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An energy-dependent microscopic optical model potential (OP) is presented to analyze the elastic scattering
of protons with incident energies up to 1000 MeV/nucleon on 9Be nucleus. This microscopic optical model
is built from the single-folding optical model. The density- and isospin-dependent M3Y-Paris nucleon-nucleon
(NN) interaction is used for the real and spin-orbit parts and the NN-scattering amplitude of the high-energy
approximation for the imaginary one. The microscopic complex spin-orbit OP is taken within Breiva-Rook
approximation. The partial-wave expansion analysis with this optical model potential fails to reproduce the
differential cross-section data at energies larger than 100 MeV/nucleon, a good improvement is obtained by
including the surface contribution to the imaginary OP where most of the basic scattering observables are
reproduced well at the considered wide energy range. The volume integrals are found to be have interesting
energy dependencies and their parametrizations can be used to build an energy-dependent microscopic OP that
is used to reproduce the observables at a wide energy range. This study shows that the partial-wave expansion
analysis using the folding optical model can be used to analyze the scattering data at high energies as well as at
low energies.
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I. INTRODUCTION

In the optical model, the interaction between an incident
proton and a nucleus can be represented by a complex mean-
field potential, which is used to analyze and reproduce the
experimental scattering observables by numerical solving of
the Schrödinger equation. The optical model potential (OP)
is widely used in direct-reaction theory calculations, which
give us much important information about energy spectrum,
nuclear shape, and nuclear structure.

The OP has been developed in phenomenological and mi-
croscopic approaches. Suitable analytical forms as a Gaussian
or Woods-Saxon forms are used in the phenomenological OP,
and their parameters are determined by adjustment to the best
fit with available experimental data. However, it does not
include nuclear structure information. In addition, it cannot
give unique values of these parameters and many optical
potentials can describe equally well a given set of elastic-
scattering data [1,2]. In the microscopic approach such as the
Glauber or folding models, the OP is determined from detailed
nuclear structure and nucleon-nucleon (NN) effective interac-
tion. Generally, the folding model is considered a successful
microscopic model to study the cross-section data of the
elastic scattering at low incident energies whereas the Glauber
model is suitable for high energies scattering. Although the
folding OP depends on the NN interaction and the nuclear
matter density but it needs to multiply by a renormalization
factor to fit the scattering data. These factors are different for
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different scattered nuclei and different energies. Early studies,
such as Refs. [3–6], refer the reduction of the folding OP to the
possible dynamic polarization contributions. Furthermore, it
may indicate to the opening of inelastic channels as the energy
increases [2].

The energy dependence of the nucleon OP has been stud-
ied over the years. The energy parametrizations of the OPs
are very important in the nuclear reactions in order to an-
alyze and predict the scattering observables. Several global
phenomenological OPs for nucleon-nucleus scattering were
performed for intermediate and heavy mass nuclei at energies
up to 200 MeV/nucleon, see, for example, Refs. [7–13]. They
are useful to predict the nucleon OP when elastic scattering
data are not available or cannot be measured as in the case
for the unstable, dripline nuclei. For heavy nuclei and low
bombarding energies, Refs. [7–13] have shown that the optical
model gives a satisfactory description of the elastic scattering
of nucleons. The model has not enjoyed equal success in its
application to light nuclei. In scattering of light nuclei as A <

24, the phenomenological OPs tend to produce parameters
that are different from the standard global values, they are
physically dubious and cannot give unique values of their pa-
rameters [1,8] and the descriptions of the angular distributions
are generally poorer [14]. Light nuclei have the property of
low level densities, and hence resonance structure is often
present [14,15]. In addition, even at fairly high excitations the
density of compound nucleus levels is low for light nuclei and
hence the nuclear-structure effects, which the optical model
cannot describe, are not sufficiently averaged out. There are
so few nucleons in light nuclei that it may not be appropriate
to replace the nucleus with a potential having a simple radial
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form such as a Woods-Saxon form [15]. Instead, it is useful
to assumed that the nucleus can be regarded as a continuous
distribution of nuclear matter to the incident particle.

Recently, the proton elastic scattering of light nuclei (he-
lium, lithium, and beryllium isotopes) was analyzed over an
energy range from few MeVs/nucleon to 200 MeV/nucleon
[16–21]. The angular distributions for elastic-scattering cross
sections and reaction cross sections were calculated using
the optical model analysis with the partial-wave expansion
method. The OP parts were constructed only from the single-
folded potentials and their derivatives. Within the folding
model, the M3Y NN interaction was used for the real part
of the OP and the NN-scattering amplitude of the high-
energy approximation was used for the imaginary part. The
derivatives of the real and volume imaginary parts of the OP
were added as spin-orbit and surface-imaginary OPs, respec-
tively. This microscopic OP succeeds to fit well the avail-
able data until 100 MeV/nucleon. Above this energy value,
some minima appear in the calculated angular distribution of
the elastic-scattering cross sections. Instead of using partial-
wave expansion method, the eikonal approximation that is
based on the Glauber theory was used to analyze the scattering
at energies larger than 100 MeV/nucleon, see Ref. [19]. The
volume integrals of the OP parts were shown to be have
energy and mass dependencies, and they were parameterized
in empirical formulas. From these parametrizations, a local
energy-dependent (E -dependent) OP can be obtained with
parameterized renormalization factors as a functions of energy
[18,19,21]. It succussed to reproduce the data at energies up
to 100 MeV/nucleon.

In the present work, the study is extended to include a
wider energy range up to 1000 MeV/nucleon for the p + 9Be
elastic scattering. The cross sections and analyzing powers
are calculated by a numerical solving of the Schrödinger
equation by means of the optical model with the partial-
wave expansion method. The real central OP is calculated
using the single-folding OP with the density-, and isospin-
dependent M3Y-Paris NN interaction [22]. The contributions
from isoscalar and isovector parts of the folded OP are
taken into account. Furthermore, the complex spin-orbit OP is
calculated microscopically within a local approximation that
suggested by Brieva and Rook [23] where the radial strength
of the spin-orbit components (with the total isospin T = 0
and T = 1) of the M3Y-Paris interactions is folded with the
proton and neutron densities. In addition, the imaginary part
of the microscopic proton OP is obtained with folding the
target densities with the NN-scattering amplitude that given
by the so-called high-energy approximation (HEA) model
[24–26]. The surface contribution to the imaginary part is
included. The most important goal of the present work is to
determine the correct energy dependencies of the OP parts
and then to present a local energy-dependent microscopic OP
with parameterized depths as functions of energy. Another
aim is to test the ability of the folding optical model with
the partial-wave expansion method to reproduce the scattering
data at energies up to 1000 MeV/nucleon. The theoretical
approaches are given in Sec. II, while the results of the
calculations are presented in Sec. III. A summary and con-
clusions are given in Sec. IV.

