnetic deformation parameter βC

2 ,
which can be estimated (usually to the first order only,
though) from the electromagnetic transition strengths,

014616-7



E. PIASECKI et al. PHYSICAL REVIEW C 100, 014616 (2019)

FIG. 9. Comparison of Dfus and Dqe (calculated for 152 deg. in
c.m. frame) for the 20Ne + 90,92Zr systems calculated with couplings
to collective (dashed lines) and collective + 150 single-particle
excitation levels (solid lines) in target nuclei taken into account.
No energy shifts neither experimental resolution corrections were
applied.

B(Eλ). Even the sign of deformation is not always
known for deformed nuclei, and collective excitations

FIG. 10. Barrier penetrability for the 20Ne + 92Zr as a function
of the projectile energy in the center-of-mass frame for the same
conditions as in Fig. 7.

are not always clearly rotational or vibrational (see
also Refs. [41,42]);

(iv) Disregarding the axially asymmetric deformations
and deformation softness [43];

(v) Disregarding some degrees of freedom (such as trans-
fer channels and noncollective excitations), difficult
to take into account.

This incomplete list may be increased by some approxi-
mations of the particular codes, as, e.g., disregarding some
types of couplings or the isocentrifugal approximation, which
strongly speeds up the CC calculations and works well for
sub-barrier fusion and backward scattering, but is good for
some angular range only [7].

The list would provide some idea on the significance of fits
to limited sets of data, e.g., of the CC calculations for barrier
distributions for some particular projectile+target system. It
is true that not all factors influence observables in a similar
way. For instance, looking for a reason of smoothing out the
structure of Dqe in 20Ne + 208Pb we have found (see Fig. 4 in
Ref. [14]) that of all optical model parameters only changing
row leads to agreement between the experiment and theory.
However, it would be difficult to extract the physics behind
such a fit. Moreover, such an approach hardly gives us the
predictive power, giving us at best only a way of parametrizing
the data.

Because of this, in our studies, we have taken another
strategy choosing some special combinations of the projectile
and the target nuclei fulfilling the following criteria:

(i) The shape of barrier distribution (calculated in the
framework of the standard CC model) should be
structured and dominated by the projectile nucleus,
i.e., by its large deformation, so changing targets
should not change significantly the shape of the
barrier distribution calculated without taking into ac-
count dissipation.

(ii) The dissipation should concern mainly the target nu-
cleus (i.e., it should have much higher level density
than the projectile, which means that the target should
be significantly heavier than the projectile).

(iii) The transfer probability (mainly 1n and 2n transfer
channels) should be as low as possible, otherwise it
would highly complicate interpretation of results.

One should stress, however, that the CC + RMT model
itself also has its own approximations, among others:

(i) The Weidenmüller’s coupling form factor (Eq. (2.8)
in Ref. [28]) was further approximated in Ref. [25]. In
fact for single-particle excitations a more reasonable
form of h(r) would be the one that is proportional to
the overlap between two single-particle wave func-
tions (for an initial and a final states).

(ii) Noncollective excitations are taken into account only
in the target nuclei (this approximation is justified
when there is a large difference in s.p. level densities
between the projectile and the target nuclei).

(iii) Level densities are theoretical ones. Since we are not
aware of any multiparticle theoretical level densities,
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we used the tables giving densities of single-particle
levels. While they are normalized to experimental
values at ∼8 MeV, at critical excitation energy 3–
5 MeV their uncertainty is difficult to estimate, which
may reach even 50% [44]. We checked, however, that
this uncertainty does not significantly influence the
shape of barrier distributions.

(iv) The spin values of individual s.p. pseudolevels could
be drawn from the HFB tables [29,30], however,
we checked that the spin distributions, according to
the HFB calculations, are not strongly dependent on
excitation energy in the range considered in this paper.
Moreover, according to our tests, shuffling the spin
values practically does not influence barrier distribu-
tions.

(v) In the CC + RMT model only the couplings between
s.p. levels and its ground state in the target are taken
into account. In particular couplings among noncol-
lective states are disregarded. Of course such cou-
plings are of second order, but with the exponentially
rising level density this approximation may start to be
questionable, especially in heavier targets, with high
level density even at relatively low excitations.

(vi) The number of noncollective excitations is limited by
computer resources. For the systems discussed in this
paper, the results have already converged, however,
for targets with higher level densities one probably
has to increase the number of excited levels to be
included in the calculations. Perhaps this will require
other numerical methods and/or much more powerful
computing infrastructure.

Last, but certainly not least: it is assumed that the problem
can be described by the stationary Schrödinger equation,
while the time-dependent approach may be more convenient
for irreversible processes [21].

VI. CONCLUSIONS

Influence of dissipation on tunneling becomes a well-
established phenomenon, with ever stronger support both
from the experimental as well as the theoretical sides. In
our view, determination of physical parameters using the CC
codes without taking into account weakly coupled channels
may be in many cases, especially for heavy targets, disputable.

