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Cranking inertia of odd nuclei from time-dependent pairing equations:
Application to Th cold fission
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A new formalism for the nonadiabatic collective inertia from time-dependent pairing equations for odd
numbers of nucleons is described in detail. The effective masses and the moments of inertia result from the
occurrence of matrix elements of the time derivatives and of the angular couplings, respectively, between states of
different seniority configurations. For low collective velocities, the formulas for the inertia reduce to the known
cranking expressions available for quasitationary states. The effective mass and the perpendicular moment of
inertia are evaluated for the 230–232Th parent nuclei along the fission path. The inertia for the even-odd system
is larger than those of the even-even ones and exhibits fluctuations due to the intrinsic nuclear structure. The
ground state theoretical value of the moment of inertia for 231Th agrees well with the evaluated experimental
data if the blocking effect is neglected.
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I. INTRODUCTION

In treatments of nuclear reactions, it is usually considered
that the nucleons move in an average deformed field managed
by some external constraints. These external constraints can
be the shape collective coordinates associated with some
degrees of freedom or the angles between the intrinsic co-
ordinate system and the laboratory one. Quantities such as
moments of inertia and effective masses are defined in terms
of these collective coordinates. The vibrational and rotational
motions of the collective parameters modify the average field.
In the original cranking model [1–4], it is assumed that the
collective parameters vary slowly in time, thus allowing the
nucleons to follow in an adiabatic way the average field. By
considering instantaneous values of the collective velocities
and by preserving the total energy of the nuclear system,
formulas for the collective moments of inertia and of the
effective inertia are deduced. That is, the original derivations
of the cranking theories are treated in the lowest order per-
turbation of the collective velocity. A generalization was pro-
vided by constructing a self-consistent potential that takes into
account the influence of the collective velocities [5], leading
to the cranked model. Different approaches were developed
to improve the calculation of the inertia in this direction.
For example, a prescription that gives all order corrections
in powers of an inverse timescale is presented Ref. [6]. A
cranking inertia that takes into account the collective velocity
dependence of the potential and of the pairing field was devel-
oped in Ref. [7]. The dependence of the cranking parameters
on the internal excitation was also investigated [8–12]. But,
the most important development of the cranking formalism is
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the consideration of the residual interactions in calculations.
With the inclusion of pairing [13,14], moments of inertia
were evaluated realistically for the first time in Refs. [15,16].
The cranking superfluid model reported a remarkable success
in describing the values of the moments of inertia [17–25]
of even-even nuclei in their ground states and in their iso-
meric states. Superfluid systems mean that the fluid inertia is
strongly suppressed. In self-consistent approaches, a cranking
operator or perturbative approach is used to determine the
inertia corresponding to an adiabatic motion [26–36].

The original derivation of the moments of inertia for odd-
nuclei is based on Green functions [37]. A first investigation
of the odd-nuclei configurations was realized in Ref. [38]
without treating explicitly the blocking effect. Many other
contributions were also developed over time in Refs. [39–45]
aiming to achieve a better accuracy of the approach. By
investigating explicitly the influence of the blocking effect
[43] which occurs when the excitations change the seniority
by 2 units, it was confirmed that the moments of inertia of odd-
A nuclei are larger than those of both neighboring even-even
nuclei. It was also estimated in Ref. [46] that the moment of
inertia increases typically by about 15% if the squared pairing
gap is halved. Such an effect can be produced by the reduction
of the pair correlations due to the presence of the unpaired
particle. The Coriolis couplings between the lowest one-
quasiparticle state and the remaining one-quasiparticle states
cause more important variations of the inertia. It is important
to note that both contributions are strongly influenced by the
specific microscopic nuclear structure. Surprisingly, reduced
moments of inertia due to the presence of the odd particle [47]
were obtained for certain intrinsic configurations.

In the following, I use a new formalism intended to obtain
on the same footing the radial and the rotational inertia for
systems with an odd number of nucleons. This non-adiabatic
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treatment is derived from the time-dependent pairing equa-
tions and it is described in detail, following the main lines
proposed in Refs. [48,49] for even nuclei. The inertia emerges
as a response of the nuclear system to infinitesimal changes
of the collective coordinates under the action of external
forces, with the generalized velocities being unchanged. Con-
comitantly, the time-dependent pairing equations are also
obtained by appealing to the variational principle applied
to the same functional. That gives the possibility to calcu-
late the dissipated energy when the collective coordinates
change in time. Therefore, the mass parameters obtained
within the proposed recipe depend also on the dissipated
energy.