II. THEORETICAL CALCULATION

A. Real OP within the single-folding model

The central proton-nucleus potential within the single-
folding approach can be represented in terms of the direct (VD)
and exchange (VEX) parts with isoscalar (VIS) and isovector
(VIV) contributions as [22,27]

VF (r) = V D(r) + V EX(r)

= V D
IS (r) + V D

IV(r) + V EX
IS (r) + V EX

IV (r). (1)

V D
IS(IV)(r) =

∫
[ρp(r′) ± ρn(r′)]vD

00(01)(ρ, s)d3r′. (2)

V EX
IS(IV)(r) =

∫
[ρp(r, r′) ± ρn(r, r′)]vEX

00(01)(ρ, s)

× j0(k(E , r)s)d3r′. (3)

where the +ve sign is related to the isoscalar and −ve sign
to the isovector. The isovector part of the folding OP is also
known as symmetry potential. s = |r′ − r| is the distance
between the proton and the nucleon in the target and r is
the vector joining the center-of-mass of the incident proton
and the target. ρp(n)(r, r′) is the one-body density matrix for
the protons(neutrons) in the target nucleus with ρp(n)(r) ≡
ρp(n)(r, r). k(E , r) is the local momentum of the relative
motion determined as [28]

k2(E , r) = 2μ

h̄2 [Ec.m. − VF (r) − VC (r)], (4)

where μ is the nucleon reduced mass, Ec.m. is the center-
of-mass energy, VF (r) and VC (r) are the total nuclear and
Coulomb potentials, respectively.

In this work, the M3Y effective NN interaction that based
on the G-matrix calculations is used. It has two different kinds,
namely the Paris [29] and the Reid NN interactions [30]. The
radial strengths of isoscalar and isovector components for the
direct and exchange parts, v

D(EX)
00 and v

D(EX)
01 , are defined in

terms of three Yukawa [29,30] as

v
D(EX)
00(01) (s) =

3∑
ν=1

Y D(EX)
00(01) (ν)

exp(−Rνs)

Rνs
. (5)

In the present work, the M3Y-Paris interaction is used and
their explicit Yukawa strengths are tabulated in Table I.

To reproduce the basic nuclear matter properties as well as
the density and energy dependencies of the nucleon OP, the
NN interaction considers the density dependencies as [31]

vD(EX)(ρ, s) = F (ρ)vD(EX)(s). (6)

In the present study, we use the explicit density dependencies
that were introduced in Ref. [4,22] for the CDM3Y6 effective
Paris potential as

F (ρ) = C[1 + αe−βρ(r) − γ ρ(r)], (7)

where C = 0.2658, α = 3.8033, β = 1.4099 fm3, and
γ = 4.0 fm3.

In this work, we use the microscopic density distributions
for 9Be that are obtained from the Green’s function Monte
Carlo (GFMC) method using a realistic Hamiltonian contain-
ing the Argonne v18 (AV18) two-nucleon potential alone or
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TABLE I. Yukawa strengths of the direct and exchange components of the M3Y-Paris interaction [27,29].

ν Rν Y D
00(ν ) Y D

01(ν ) Y EX
00 (ν ) Y EX

01 (ν ) Y (0)
LS (ν ) Y (1)

LS (ν )
(fm−1) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

1 4.0 11061.625 313.625 −1524.25 −4118.0 −5101.0 −1897.0
2 2.5 −2537.5 223.5 −518.75 1054.75 −337.0 −632.0
3 0.7072 0.0 0.0 −7.8474 2.6157 0.0 0.0

with Illinois model (IL12) [32]. Khoa et al. [22,27,31] suggest
that the original M3Y NN interaction must be multiplied by
an energy-dependent factor g(E ) in order to account for the
empirical energy dependence of the nucleon optical potential.
They found that the empirical phenomenological formula
g(E ) � 1 − 0.003E for M3Y-Paris NN interaction is the most
adequate in reproducing the data of nucleus-nucleus scattering
at energies up to 100 MeV/nucleon [22,27,31] where E is
the bombarding energy per nucleon. By using the formula
g(E ) � 1 − 0.003E , the depth of real potential within the
folding model is changing sign around 333 MeV/nucleon.
The question here is about the possibility to used this formula
for energies up to 1 GeV/nucleon. Then, we put g(E ) = 1 in
order to avoid the changing sign of the folding potential and to
get the net energy dependence of the optical potentials those
fit the scattering data.

For the density matrix, the realistic local approximation
proposed in Refs. [28,33] is used

ρq(r, r + s) � ρq

(
r + s

2

)
ĵ1

(
kq

F

(∣∣∣r + s
2

∣∣∣)s
)

≡ fq

(
r + s

2

)
, q ≡ p, n, (8)

where ĵ1(x) = 3 j1(x)/x = 3(sin x − x cos x)/x3. The local
Fermi momentum kF (r) is defined as [33]

kq
F (r) =

{
5

3ρq(r)

[
τq(r) − 1

4
∇2ρq(r)

]}1/2

. (9)

The kinetic energy density τ (r) can be approximated by the
extended Thomas-Fermi approximation [26,34,35] as

τ (ρ)

2
� τq(ρq) = 3

5
(3π2)2/3[ρq(r)]5/3

+CS|∇ρq(r)|2
ρq(r)

+ ∇2ρq(r)

3
, (10)

valid for each kind of particles q = n, p. CS is the strength
of the so-called Weizsäcker term representing the surface
contribution to τ . For a finite fermionic system, the commonly
accepted value of the Weizsäcker term is CS = 1/36 [34].

The local Fermi momentum kF (r) then can be written as

kq
F (r) =

{
[3π2ρq(r)]2/3 + 5CS|∇ρq(r)|2

3ρ2
q (r)

+ 5∇2ρq(r)

36ρq(r)

}1/2

.