From the list shown in the previous section, it is seen that
there are a lot of places for improvement in the CC + RMT
model for treatment of dissipation effects on tunneling. Taking
into account assumptions and approximations used, as well as
uncertainties of parameters, quantitative agreement presented
in this paper between the CC+ RMT calculations and the ex-
perimental results for the 20Ne + 90,92Zr and 20Ne + 58,60,61Ni
systems can be considered surprisingly good. Because it was
obtained without fitting parameters for individual systems,
the predictive power of the model is promising and should
be checked with other systems. Measurements of barrier
distributions for 24Mg + 90,92Zr as well as transfer measure-
ments for these systems have already been performed and
preliminary results have been published [45,46]. Our prelimi-

nary calculations indicate that also in this case the influence
of couplings to noncollective levels is sufficient to explain
differences between the barrier distribution for the 24Mg +
90,92Zr systems. On the other hand, the CC + RMT model
apparently is not sufficient to explain the Gaussian-like shapes
of barrier distributions for the 20Ne + 118Sn and 20Ne + 208Pb,
so in these systems the transfer reactions probably dominate
modification of barrier distributions.
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APPENDIX: DEFORMATION PARAMETER FOR
ODD-MASS NUCLEI IN THE WEAK COUPLING MODEL

In this Appendix, we derive the relation between a defor-
mation parameter and probability of electromagnetic transi-
tions for odd-mass nuclei, for which the ground-state spin is
a half-integer. To this end, we assume that the structure of
an odd-mass nucleus is well described with a weak coupling
model, in which the valence nucleon is weakly coupled to the
even-even core nucleus. That is, the wave function of a state
with spin I and its z component M reads,

|IM〉 = [∣∣φIc

〉 ⊗ |ψ jl〉
](IM )

, (A1)

where φIc is the wave function for the core nucleus with
the spin Ic while ψ jl is the single-particle wave function for
the valence nucleon with the total and the orbital angular
momenta of j and l , respectively.

The electric transition probability from the state I to the
state I ′ is in general defined as

B(Eλ; I → I ′) = 1

2I + 1
|〈I||T̂Eλ||I ′〉|2, (A2)

where T̂Eλ is the operator for the Eλ transition. Assuming that
the operator T̂Eλ acts only on the core nucleus, we obtain

〈I||T̂Eλ||I ′〉 = 〈[
φIc ⊗ ψ jl

](I )∣∣|T̂Eλ|
∣∣[φI ′

c
⊗ ψ jl

](I ′ )〉
, (A3)

= (−)IC+ j+I ′+λ
√

(2I + 1)(2I ′ + 1)

×
{

Ic I j
I ′ I ′

c λ

}〈
φIc

∣∣|T̂Eλ|
∣∣φI ′

c

〉
, (A4)

where we have used Eq. (7.1.7) in Ref. [47].
For the transition from the one phonon states to the ground

state in an odd-mass nucleus, one has Ic = λ, I ′
c = 0, and I ′ =

j. Using{
λ I j
j 0 λ

}
= (−)I+λ+ j 1√

(2λ + 1)(2 j + 1)
, (A5)

and the relation between the B(Eλ) value and the deformation
parameter βλ [3,27], that is,

|〈IC = λ||T̂Eλ||I ′
C = 0〉|2 =

(
3e

4π
ZRλ

)2

β2
λ, (A6)
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where Z and R are the proton number and the radius of the
core nucleus, respectively, one then obtains

B(Eλ; I → g.s.) = 1

2λ + 1

(
3e

4π
ZRλ

)2

β2
λ. (A7)

From this relation, one finally obtains

βλ = 4π

3ZRλ

√
(2λ + 1)B(Eλ; I → g.s.)

e2
. (A8)

For the 61Ni nucleus, the ground state has spin parity of
Iπ = 3/2−. This is interpreted as the valence neutron in the
p3/2 state coupled to the ground state of 60Ni [39,48]. The one
quadrupole phonon states in 61Ni are the first 2+ state in 60Ni
coupled to the valence neutron in the p3/2 state. This leads to
the total spin of I = 1/2−, 3/2−, 5/2−, and 7/2−. We assume
that these are the I = 1/2− state at 656 keV, the 3/2− state
at 1100 keV, the 5/2− state at 909 keV, and the 7/2− state
at 1014 keV. The measured electric transition probabilities

TABLE II. The measured excitation energies and the E2 tran-
sition probabilities [48] for the one phonon states in 61Ni. The
last column shows the deformation parameters β2 estimated with
Eq. (A8), using the radius of R = 1.2 × 601/3 fm. Notice that the
B(E2) ↓ is related to the B(E2) ↑ as B(E2) ↓= (2Ig.s. + 1)B(E2) ↑
/(2I + 1).

Iπ Excitation B(E2) ↑ β2

energy (keV) (e2fm4)

1/2− 656 64(5) 0.169
5/2− 909 65(5) 0.0986
5/7− 1014 78(6) 0.0936
3/7− 1100 39(3) 0.0936

from the ground state to those states [48] as well as the
estimated deformation parameters are summarized in Table II.
The effective deformation parameter for the one phonon states
[12] is then obtained as βeff =

√∑
i β

2
2i = 0.236.
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