An evaluation of the dissipated energy is given by the
difference between the many-body energy obtained by solving
the time-dependent pairing equations and the many-body en-
ergy calculated adiabatically at the same collective deforma-
tion. As discussed in Ref. [50], this calculation is completely
reversible. If all the coordinates are time reversed, the nuclear
system retraces its path. That means a part of the collective ki-
netic energy is stored temporarily in the microscopic degrees
of freedom as a conservative potential, allowing the system to
oscillate with small amplitudes around its equilibrium. For a
large amplitude motion, the elongation can exceed the scission
point. When the two fission fragments are stopped in some
detectors, this part of the collective kinetic energy stored tem-
porarily is transferred irreversibly in intrinsic excitation. Such
an event can be called randomization and, as suggested in
Ref. [50], a major part of the above defined dissipated energy
can be interpreted as being irreversible from the macroscopic
point of view.

In this work, I consider low velocities, therefore the in-
fluences of the collective velocities on the single-particle
states are disregarded. For these velocities the nuclear system
behaves adiabatically, the dissipated energy is negligible, and
the BCS solutions of the microscopic equations of motion
follow accurately the values obtained for quasitationary states
[51]. The mean field is obtained within the Woods-Saxon
two-center shell model [52].

As an application, the fission of Th isotopes at low energies
is analyzed along the fission path, starting from the ground
state, overcoming the exit point of the barrier and reaching
the final two fragments configuration. The behavior of the
inertia is investigated for such a large scale amplitude motion
in adiabatic conditions.

II. DERIVATION OF THE COLLECTIVE INERTIA

In this section, the inertia formalism is described. By
appealing to the variational principle, the moments of inertia
and the effective masses are deduced. The functional

L = 〈ϕ|H − ih̄
∂

∂t
− �� �J − λN̂ |ϕ〉, (1)

is constrained by two Lagrange multipliers, λ and �. In
the previous expression, H denotes the independent single-
particle Hamiltonian with pairing residual interactions:

H =
∑

l

εl (a
+
l al + a+

l̄
al̄ ) − G

∑
n

∑
l

a+
n a+

n̄ alal̄ , (2)

where G is a constant pairing interaction, εl are the single-
particle energies, �� is the angular velocity, �J is the total an-
gular momentum in h̄ units, λ is the Fermi energy determined
for the lowest energy state, while N̂ =∑l (a

+
l al + a+

l̄
al̄ ) is

the particles number operator. The sums run over the active
pairing levels space. The many-body trial wave function is
considered as a superposition of Bogoliubov seniority-1 and
seniority-3 configurations:

|ϕ〉 =
∑

i

cia
+
i |φi〉 +

∑
i

∑
j �=i

ci, ja
+
i α+

j α+
j̄
|φi〉

+
∑

i

∑
j>i

∑
k �=i, j

ci, j,ka+
i a+

j a+
k̄
|φi, j,k〉. (3)

The notations a+
k (or ak) mean creation (or annihilation)

single-particle operators on the single-particle state k. The
conjugated time-reversed state in the level k is denoted with k̄.
The first term in the right-hand of Eq. (3) leads to excitations
between seniority-1 states, the second term is responsible
for virtual excitations of the seniority-1 states, while the
last term leads to excitations between the seniority-1 and
the seniority-3 states. In the trial wave function (3), the odd
nucleons are located on the single-particle levels i, j, and k.
These levels are not involved in the pairing correlations, being
considered blocked. Accordingly, the structure of the active
pairing levels space is modified from one configuration to
another one. The modification of the BCS amplitudes from
one configuration to another is called the blocking effect
[53]. Being cautioned by the pairing interaction, the states
a+

i a+
j a+

j̄
|φi, j, j〉 are not allowed, and should be substituted by

virtual ones a+
i α+

j α+
j̄
|φi〉. The Bogoliubov wave functions

are

φi =
∏
m �=i

(um(i) + vm(i)a
+
ma+

m̄ ), (4)

φi, j,k =
∏

m �=i, j,k

(um(i, j,k) + vm(i, j,k)a
+
ma+

m̄ ), (5)

where vγ (γ ′ ) and uγ (γ ′ ) are BCS amplitudes. The indexes
m(i) or m(i, j, k) of the BCS amplitudes supply a nota-
tion for the single-particle level m of the seniority-1 or
the seniority-3 configuration in which the level (i) or the
levels (i, j, k) are occupied by odd nucleons, respectively.
Because only the relative phase between the vacancy am-
plitudes and the occupation ones matters, one considers in
the following that uγ (γ ′ ) is a real quantity and vγ (γ ′ ) is a
complex one. To avoid double counting, the sums of the
seniority-3 Bogoliubov wave functions run only for j >

i in Eq. (3). Moreover, a real excitation means that two
nucleons should be only in time-reversal conjugate states.
The virtual seniority-3 configurations are obtained within
quasiparticle creation operators α+

k of conjugate time-reversed
states. The virtual states are not influenced by the blocking
effect.
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The Hamiltonian is diagonal and the energies Ei of the seniority-1 states are