(11)
Then, the direct and exchange parts of the proton-nucleus

potential [Eqs. (2) and (3)] can be obtained as

V D
IS(IV)(r) =

∫
[ρp(r′) ± ρn(r′)]F

(
ρ(r′)

)
vD

00(01)(s)d3s, (12)

and

V EX
IS(IV)(r) =

∫ [
fp

(
r + s

2

)
± fn

(
r + s

2

)]
F

[
ρ

(
r + s

2

)]

× vEX
00(01)(s) j0[k(E , r)s]d3s. (13)

The spherical potential is radial for the elastic scatter-
ing. Therefore, the direct part of the central elastic potential
[Eq. (12)] can be obtained in the following form:

V D
IS(IV)(r) =

2π2

∫ ∞

0
AIS(IV)(q)vD

00(01)(q) j0(qr)q2dq, (14)

where vD
00(01)(q) is the Fourier transform of the direct inter-

action vD
00(01)(s) and AIS(IV)(q) is the Fourier transform of the

density profile. They are given by

vD
00(01)(q) = 4π

∫ ∞

0
vD

00(01)(r) j0(qr)r2dr, (15)

AIS(IV)(q) = 4π

∫ ∞

0
[ρp(r) ± ρn(r)]F [ρ(r)] j0(qr)r2dr.

(16)

Similarly, the exchange part of the elastic potential
[Eq. (13)] can be evaluated as

V EX
IS(IV)(r) = 2π

∫ ∞

0
GIS(IV)(r, s)vEX

00(01)(s) j0[k(E , r)s]s2ds,

(17)

where

GIS(IV)(r, s) =
∫ 1

−1
[ fp(y(x), s) ± fn(y(x), s)]F [ρ(y(x)]dx,

(18)

where fq(y, s) = ρq(y) ĵ1[kq
F (y)s] with q ≡ p, n and y(x) =√

r2 + s2

4 + rsx. V EX(r) includes k(E , r) which is expressed

by VF = V D + V EX as in Eq. (4). So, the self-consistent (lo-
cal) exchange potential is calculated by an iterative procedure
[35].

B. Spin-orbit potential using Brieva and Rook approximation

The spin-orbit part of the nucleon-nucleus optical potential
VLS(r)(L.σ ) can be evaluated microscopically within the fold-
ing model using the two-body spin-orbit NN interaction and
the nuclear density of the target. The L.σ = 2L.S product,
which can be given as

L.σ ≡ 1
2 [(ri − r j ) × (pi − p j )].(σi + σ j ) (19)
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In the present work, the local approximation that is developed
by Brieva and Rook [23] is used to evaluate VLS(r) using
the spin-orbit component of the CDM3Y6 interaction. For
simplicity, the spin-orbit part of the CDM3Y6 interaction is
assumed to has the same density dependence as the central
part (6)

vLS(ρ, s) = F (ρ)vLS(s). (20)

The radial strength of the spin-orbit components (with the
total isospin T = 0 and T = 1) of the M3Y-Paris interaction
[29] can also be obtained in terms of Yukawa strengths

v
(T )
LS (s) =

3∑
ν=1

Y (T )
LS (ν)

exp(−Rνs)

Rνs
, (21)

with the explicit Yukawa strengths tabulated in Table I.
Then, VLS(r) using the spin-orbit component of the

CDM3Y6 interaction with including the isospin dependence
(20), (21) can be given as

VLS(r) = −F [ρ(r)]

3

[

p(E , r)

1

r

dρ p(r)

dr

+
n(E , r)
1

r

dρn(r)

dr

]
, (22)


p(E , r) =
∫ ∞

0
v

(1)
LS (s)[1 + ĵ1(k(E , r)s)]s4ds,


n(E , r) = 1

2

∫ ∞

0

{
v

(1)
LS (s)[1 + ĵ1(k(E , r)s)]

+ v
(0)
LS (s)[1 − ĵ1(k(E , r)s)]

}
s4ds. (23)

C. Imaginary optical potential within the
high-energy approximation

The imaginary part of the OP can be calculated within
the HEA model that was derived in Ref. [24,25] on the
basis of the eikonal phase inherent in the optical limit of
the Glauber theory [36]. It constructed by folding the NN-
scattering amplitude with the density of the scattered nucleus.
The hybrid potential using the HEA imaginary potential in-
stantaneously with the real folding potential VF is used to
study the proton elastic scattering of light nuclei at energies
below 100 MeV/nucleon, recently [16–19,21,26,37–39]. It
succeeds to fit the cross-section data at these energies. Within
the HEA model, the imaginary OP is expressed as [24–26]

WH (r) = − h̄v

(2π )2
σ̄NN

∫ ∞

0
dqq2 j0(qr)ρ(q) fNN (q), (24)

where v is the velocity of the nucleon-nucleus relative mo-
tion, ρ(q) is the form factor corresponding to the pointlike
nucleon density distribution of the nucleus, and fNN (q) is the

amplitude of the NN scattering, which can be specified in the
form of a Gaussian function [24,40],

fNN (q) = exp
(−q2r2

0

/
4
)
, (25)

where r2
0 = 0.439 fm2 [40] is the range parameter. σ̄NN is

the average over isospin total NN cross section. It has been
parameterized in Refs. [40,41] as a function of energy,

σ̄NN = NPNT σnn + ZPZT σpp + (ZPNT + NPZT )σnp

APAT
. (26)

The pp and nn cross sections are given in (fm2) by

σpp = σnn = (1.373 − 1.504β−1 + 0.876β−2 + 6.867β2),

(27)

where

β = υ

c
=

√
1 −

(
m

EN + m

)2

(28)

is the ratio of the relative to the light velocities, EN =
E/A is the incident energy per nucleon (in MeV), and m =
931.494 MeV. For the np cross section, σnp is expressed in
two forms as:

σnp = −7.067 − 1.818β−1 + 2.526β−2 + 11.35β. (29)

for the energy per nucleon EN > 10 MeV.
For EN < 10 MeV, the following expression that is given

by Enge [41,42] is used:

σnp = 273

(1 − 0.0553EN )2 + 0.35EN

+ 1763

(1 + 0.334EN )2 + 6.8EN
. (30)

D. Total optical potential

The present scattering problem considers a proton with an
energy E incident upon a target with a mass number A and
scattered by a central spherical optical potential UOP(r) which
can be generally written as

UOP(r) = V (r) + iW (r) + USO(r) + VC (r), (31)

where V , W , and USO are the central real, imaginary, and
spin-orbit parts of the OP, respectively. VC (r) is the Coulomb
potential of a uniformly charged sphere of radius 1.2A1/3.

In the elastic scattering of light nuclei the transfer and
breakup processes also take place. Therefore, it is important
to include the virtual nonelastic contributions. It is known
that at low incident energy an underestimation of angular
distributions at backward angles indicates a surface absorption
that is too strong [8]. So, the surface imaginary term is
included in most of the global phenomenological OPs, it is
added usually as a derivative of the Wood-Saxon function
[7–9,11–13]. So, the imaginary OP consists of volume and
surface absorption components [W (r) = Wv (r) + Ws(r)]. The
volume imaginary potential is often arranged to simulate the
ingoing-wave boundary condition to model loss of flux due
to fusion. The surface imaginary accounts for loss of flux
due to non-elastic direct reaction channels [43]. For using the
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microscopic folding-model potential, inclusion of a surface
imaginary term to the OP leads to a better agreement with the
experimental data as shown in our previous papers [16–21],
as well as in Refs. [37,39,44] for proton-nucleus scattering of
light nuclei. It is known from the theory of inelastic scattering
that excitations of nuclear collective states can be under-
stood by introducing transition potentials in the form of the
derivative of an elastic scattering potential, this contribution
can be considered to be the so-called dynamical polarization
potential, which allows one to simulate the surface effects and
increase the absorption in the surface region and thus, one
adds a derivative of the microscopic potential as a surface
potential as in Refs. [39,44–46] for nucleon-nucleus OP or
Refs. [47,48] for nucleus-nucleus OP.

Most analyses of low-energy scattering and most model
calculations are consistent with a spin-orbit potential that is
essentially real at E � 65 MeV [12,23]. At energies from
20–200 MeV, from the CH89 analysis of the considered
extensive database, there is no evidence for an imaginary
component of the spin-orbit potential in a global nucleon-
nucleus optical-model potential [12]. A more usual result is
that there is no evidence for any imaginary spin-orbit term but
many studies at the highest energies found that the fitting of
the elastic scattering with an optical-model potential requires
a small positive imaginary spin-orbit potential that may be
a result of cancelations between components arising from
different physical processes [49].

The complex spin-orbit term is inserted to many global
phenomenological OPs that are based on the complex proton
and neutron spin-orbit potentials vary similarly in depths and
radial shapes to fit the nucleon-nucleus scattering data at
energies from 1–200 MeV [7,8,50]. In Ref. [51] the imaginary
spin-orbit term slightly improves the scattering data of p +
9Be at energies from 100–220 MeV/nucleon. In addition, a
simple energy-dependent optical potential of proton scattering
from light nuclei in the energy range 50–160 MeV uses a
complex spin-orbit potential to fit the data [52,53]. Also, the
imaginary spin-orbit potential is included to fit the data of pro-
ton elastic scattering at energies from 200–500 MeV/nucleon
[54]. Bauge et al. [50] use two microscopic spin-orbit po-
tentials based on the derivative of the nuclear matter density
that given by Scheerbaum [55], they found that performing
optical model calculations up to 200 MeV requires a complex
spin-orbit interaction.

In the present calculations, the surface and imaginary spin-
orbit contributions to the optical potential are included and the
total microscopic optical potential can be written as

UOP(r) = NRVF (r) + i

[
NIWH (r) − NISr

d

dr
WH (r)

]

+ (
NR

SO + iNI
SO

)
VLS(r)L.σ + VC (r), (32)

where VF [Eq. (1)] is the real OP, which is calculated with the
single-folding model using the density- and isospin-dependent
M3Y-Paris NN interaction, WH [Eq. (24)] is the volume imag-
inary potential using the high-energy approximation model,
and VLS(r)(L.σ ) [Eq. (22)] is the spin-orbit OP which is
constructed microscopically by the local approximation that
suggested by Brieva and Rook [23]. As usually used, the

derivative of the volume imaginary potential is added as
a surface imaginary potential and the imaginary spin-orbit
potential is taken similar to the real one.

Most of studies for elastic scattering of light nuclei in-
troduce renormalization factors to the elastic scattering po-
tentials to account all possible virtual couplings between the
ground and higher excited states and remove flux from the
elastic channel [2,3]. Also, the real and imaginary spin-orbit
potentials that are based on Brieva and Rook approximations
need large scaling to fit the nucleon scattering data of light
nuclei than those of heavy nuclei, see, for example, Ref. [56].
Therefore, the renormalization factors, NR, NI , NIS, NR

SO, and
NI

SO are introduced to the real, volume imaginary, surface
imaginary, and spin-orbit microscopic potentials, respectively.
They are chosen according to the best-fitting procedure. They
correspond to the strengths of the Woods-Saxon phenomeno-
logical OP. One of the aims of this work is to obtain the energy
dependencies of these renormalization factors and then the
energy dependence of the OP.

E. Volume integrals

Generally, the volume integrals are relatively invariant
functions of the OP parameters and give insight in the be-
havior of the optical potentials as a function of mass and
energy [8]. In addition, they have been used to help in
selecting among possible potential families at high energies
[2]. Furthermore, the best-fit OPs with different densities or
interactions can be having different shapes or renormalization
factors, but they must have similar systematic volume inte-
grals for the same reaction [16,17].

Generally, the volume integral per nucleon of the spherical
potential, U (r), can be given by

J (U ) = 1

A

∫
U (r)d3r = 4π

A

∫
U (r)r2dr. (33)

Then, the volume integrals of the real, volume imaginary,
spin imaginary, total imaginary, real spin-orbit, and imaginary
spin-orbit parts of the OP are denoted correspondingly by JR,
JIV, JIS, JI , JR

SO, and JI
SO. They are defined as

JR = 4π

A

∫
[NRVF (r)]r2dr = NRJ (VF ), (34)

JIV = 4π

A

∫
[NIWH (r)]r2dr = NIVJ (WH ), (35)

JIS = 4π

A

∫ [
−NISr

d

dr
WH (r)

]
r2dr = NISJ[−rdWH (r)/dr],

(36)

JI = JIV + JIS, (37)

and

JR
SO = 4π

A

∫ [
NR

SOVLS(r)
]
r2dr = NR

SOJ (VLS), (38)

JI
SO = 4π

A

∫ [
NR

SOVLS(r)
]
r2dr = NI

SOJ (VLS). (39)
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TABLE II. dσ/d� data for p + 9Be elastic scattering.