Ei = 〈a+
i φi|H − λN̂ |a+

i φi〉 = 2
∑
m �=i

|vm(i)|2(εm − λ) + (εi − λ) − G

∣∣∣∣∣∣
∑
m �=i

u∗
m(i)vm(i)

∣∣∣∣∣∣
2

− G
∑
m �=i

|vm(i)|4, (6)

those of the virtual states are

Ei, j = 〈a+
i α+

j α+
j̄
φi|H − λN̂ |a+

i′ α
+
j′ α

+
j̄′ φi′ 〉

= 2
∑

m �=i, j

|vm(i)|2(εm − λ) + 2u2
j(i)(ε j − λ) + (εi − λ) − G

∣∣∣∣∣∣
∑

m �=i, j

u∗
m(i)vm(i)

∣∣∣∣∣∣
2

− G
∑

m �=i, j

|vm(i)|4

+ G

⎡
⎣u j(i)v j(i)

∑
m �=i, j

um(i)v
∗
m(i) +u j(i)v

∗
j(i)

∑
m �=i, j

um(i)vm(i)

⎤
⎦− G|u j(i)v j(i)|2 − Gu4

j(i), (7)

and those of the seniority-3 states are

Ei, j,k = 〈a+
i a+

j a+
k̄
φi, j,k|H − λN̂ |a+

i′ a+
j′ a

+
k′φi′, j′,k′ 〉

= 2
∑

m �=i, j,k

|vm(i, j,k)|2(εm − λ) + (εi − λ) + (ε j − λ) + (εk − λ) − G

∣∣∣∣∣∣
∑

m �=i, j,k

u∗
m(i, j,k)vm(i, j,k)

∣∣∣∣∣∣
2

− G
∑

m �=i, j,k

|vm(i, j,k)|4. (8)

In Appendix A, the components of the effective masses for the lowest energy configuration are deduced. The lowest energy
configuration is the seniority-1 configuration in which the Fermi level iF is blocked. The inertia related to another seniority-1
configuration can be deduced in a similar way by taking the corresponding blocked level as reference. The effective masses
related to the shape collective coordinates qν and qμ are

Bν,μ = 2h̄2
∑
j �=iF

∑
k �= j,iF

(
EiF , j,k − EiF

)∣∣v j(iF )uk(iF ) − u j(iF )vk(iF )

∣∣2∣∣P(iF , j,k)(iF )

∣∣2〈a+
j | ∂H

∂qν
|a+

k 〉〈a+
k | ∂H

∂qμ
|a+

j 〉(
EiF , j,k −∑m �=iF , j,k Tm(iF , j,k) − EiF +∑m �=iF

Tm(iF )
)2

(ε j − εk )2

+ 2h̄2
∑
i′ �=iF

∑
j �=i′,iF

(Ei′, j − EiF )
∣∣v j(i′ )u j(iF ) − u j(i′ )v j(iF )

∣∣2∣∣P(iF )(i′, j)

∣∣2〈a+
iF

∣∣ ∂H
∂qν

|a+
i′ 〉〈a+

i′ | ∂H
∂qμ

∣∣a+
iF

〉
(
Ei′, j −∑m �=i′, j Tm(i′, j) − EiF +∑m �=iF

Tm(iF )
)2(

εi′ − εiF

)2

+ 2h̄2
∑
j�=iF

(
EiF , j − EiF

)[
u j(iF )

∂v j(iF )

∂qν
− v j(iF )

∂u j(iF )

∂qν

][
u j(iF )

∂v∗
j(iF )

∂qμ
− v∗

j(iF )
∂u j(iF )

∂qμ

]
(
EiF , j − EiF

)2

+ 2h̄2
∑
i �=iF

(
Ei − EiF

)∣∣uiF (i)ui(iF ) + v∗
iF (i)vi(iF )

∣∣2∣∣P(iF )(i)

∣∣2〈a+
i | ∂H

∂qν

∣∣a+
iF

〉〈
a+

iF

∣∣ ∂H
∂qμ

|a+
i 〉(

Ei −∑m �=i Tm(i) − EiF +∑m �=iF
Tm(iF )

)2(
εi − εiF

)2 , (9)

where the quantities

P(γ )(γ ′ ) =
∏

m �=γ ,γ ′
(um(γ )um(γ ′ ) + v∗

m(γ )vm(γ ′ ) ) (10)

are obtained from overlaps of the Bogoliubov functions per-
taining to different configurations. The sum in the third term
of the right-hand side of Eq. (9) is restricted to the active pair-
ing levels space, where the variations of the BCS amplitudes
are allowed. The other sums of the right-hand side of Eq. (9)
span all the single-particle levels, excepting the blocked one,
iF , of the lowest energy seniority-1 configuration. No diagonal
matrix elements are allowed. The sum over virtual states is
given by the third term of the right-hand side of Eq. (9).