Data Incident energy (in MeV/nucleon) [Reference]

dσ/d� 3 [57], 6.0, 10.0 [58], 13 [59], 17, 21, 25 [60], 30.3 [59], 35.2 [61], 46 [62], 49.4 [63], 54.7, 74.7 [51], 100.6 [64],
135 [65], 160 [66], 179.9 [67], 201.4 [68], 220 [69], 317.4 [70], and 497.5 [71], and 1000 [72]

Ay(θ ) 7 [73], 8.5 [74], 11.4 [75], 12 [73], 17.8 [76], 30.3 [77], 42 [78], 49.75 [79], 74.7 [51], 100.6 [64],
141.5 [80], 181 [81], 201.4 [68], 317 [70,82], and 1000 [72]

The volume integrals of the original OPs (without renormal-
izations) are calculated numerically by using of Eq. (33) at
each energy and then they are parameterized over the whole
energy range as

J (VF ) ≈ 555.5 exp (−0.00392E )

J (WH ) ≈ −212.25 + 0.5239E + 4056.3√
E

J (−rdWH (r)/dr) ≈ 3J (WH )

J (VLS) ≈ 26.8 + 8.22 exp (−0.00934E ). (40)

Here J[rdWH (r)/dr] is three times of J[WH (r)] can be ob-
tained analytically from the known formula of integration by
parts,

∫
f dg = f g − ∫

gdf .

F. Method of calculations

In this work, the experimental cross-section and analyzing-
power data for p + 9Be elastic scattering at an energy range
from 3–1000 MeV/nucleon are considered. They are listed
with their references in Table II. In addition, the experimental
reaction and total cross sections can be found in Refs. [83,84].

The microscopic optical model potential [Eq. (32)] is used
in the calculations of the cross sections. These cross-section
data are calculated by numerical solving of the Schrödinger
equation by means of the optical model code OPTIM [85].

The best-fit renormalization factors of the OP are deter-
mined by a fitting procedure of the scattering observables,
which is carried out to achieve minimum χ2. Furthermore,
they must be smooth regarding energy and are chosen accord-
ing to the standard behaviors of the corresponding volume
integrals. The following definition of χ2 is used:

χ2 = 1

N

N∑
k=1

[
σth(θk ) − σex(θk )

�σex(θk )

]2

, (41)

where σth(θk ) and σex(θk ) are the theoretical and experimental
cross sections at the angle θk , respectively. �σex(θk ) is the
experimental error and N is the number of data points. The
errors of the experimental data are not provided for most of
the considered experimental data, so these errors can be taken
as 10% of the corresponding experimental data. In addition,
the visual fit must be noted by eye because the minimum
χ2 does not necessarily mean a better visual result in some
cases [8]

After the best-fitting procedure, the volume integrals of
the best-fit OP parts [Eqs. (34)–(36), (38), and (39)] are
parameterized as functions of energies. Then, from the energy
parametrizations of the volume integrals, the parameterized N

factors of the OP parts can be determined as

NR(E ) = JR(E )

J (VF )

NIV(E ) = JIV(E )

J (WH )

NIS(E ) = JIS(E )

J (−rdWH (r)/dr)

NR
SO(E ) = JR

SO(E )

J (VLS)

NI
SO(E ) = JI

SO(E )

J (VLS)
. (42)

So, the optical potential [Eq. (32)] can be rewritten as

UOP(r, E ) = NR(E )VF (r)

+ i

[
NI (E )WH (r) − NIS(E )r

d

dr
WH (r)

]

+ [
NR

SO(E ) + iNI
SO(E )

]
VLS(r)L.σ +VC (r), (43)

The main goal of this study is the determination of the energy
dependence of N factors those determine the true energy
dependence of optical potentials.

III. RESULTS AND DISCUSSION

A. Cross sections and analyzing powers

In our previous work, the proton elastic scattering of 9Be
nucleus was analyzed over energies up to 200 MeV/nucleon
using the optical model analysis with the partial-wave ex-
pansion method. In the calculation, the hybrid OP [Eq. (32)]
except that the real spin-orbit term was taken as a derivative
of the real folding OP [18,19,21] and the imaginary spin-orbit
potential was not included. The calculation succeeds to fit
well the available data until 100 MeV/nucleon. Above this
energy value, some minima appear in the calculated angular
distribution of the elastic-scattering cross sections.

In the present work, the scattering data of p + 9Be elastic
scattering are calculated using the microscopic OP [Eq. (32)]
with complex spin-orbit OP that based on the Brieva-Rook
approximation. Figure 1 presents the calculated differential
cross sections of p + 9Be elastic scattering at energies up
to 200 MeV/nucleon in comparison with the two types of
the spin-orbit OP. The results with the OP with Brieva-Rook
complex spin-orbit potential, which represents this work, are
presented in solid lines, and those using the real spin-orbit OP
as a derivative of the real OP, which represents our previous
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FIG. 1. Differential cross sections and analyzing powers of p + 9Be elastic scattering in comparison with the experimental data. The
symbols represent the experimental data at different energies in MeV/nucleon and the lines represent the results of the optical model calculation
with the partial-wave expansion method. The solid lines represent the results of calculations using the Brieva-Rook spin-orbit OP. The dashed
lines represent the results of calculations using the spin-orbit OP as a derivative of the real folding OP from Ref. [19]. The curves and data
points at the top represent true values, while the others are divided by factors of 10, 100, and so on for the differential cross sections. For
the polarization calculation, the curves and data points at the top represent true values, while the others by factors of −2, −4, −6, etc. The
experimental data are listed in Table II.

work [19], are shown in dashed lines. At low energies, both
types of the spin-orbit potential give good agreement with the
data. However, at energies larger than 100 MeV/nucleon, the
spin-orbit that is based on the derivative of the real folding
OP fails to reproduce the whole range of the cross-section and
polarization data and two minima appear in the angular distri-
butions. It is clear that the present OP with the Brieva-Rook
spin-orbit OP fills these minima and give good agreement with
the whole angular range. For the analyzing powers, the data
are quite reasonable fitted at low energies but the data at 74.7
and 100.6 Mev/nucleon have not good fits.

The surface contribution to the OP is usually negligible
at energies larger than 100 MeV/nucleon. Many studies as-
sumed that the surface absorption is too strong and Ws(r) is
dominant at low incident energies whereas the absorption is
completely dominated by the volume imaginary OP Ws(r) at
higher energies, see for example, Refs. [7,8]. To study the
contribution of the surface term of the OP, Fig. 2 presents the
calculated differential cross sections and analyzing powers of
p + 9Be elastic scattering. The results with the OP without the
surface imaginary potential are presented in dashed lines, and
those including the surface part are shown in solid lines.

From Figs. 2(a) and 2(b), one can notice that the exper-
imental data of p + 9Be at energies up to 100 MeV/nucleon
are reproduced with good fit by using the OP with and without
the surface term. In the optical model calculation without

including the surface imaginary part, more than one minimum
are found in the calculated differential cross sections for the
energies larger than 100 MeV/nucleon as shown in Fig. 2(b).
At 135 MeV/nucleon, the first minimum is found at around
45◦ and the second one at about 75◦. The angular positions
of these minima decrease with an increase in the incident
energy. This result is also found in the calculated angular
distributions of p + 4He and p +6,7 Li elastic scattering at
about 155 MeV/nucleon [17].

Unexpectedly, the scattering data need a large contribution
of the surface imaginary OP to get the best fitting. The results
reveal that, in the present work, the including of the surface
contribution to the OP at high energies improves the results
and gives the good agreement with the data over all the
angular range; and the minima that appeared in the angular
distribution disappeared as shown in Fig. 2(b).

The calculated analyzing powers for p + 9Be elastic scat-
tering are presented in Fig. 2(c). In this figure, the exper-
imental data are presented in comparison with the results
of calculations. The Ay data are reproduced well with a
good reasonable fit at low energies. At energies larger than
50 MeV/nucleon, the analyzing powers are not in good
agreement with the data but at least the structure at forward
scattering angles are rather well reproduced and the minima
and maxima at the backward scattering angles have larger
scale than those of the data.
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FIG. 2. Differential cross sections and analyzing powers of p + 9Be elastic scattering in comparison with the experimental data. The
symbols represent the experimental data at different energies in MeV/nucleon and the lines represent the results of the optical model calculation
with the partial-wave expansion method. The solid and dashed lines represent the results of calculations using the microscopic OP [Eq. (32)]
with and without surface imaginary part, respectively. For the differential cross sections, the curves and data points at the top represent true
values, while the others are divided by factors of 10, 100, and so on. For the polarization calculation, the curves and data points at the bottom
represent true values, while the others by factors of −2, −4, −6, etc. The experimental data are listed in Table II.

The total nuclear reaction cross sections (σR) are con-
sidered important constraints for the choice of the optical
potential parameters. In addition, they give information about
the radii of the scattering nuclei and their structure.

The calculated reaction (σR) and total (σtot) cross sections
for p + 9Be reaction at different energies using the optical
model analysis with the partial-wave expansion are presented
in Fig. 3 in comparison with the experimental values [83,84].
It is shown that the calculated values are in agreement with
the available experimental data. The σR and σtot decrease
with an increase of the projectile incident energy up to about
200 MeV/nucleon, and then they increase very slowly with
energy up to 1000 MeV/nucleon. In addition, the calculated
values of reaction and total cross sections using the OP with
the surface imaginary part are found to be slightly larger than
that without including the surface potential.

Generally, all the potential parts of the OP are very sensi-
tive at low energies. The real central and spin-orbit potentials
are weak and do not have a significant effect at high energies.
However, the volume and surface imaginary potentials still
have strong effect on the fitting of the data over all energy

ranges. The calculations were repeated without considering
the imaginary spin-orbit potential and it was found that the
fits did not significantly deteriorate.

B. Energy dependencies of the volume integrals

The calculated volume integrals of the OPs for p + 9Be
elastic scattering using the optical model analysis are plotted
in Fig. 4. The volume integrals of OP parts are calculated
using [Eqs. (34)–(39)]. In Figs. 4(a)–4(c), the symbols rep-
resent the calculated volume integrals of the best-fit OPs and
the lines represent the parameterized volume integrals, which
will be discussed later.

From Fig. 4, using the OPs with and without the surface
imaginary part give approximately similar volume integrals.
However, the calculated values of the JR

SO and JI
SO using the

surface potential are found to be slightly greater than those
using the OP without the surface potential.

Generally, the volume integrals of the OP parts have sys-
tematic behaviors. It is clear from Figs. 4(a) and 4(c) that the
JR and JR

SO increase with energy increasing until they reach a
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FIG. 3. Calculated σR and σtot for the elastic scattering of p + 9Be. They compared with the available experimental data.

maximum value at a definite energy (denoted by ER for JR and
ER

SO for JR
SO). After that, they begin to decrease exponentially

with energy. ER is found at about 13 MeV/nucleon and ER
SO at

about 6 MeV/nucleon.
Different energy parametrizations are used for the depth

of the real OP and then JR, namely: a polynomial form
[7,8]; an exponential decay form of Perey and Buck [86],
which was used, for example, in Refs. [9,13]; a logarithmic
formula [87,88]; and a reciprocal formula [17]. For low ener-
gies (E < ER), the rising of the real volume integral JR was
parameterized by a Gaussian formula as in Refs. [89,90]. For
the spin-orbit potential, the energy dependence of its depth
was parameterized exponentially as in Refs. [7–9,13]. In the
present work, it is found that the Gaussian formula for low
energies and exponential decay for the other energy range
give the best fitting for both JR and JR

SO. The parametrizations
and their best-fit parameters of JR and JR

SO are presented in
Table III.

The imaginary volume integrals, JI , depends strongly on
the energy at low energies because many reaction channels
open at energies around the Coulomb barrier [91]. The imag-
inary OP takes into account the absorption of the flux in the
nonelastic channels. So, it increases when a new channel is
open from below the lowest inelastic channel to a saturation
value observed at relatively high energies [90,91].

In the present work, the volume integrals of the volume,
surface, and total imaginary OPs have similar behaviors. They
begin small at low energies and then increase rapidly up
to a maximum value. Thereafter, they decrease linearly and
very slowly with increasing energy up to 200 MeV/nucleon.
In previous studies that were done for the proton scattering
with intermediate and heavy nuclei (A � 24), the calculated
imaginary volume integrals were saturated after they reached
a maximum, as shown in Refs. [2,9,13]. But the present study
for the proton scattering with light nuclei (A � 12) shows that
the JI values decrease slowly after they reach a maximum. For
energies larger than 200 MeV/nucleon, it is shown that they
increase linearly and strongly with increasing the energy up to
1 GeV/nucleon, see Fig. 4(b).