With Tγ (γ ′ ) I denoted the real energy terms that are due to the
variations in time of the BCS amplitudes:

Tγ (γ ′ ) = ih̄(uγ (γ ′ )u̇γ (γ ′ ) + v∗
γ (γ ′ )v̇γ (γ ′ ) )

= ih̄

2
(v∗

γ (γ ′ )v̇γ (γ ′ ) − v̇∗
γ (γ ′ )vγ (γ ′ ) ) (11)

= 2|vγ (γ ′ )|2(εγ − λ) − 2G|vγ (γ ′ )|4

+ 1

2
(uγ (γ ′ )vγ (γ ′ )�

∗
γ ′ + uγ (γ ′ )v

∗
γ (γ ′ )�γ ′ )

×
(

v∗
γ (γ ′ )vγ (γ ′ )

u2
γ (γ ′ )

− 1

)
, (12)
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where �γ ′ = G
∑

γ ′′ �=γ ′ uγ ′′(γ ′ )vγ ′′(γ ′ ). The equality (11) is ob-
tained by using the time derivatives of the BCS amplitudes
obtained within the time-dependent pairing equations (A2)
and within the condition u2

γ (γ ′ ) + |vγ (γ ′ )|2 = 1.
The last term in the right side of Eq. (9) is due to the

presence of the odd nucleon and takes into account the mixing
between seniority-1 configurations. In the denominator, the
differences in energies Ei − EiF are much smaller than the
differences in energies Ei′, j − EiF or EiF , j,k − EiF that corre-
spond to excitations on the virtual states or on the seniority-3
configurations, respectively. Moreover, in the numerator one
obtains a sum of products of BCS amplitudes, instead of a
difference. Therefore, the contribution given of the last term
of the Eq. (9) should be very large. In principle, one should

expect that the effective mass of a odd-nucleus exceeds that of
an even one.

In the trial wave function (3), the blocked levels are
considered for only one component of the conjugate time
reversed pair in order to avoid double counting. If the pairing
is disregarded, the level iF of the lowest energy seniority-1
configuration corresponds to the Fermi single-particle level of
the system, that is, the last single-particle level occupied by
the unpaired nucleon, the remaining levels of the core being
filled by pairs.

The principal moments of inertia In for the lowest en-
ergy state iF around the principal axis (n = x, y, z) are
deduced in the same manner as the effective masses,
being

In = 2
∑
j �=iF

∑
k �= j,iF

(
EiF , j,k − EiF

)∣∣v j(iF )uk(iF ) − u j(iF )vk(iF )

∣∣2∣∣P(iF , j,k)(iF )

∣∣2〈a+
j |Jn|a+

k 〉2(
EiF , j,k −∑m �=iF , j,k Tm(iF , j,k) − EiF +∑m �=iF

Tm(iF )
)2

+ 2
∑
i′ �=iF

∑
j �=i,iF

(
Ei′, j − EiF

)∣∣v j(i′ )u j(iF ) − u j(i′ )v j(iF )

∣∣2∣∣P(iF )(i′, j)

∣∣2〈a+
iF

∣∣Jn|a+
i′ 〉2(

Ei′, j −∑m �=i′, j Tm(i′, j) − EiF +∑m �=iF
Tm(iF )

)2
+ 2

∑
i �=iF

(
Ei − EiF

)∣∣uiF (i)ui(iF ) + v∗
iF (i)vi(iF )

∣∣2∣∣P(iF )(i)

∣∣2〈a+
i |Jn

∣∣a+
iF

〉2
(
Ei −∑m �=i Tm(i) − EiF +∑m �=iF

Tm(iF )
)2 . (13)

In the previous formula, the matrix elements between the states with the spin projections � = 1/2 and −1/2 are not explicitly
written out. The second term of the right-hand side of Eq. (13) is similar to the second term in Eq. (5-47) of Ref. [46], obtained
as a second-order correction, but differs in sign. It takes into account the excitations to the virtual states of the seniority-1
configuration, with the caution that terms of the type 〈a+

i |O|a+
i α+

j α+
j̄
〉 (O being an operator without time derivatives) are zero.

A similar expression involving three terms for the odd-nuclei moments of inertia was also given in Ref. [41].
A dynamical treatment of the inertia should include the effects due to the dissipated energy. The parameters uγ (γ ′ ) and vγ (γ ′ )

are the solutions of the time-dependent pairing equations [50,54]. These amplitudes depend on the collective velocities and are
resolved for each successive deformation along the fission path [55–58]. In these circumstances, the inertia dependence versus
the dissipated energy is obtained, as discussed in Ref. [48]. For low collective velocities, the BCS amplitudes follow the values of
the quasistationary states. If one considers that uγ (γ ′ ) and vγ (γ ′ ) vary slowly, the terms Tγ (γ ′ ) can be neglected and the following
formulas are obtained:

Bν,μ = 2h̄2
∑
j �=iF

∑
k �= j,iF

∣∣v j(iF )uk(iF ) − u j(iF )vk(iF )

∣∣2∣∣P(iF , j,k)(iF )

∣∣2〈a+
j | ∂H

∂qν
|a+

k 〉〈a+
k | ∂H

∂qμ
|a+

j 〉(
EiF , j,k − EiF

)
(ε j − εk )2

+ 2h̄2
∑
i′ �=iF

∑
j �=i′,iF

∣∣v j(i′ )u j(iF ) − u j(i′ )v j(iF )

∣∣2∣∣P(iF )(i′ )
∣∣2〈a+

iF

∣∣ ∂H
∂qν

|a+
i′ 〉〈a+

i′ | ∂H
∂qμ

∣∣a+
iF

〉
(
Ei′, j − EiF

)(
εi′ − εiF

)2
+ 2h̄2

∑
j �=iF

[
u j(iF )

∂v j(iF )

∂qν
− v j(iF )

∂u j(iF )

∂qν

][
u j(iF )

∂v∗
j(iF )

∂qμ
− v∗

j(iF )
∂u j(iF )

∂qμ

]
(
EiF , j − EiF

)

+ 2h̄2
∑
i �=iF

∣∣uiF (i)ui(iF ) + v∗
iF (i)vi(iF )

∣∣2∣∣P(iF )(i)

∣∣2〈a+
i | ∂H

∂qν

∣∣a+
iF

〉〈
a+

iF

∣∣ ∂H
∂qμ

|a+
i 〉(

Ei − EiF

)(
εi − εiF

)2 (14)

and

In = 2
∑
j �=iF

∑
k �= j,iF

∣∣v j(iF )uk(iF ) − u j(iF )vk(iF )

∣∣2∣∣P(iF , j,k)(iF )

∣∣2〈a+
j |Jn|a+

k 〉2(
EiF , j,k − EiF

)

+ 2
∑
i′ �=iF

∑
j �=i′,iF

∣∣v j(i′ )u j(iF ) − u j(i′ )v j(iF )

∣∣2∣∣P(iF )(i′, j)

∣∣2〈a+
iF

∣∣Jn|a+
i′ 〉2(

Ei′, j − EiF

) + 2
∑
i �=iF

∣∣uiF (i)ui(iF ) + v∗
iF (i)vi(iF )

∣∣2∣∣P(iF )(i)

∣∣2〈a+
i |Jn

∣∣a+
iF

〉2(
Ei − EiF

) . (15)
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As shown in Appendix B concerning the quasistationary states, by neglecting the blocking effect one obtains

Bνμ = 2h̄2
∑
j �=iF

∑
k �= j,iF

(v juk + u jvk )2〈a+
j | ∂H

∂qν
|a+

k 〉〈a+
k | ∂H

∂qν
|a+

j 〉
(E j + Ek )3

+ 2h̄2
∑
j �=iF

1

8E5
j

[
�2 ∂λ

∂qν

∂λ

∂qμ

+ (ε j − λ)2 ∂�

∂qν

∂�

∂qμ

+ �(ε j − λ)

(
∂�

∂qν

∂λ

∂qμ

+ ∂λ

∂qν

∂�

∂qμ

)

−�2

(
∂λ

∂qν

〈a+
j | ∂H

∂qμ

|a+
j 〉 + ∂λ

∂qμ

〈a+
j | ∂H

∂qν

|a+
j 〉
)

−�(ε j − λ)

(
∂�

∂qν

〈a+
j | ∂H

∂qμ

|a+
j 〉 + ∂�

∂qμ

〈a+
j | ∂H

∂qν

|a+
j 〉
)]