There are different parametrizations for JI : the Fermi-like
parametrization that was first introduced in Ref. [92] and
used in Refs. [12,90,93]; the functional form of Brown and
Rho [94] that was successfully applied in Refs. [7,8,13];
and the Jeukenne-Mahaux formula [95], which was applied
in Ref. [9]. These formulas suggest that the depth of the
volume imaginary OP, and its volume integral saturates at a
maximum value at high energies, whereas that of the surface
imaginary potential decrease exponentially at high energies.
In the present work, the results show that JIV and JIS decrease
slowly and linearly with energy after it reaches the maximum

FIG. 4. Dependence of the volume integrals and renormalization factors on the incident energy for the p + 9Be elastic scattering optical
potentials. The microscopic OPs are calculated by Eq. (32). The symbols represent the volume integrals and N factors of the best-fit OP and
the lines represent the parameterized volume integrals and N factors as functions of energy. See text for more explanation. The symbols in (a),
(b), and (c) represent the calculated volume integrals and the lines represent the parameterized volume integrals as functions of energy. In (d),
the symbols represent the best-fitted N factors and the lines represent the parameterized N (E ) factors.
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TABLE III. Energy parametrizations of the volume integrals of the best-fit OPs for p + 9Be elastic scattering using the optical model
calculations. The parameters E and w are given in MeV, η in MeV−1, and J in MeV fm3.

OP part Parametrization Parameters

Real JR(E ) =
{

J (1)
R exp

[−(E − ER)2/w2
R

]
for E � ER

J (2)
R exp (−ηRE ) for E � ER

⎧⎪⎨
⎪⎩

J (1)
R = 624.0 wR = 22.12

ER = 13

J (2)
R

a = 721.3 ηR = 0.0107

Volume Imaginary JIV(E ) =
⎧⎨
⎩

J (1)
IV −η

(1)
IV E

1+exp (EIV−E )/wIV
for E � 200 MeV

J (2)
IV + η

(2)
IV E for E � 200 MeV.

⎧⎪⎨
⎪⎩

J (1)
IV = 76.7 η

(1)
IV = 0.0977

EIV = 12.5 wIV = −1.84

J (2)
IV

a = 28.4 η
(2)
IV = 0.1663

Surface Imaginary JIS(E ) =
⎧⎨
⎩

J (1)
IS −η

(1)
IS E

1+exp (EIS−E )/wIS
for E � 200 MeV

J (2)
IS + η

(2)
IS E for E � 200 MeV.

⎧⎪⎨
⎪⎩

J (1)
IS = 150.0 η

(1)
IS = 0.1960

EIS = 5.33 wIS = −0.94

J (2)
IS

a = 80.2 η
(2)
IS = 0.2155

Real Spin-orbit JR
SO(E ) =

{
J (R1)

SO exp
[−(E − ER

SO)2/wR
SO

2] for E � ER
SO

A + J (R2)
SO exp (−ηR

SOE ) for E � ER
SO

⎧⎪⎨
⎪⎩

ER
SO = 6 wR

SO = 5.62

J (R1)
SO = 81.1 ηR

SO = 0.0407

J (R2)
SO = 58.7 A = 18.7

Imaginary Spin-orbit JI
SO(E ) =

⎧⎨
⎩

0 for E � 50 MeV

JI
SO

E2

E2+wI
SO

2 for E � 50 MeV.

{
J (I )

SO = −19.2 wI
SO = 365

aJ (2)
R , J (2)

IV , J (2)
IS , andJ (2)

SO values can be obtained from equating at the boundary values.

up to 200 MeV/nucleon as shown in Fig. 4(b). Therefore, we
modify the Fermi parametrization formula to include the JI

decreasing after it reaches the maximum. The parametriza-
tions and their best-fit parameters of the imaginary volume
integrals are shown in Table III.

For the imaginary spin-orbit potential, the JI
SO values are

zero at low energies up to 50 MeV/nucleons, then it begin
in its growing as shown in Fig. 4(c). Brieva and Rook pre-
dict that the imaginary part of the spin-orbit potential is of
opposite sign to the real part, in agreement with our results
and with most phenomenological analyses at intermediate
energies. The functional form of Brown and Rho [94] that
was successfully applied in Refs. [7,8,13] is used for JI

SO in
the present work.

The volume integrals parametrizations and their best-fitted
parameters are shown in Table III for JR, JIV, JIS, JR

SO, and
JI

SO. The calculated volume integrals of the best-fit OPs for
p + 9Be elastic scattering and their parameterized ones as
functions of energy are shown in Figs. 4(a)–4(c). It is shown
that these parametrization formulas fit the calculated volume
integrals well.

In general, we can divide the energy range into three
regions.

Region I. At low energies, the volume integrals of the real,
imaginary, and real spin-orbit OPs increase with energy up
to maximum values at definite energies (namely, ER, EIV,
EIS, ER

SO) for real, volume imaginary, surface imaginary, and
real spin-orbit OPs. The increasing of the volume integrals
at low energies is described by the rise parameters wi where
i = R, IV, IS, SO. In some cases, ER and ER

SO cannot be deter-
mined because there are no further data at low energies. Then,
it can be neglected and the exponential-decay terms of JR and
JR

SO are only considered. In addition, JI
SO values are zero in this

region. Generally, at low energies, the energy dependencies of
the volume integrals are similar to the well-known threshold
anomalies, which are caused by the rapid changes in the
absorption as the inelastic channels open up near the Coulomb
barrier [2].

Region II. At energies up to 200 MeV/nucleon, the volume
integrals after reach the maximum values, they decrease with
energy. The real and spin-orbit volume integrals are decreased
exponentially whereas the imaginary volume integrals de-
crease slowly and linearly with energy. The decay parameters
are denoted by ηR, η

(1)
IV , η

(1)
IS , ηR

SO for real, volume imaginary,
surface imaginary, and real spin-orbit OPs, respectively. In
this region, the negative JI

SO values begin to increases with
energies.

Region III. At high energies those larger than
200 MeV/nucleon. In this region, the volume integrals
of the real central and spin-orbit potentials are approximately
saturated whereas the imaginary volume integrals increase
rapidly and linearly with increasing of energy up to 1000
MeV/nucleon. The rising parameter of JI is denoted by η

(2)
I .

In addition, in this region, the negative JI
SO values continue

in increasing with energy. It is useful to mention that for
the elastic scattering of protons with bombarding energies
near 200 MeV, the data need stronger imaginary part with
wine-bottle-bottom shape for the real part [5].

C. Local E-dependent microscopic nucleon-nucleus OP

From the energy parametrization of the volume integrals,
we can present an energy-dependent microscopic OP which
depends only on the single-folding model. To construct
energy-dependent microscopic OP (43), the energy depen-
dence factors or the parameterized N-factors [NR(E ), NIV(E ),
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NIS(E ), NR
SO(E ), NI

SO(E )] can be determined by the equations
(42) where the parameterized volume integrals as functions
of energy are given in Table III and the volume integrals
of the original potentials without normalization are given in
Eqs. (40).