+ 2h̄
∑
i �=iF

(
uiuiF + viviF

)2〈a+
i | ∂H

∂qν

∣∣a+
iF

〉〈
a+

iF

∣∣ ∂H
∂qν

|a+
i 〉(Ei − EiF

)(
εi − εiF

)2 (16)

for the effective masses and

In = 2
∑
j �=iF

∑
k �= j,iF

(
ukv j − vku j

)2〈a+
j | jn|a+

k 〉2

Ek + E j

+ 2
∑
i �=iF

(
uiuiF + viviF

)2〈a+
i | jn

∣∣a+
iF

〉2
Ei − EiF

(17)

for the moments of inertia. In Eq. (16) the sum over virtual
states is translated into a sum over diagonal matrix ele-
ments. The formula (17) is almost identical to that reported
in Ref. [38]. Here, Ei represent the quasiparticle excitation
energies and � the pairing gap parameter. To perform the
calculations for the last terms in Eqs. (16) and (17), one should
consider that viF = 1 if the blocking effect is disregarded,
as suggested in Ref. [38]. For even nuclei, the last terms of
Eqs. (16) and (17) vanish, and the classical formulas [59,60]
for stationary inertia of even nuclei are retrieved. To my
knowledge, an analogous formula for the collective masses for
odd-nuclei has not been published so far. As an observation,
only the second term in the right hand side of Eq. (16),
which runs over virtual excitations, contains diagonal matrix
elements of the derivatives of the Hamiltonian. This last point
is not noticed in many references treating the subject. In
Ref. [61], it is even considered that the sum over virtual states
cannot be relevant in the calculation of the effective mass.

As anticipated previously in Sec. I, the increase of the
inertia for odd-nucleon systems is due to the presence of
the last terms in the right side of the above equations and
to a change of the pairing gap parameter. The increase of
the inertia when the pairing gap parameter decreases ca be
understood in a simple way. For large values of the pairing
gap parameter, the diagonal components of the mass tensor
can be approximated as [60]

Bν,ν ≈ h̄2

16

∣∣∣∣
〈
∂H

∂qν

〉
AV

∣∣∣∣
2 gsp

�2
, (18)

which shows a dependence on the pairing gap parameter
�2 at the denominator. In the crude approximation (18),
〈∂H/∂qν〉AV represents an averaged value of the matrix ele-
ments, while gsp is the level density at the Fermi energy. A
smaller value of � is caused by the blocking effect, leading to
an increase in inertia.

III. RESULTS AND DISCUSSION

The moments of inertia and the effective masses are de-
termined along the fission path of 230–232Th nuclei in order to
investigate the even-odd effect for a large amplitude motion.
I use the wave functions obtained by solving the Schrödinger
equation for a two-center Woods-Saxon semiphenomenologi-
cal mean field. A more realistic treatment of the mean field
requires the consideration of the effective interactions be-
tween nucleons as realized in the Hartree-Fock approaches
[62,63]. The formalism developed in this work requires only
the solutions of the eigenvalues problem, and therefore can
be also applied in the case of a self-consistent approach.
The mean field used in the following is managed by a nu-
clear shape parametrization characterized by five collective
coordinates associated with different degrees of freedom of
the system. These are the elongation, the necking, the mass
asymmetry, and the two deformations of the fragments. The
axial-symmetric nuclear shape parametrization is given by
smoothly joining two aligned spheroids of different semiaxes
ai/bi (i = 1, 2) with an intermediate surface obtained by the
rotation of an arc of a circle around the axis of symmetry The
elongation is considered as the distance between the centers
of the two spheroids and it is denoted R. The necking is given
by the curvature of the arc of a circle of the intermediate
region denoted C. The mass asymmetry is considered as the
ratio between the major semiaxes of the two spheroids a1/a2,
while the deformations of the fragments are given by their
eccentricities εi. Within this nuclear shape parametrization,
it is possible to describe the transition from one nucleus to
two separated bodies in a continuous way. This nuclear shape
parametrization was described in detail in Ref. [52], and was
used to investigate the fission processes in a wide range of
mass asymmetries, including α decay. A dynamical fission
path is calculated to connect the ground state of the parent
nucleus and the exit point of the outer barrier in accordance
to the least action principle [60]. In the Wentzel-Kramers-
Brillouin (WKB) approximation, this problem amounts to
minimizing the classical action integral

S = 2

h̄

∫ Re

R0

√
[V (R) − V0]B(R)dR, (19)

where the turning points R0 and Re are the elongations of the
ground state and of the exit point of the barrier, respectively.
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Here, V0 is the ground state energy, V is the deformation
energy in the five-dimensional configurations space, while B
is the effective mass along the fission trajectory:

B(R) =
∑

ν

∑
μ

Bν,μ

∂qν

∂R

∂qμ

∂R
. (20)

In the previous expression, qν represent the generalized coor-
dinates. In Eq. (20), the elongation R is chosen as a main gen-
eralized coordinate. The deformation energy of the nucleus
is treated in the framework of the macroscopic-microscopic
model [64,65]. The liquid drop part is given by the sum of
several contributions: the Coulomb energy, the surface term
obtained within the Yukawa-plus-exponential interaction [66],
the Coulomb diffuseness correction contribution, the volume
term, and the Wigner one. The precise mathematical forms
of these liquid drop contributions are given in Ref. [67].
The model is extended for binary systems with different
charge densities [68]. The microscopic corrections are ob-
tained within the Strutinsky procedure [69]. The shell effects
for the odd-nucleon systems are obtained in the same way
as for the even ones. Namely, the smoothed Fermi energy is
obtained by solving the equation for the odd number of parti-
cles. An average total energy is obtained for this smoothed
value of the Fermi energy. The total energy of the system
is obtained by summing twice the single-particle energies of
the occupied levels located below the Fermi level and once
for the single-particle energy of the last occupied level. The
difference between the total energy and the averaged one gives
the shell effects. For the pairing effect, the pairing gap and
the Fermi energy are calculated for the same number of levels
located above and below the Fermi level. The blocked level
pertaining to the odd nucleon is eliminated when the BCS
solutions are calculated. The number of nucleons considered
in the active levels pairing space is equal to the number of
levels of this space. In this work, 28 single-particle levels are
taken above and below the Fermi energy as an active pairing
levels space. The corresponding energy intervals depend on
the deformation and are 6.01–7.97 MeV above and 6.68–
8.38 MeV below the Fermi energy. In order to calculate the
pairing effects, the effective strength of pairing interaction G
is required. This value is calculated within a proper averaging
by taking into account the energies of all single-particle states
of the active levels space and an average pairing gap parameter
obtained from a systematic [60]. For the same purpose, a
more elaborated formalism is given in Ref. [64], in which
the averaging used to obtain the pairing strength has an
improved accuracy. By performing the calculations within the
approach of Ref. [64], I noticed an increase of the pairing
strength G of the order of 10% versus the values obtained
with the theory of Ref. [60]. Also, some authors consider
that the pairing strength is proportional to the surface area
of the nucleus S. In this work, I work with both approaches
given in Refs. [60,64] to investigate the effects of the pairing
amplification on the fission barriers and on the inertia, and
by postulating that G ∝ S/S0, S0 being the surface area of the
same nucleus considered spherical. When the pairing effects
were amplified, it was observed that the theoretical fission
barrier heights came close to the experimental values, as given

by evaluations. The average nuclear field is obtained with
the Woods-Saxon two center shell model [52], that should
be more realistic than the classical Nilsson two-center shell
model [70]. The Woods-Saxon mean field is modified by the
Coulomb and spin-orbit interactions. Versions of two-center
shell models are found in the literature [71–75]. It should be
noted that other results were obtained in the framework of
two-center shell models in the past to investigate the inertia.
For example, cranking mass parameters were also reported in
Ref. [76]. A rotating two-center shell model was investigated
in Ref. [77]. In the mentioned examples, the eigenfunctions
given by a semisymmetric double harmonic oscillator were
used to solve a Nilsson microscopic potential.

In Ref. [48], a parametrization of the fission path in the
multidimensional configuration space spanned by the five
previously mentioned generalized coordinates in the case of
the 232Th parent nucleus was determined. The fission path
originates in the ground state of the parent nucleus and arrives
at the exit point of the outer barrier. The minimization of the
functional (20) is very laborious. In this work, for simplicity,
I renormalized this parametrization by a factor (A/232)1/3.
So, I considered that the dependencies off all the collective
coordinates qν (x) as function of x = (A/232)1/3R for the
nucleus A are the same as qν (R) for the initial nucleus 232Th,
for which the mass number is 232. As mentioned, R denotes
the elongation of the nuclear system and it is given by the
distance between the centers of the spheroids associated to
the nascent fragments. In this way, the fission paths are also
parametrized for the 230,231Th isotopes.