Then, the real, volume imaginary, surface imaginary, real
and imaginary spin-orbit potentials can be rewritten as energy-
dependent potentials as follows:

V (r, E ) = NR(E )VF (r) = JR(E )

J (VF )
VF (r)

Wv (r, E ) = NIV(E )WH (r) = JIV(E )

J (WH )
WH (r)

Ws(r, E ) = −NIS(E )r
dWH (r)

dr
= JIS(E )

J (rdWH/dr)
r

dWH (r)

dr

VSO(r, E ) = NR
SO(E )VLS(r) = JR

SO(E )

J (VLS)
VLS(r)

WSO(r, E ) = NI
SO(E )VLS(r) = JI

SO(E )

J (VLS)
VLS(r), (44)

and the total E -dependent microscopic OP for nucleon-
nucleus scattering, UOP(r, E ) [Eq. (43)], can be rewritten as

UOP(r, E ) = JR(E )

J (VF )
VF (r) + i

JIV(E )

J (WH )
WH (r)

− i
JIS(E )

J (−rdWH/dr)
r

d

dr
WH (r)

+
[

JR
SO(E )

J (VLS)
+ i

JI
SO(E )

J (VLS)

]
VLS(r)L.σ. (45)

This local energy-dependent OP (45) can be used to repro-
duce the scattering data of the p + 9Be reactions at a wide
energy range that covers from 1–1000 MeV/nucleon. In ad-
dition, their energy dependence forms and behaviors can help
us to obtain the correct energy and mass dependencies of the
folding OPs. So, more studies are needed to check the ability
of this hybrid microscopic OP to analyze the nucleon-nucleus
scattering at intermediate and heavy nuclei. If it is successful
then it can be used to construct a global microscopic nucleon-
nucleus OP, which can be used in analyzing the scattering data
at large ranges of nuclei and energies; also it can be used in
predicting the data of the reactions for energies and exotic
nuclei at which no experimental data are available.

Figure 4(d) presents the parameterized N factors of the
OP parts in comparison with the corresponding best-fit ones.
These factors can be obtained from Eqs. (42) using the values
in Eqs. (40) and Table III. Also, they can be fitted and
parameterized directly from the best-fit N factors. It is clear
that the energy dependencies of these parameterized N factors
are rapidly changed at low energies corresponding to what
may be the rapid changes in the absorption as the inelastic
channels open up near the Coulomb barrier [2]. On other
hand, they are changed slowly at high energies. One can
shown that NR(E ) and NR

SO(E ) are decreased exponentially
with energy increasing whereas NIV(E ) and NIS(E ) seem
to increase with ln E . In addition, the corresponding total
imaginary normalization factor NI(E ) in the case of using of

the volume imaginary term only (without surface part) can be
obtained from Eqs. (40) as NI(E ) = NIV(E ) + 3NIS(E ). This
explains why the values of NIV(E ) and NIS(E ) are still small
and far from unity even at the considered intermediate and
high energies.

Early, the original M3Y-Paris NN interaction is multiplied
by an energy-dependent factor g(E ) � 1 − 0.003E in order to
reproduce the data of nucleus-nucleus scattering at energies
up to 100 MeV/nucleon [22,27,31] where E is the bombard-
ing energy per nucleon. In the present work, NR(E ) can be
obtained from Eqs. (42) using the values in Eqs. (40) and
Table III as NR(E ) ∼ exp(−0.0068E ).

Generally, in the folding potential, the density gives the
geometry information and the NN interaction gives the depth
and shape of the potential. Therefore, these N (E ) can be in-
cluded in the original NN interaction as an energy dependence
term. But we need to know the mass dependence of this term,
so we need more studies for nucleon-nucleus scattering for
more scattered nuclei at a wide energy range.

IV. SUMMARY AND CONCLUSIONS

The proton elastic scattering of 9Be at energies from few
MeV/nucleon to 1000 MeV/nucleon was analyzed by the op-
tical model with partial wave expansion method. The real OP
was taken within single-folding model by use of the density-
and isospin-dependent M3Y-Paris NN interaction and GFMC
density of 9Be nucleus. The spin-orbit part was presented by
the Brieva-Rook model using the two-body spin-orbit M3Y-
Paris NN interaction. The volume and surface imaginary parts
of OP were given by the high-energy approximation model,
which folds the NN-scattering amplitude and the density of
the scattered nucleus. This hybrid OP was used within the
optical model to analyze the basic scattering data (angular dis-
tributions for elastic-scattering cross sections and analyzing
powers, reaction and total cross sections).

A comparison between the derivative spin-orbit, which was
taken by the derivative of the real central OP and the Brieva-
Rook spin-orbit potential showed that the derivative spin-orbit
is not suitable for energies larger than 100 MeV/nucleon.

Another comparison between OP with and without surface
imaginary part was done. This comparison showed that using
of OP without surface imaginary part gives results that do not
agree with the data at energies above 100 MeV/nucleon where
some minima appear in the calculated angular distribution of
the elastic-scattering cross sections. A new behavior of the
imaginary potential and their volume integrals was found at
scattering at high energies. Considering the surface as well as
volume imaginary potential at these high energies filled the
minima at the angular distributions and gave good agreement
with the cross-section data. Furthermore, the σR and σtot

values obtained using the surface part are larger than those
without surface term and give the best agreement with the data
of the high-energy scattering.

Generally, including the surface contribution to the scatter-
ing OP at the whole energy range give results in good quality
agreement with the experimental data of the differential cross
section of elastic scattering as well as reaction and total
cross sections over all energy ranges. The analyzing power
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data are fitted well at low energies. At energies larger than
50 MeV/nucleon, the Ay structure at forward scattering angles
are fitted well but the calculated Ay at the backward scattering
angles are not in a good agreement with the data.

The volume integrals have systematic behaviors for the
energy dependence. At low energies, the JR, JIV, JIS, and JR

SO
increase with increasing energy until they reach a maximum
at definite values of energy. Thereafter, with increasing inci-
dent energy, the JR and JR

SO decrease exponentially and they
saturate at energies larger than 200 MeV/nucleon. On the
other hand, after they reach maximum values, the JIV and JIS

decrease linearly with a small slope until 200 MeV/nucleon.
Then, they increase linearly and rapidly again with energy up
to 1 GeV/nucleon.

The energy dependencies of the OP parts were deter-
mined as functions of energy. They were calculated from the
parametrization of the volume integrals of the best-fit OPs.
The new behaviors of volume and surface imaginary OPs at
high energies need more studies for nucleon elastic scattering
at other nuclei.
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