The fission barriers for the low energy fission of 230–232Th
are displayed in Fig. 1. The heights of the theoretical barriers
are given in Table I and compared with values deduced from
experimental data. The parent nuclei are indicated in the first
column. Columns 2 to 4 correspond to low values of G that
are obtained with the formalism of Ref. [60]; the following
three columns correspond to the high values of G, given by
the approach of Ref. [64], while the last columns are for
evaluated data. The heights of the barriers are reported by
taking as reference the energy of the ground state deformation
that is renormalized with a typical zero point vibration energy
of 0.5 MeV. My values agree very well with the evaluations
resulting from experimental data [78]. Deviations from the
empirical evaluations of the same magnitudes in the Th region
are also found in the calculations given in Ref. [79], that take
into account an increase of the gap parameter in the vicinity
of the top of the barrier. The values of the gap parameters �

and those of the pairing interaction G are plotted in Fig. 2
for the 231Th nucleus. The pairing interactions G increase
with the surface of the nucleus. The pairing gaps � are larger
in the regions of the top of the barriers than in the ground state
location. A similar behavior was also observed when a state-
dependent pairing interaction was taken into consideration
[80].

The experimental bandheads energies of the 231Th are
given by configurations of spin 5/2+, 5/2−, 3/2+, and 1/2+ at
energies 0, 185.7, 221.4, and 247.6 keV, respectively [81,82].
In Fig. 3, the neutron single-particle level scheme is displayed
along the fission path, the ground state being located around
R ≈ 4.3 fm. The Fermi single-particle level is marked with
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FIG. 1. The deformation energy V of the 230–232Th parent nuclei
is represented as function of the distance between the centers of the
spheroids associated with the nascent fragments denoted R. Panel
(a) corresponds to 230Th, panel (b) corresponds to 231Th, and panel
(c) is for 232Th. The deformation energy obtained with high values of
the pairing interaction G is plotted with a full line. The dashed line is
used for low values of G.

red points superimposed on the energy curves. The green, dark
blue, violet, and blue curves are assigned to single-particle
levels with projections of the spins � = 1/2, 3/2, 5/2, and
7/2, respectively. In the ground state, the Fermi level has
� = 5/2−, and it is surrounded below by two levels, that is,
the violet one of spin 5/2+ and the dark blue one of spin 3/2+,
while above the Fermi level one obtains the green curve cor-
responding to spin 1/2+. In the single-particle representation,
apart from the inversion of the levels 5/2+ and 5/2− which are
very close in energy, the experimental sequence of spins is re-
produced. It is important to highlight that the density of levels
around the Fermi energy is magnified in the regions of the first
and second barriers. When the density of levels is increased,
the probability of having crossings between single-particle
levels, or avoided level crossing regions between levels with
same the good quantum numbers, is much amplified. When
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FIG. 2. The pairing gap parameters � and the pairing interaction

G as function of the elongation R are plotted in panels (a) and (b),
respectively. The full line corresponds to high values of G obtained
with the formalism of [64], while the dashed line is calculated with
the formalism in [60], giving low G values.

two levels of the same spin enter in an avoided level crossing
region, the radial coupling becomes very large. Also, in the
case of axial-symmetric systems, when two levels that differ
by one unit in their spin intersect, the matrix elements of the
Coriolis coupling reach maximal values. At the same time,
the difference in the quasiparticle energies of these levels
approaches zero when they intersect. It can be also noted
that, in the last terms in the right-hand sides of Eqs. (16) and
(17), the differences in quasiparticle energies appear in the
denominator and the matrix elements appear in the numerator.
Therefore, in the single-particle level crossing regions, the
values of moment of inertia can be extremely large if one of
the two single-particle levels corresponds to the Fermi level.
It is important to note that it is possible to obtain sometimes
negative values of the differences in the energies of seniority-1
configurations in the level crossings. In this case I take the
absolute value of the energy difference in calculations.

TABLE I. The main parameters calculated for 230–232Th potential barriers. The parent nucleus is indicated in the first column. Values for
the height of the first barrier VA, the energy of the second well VII considered as a difference from the ground state energy, and the height of
the second barrier VB, are given in three sets of columns. The firsts two sets correspond to the theoretical calculations, for low values and high
values of G, respectively. The superscript L indicates low values of G. The third set contains the evaluated values from experimental data [78].

Parent V L
A V L

II V L
B VA VII VB V exp

A V exp
II V exp

B

nucleus (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

230Th 6.99 1.51 7.05 6.28 1.41 6.27 6.1 6.5
231Th 7.23 1.17 7.46 6.34 1.22 6.58 6.02 <5.8 6.27
232Th 7.17 0.76 7.47 6.34 0.82 6.64 5.82 <4.5 6.22
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FIG. 3. The neutron single-particle level scheme ε in the region
of the Fermi energy is represented as function of the distance
between the centers of the spheroids associated with the nascent
fragments R. The spherical orbitals are marked with their spectro-
scopic notations on the left, for R = 0, where a spherical nuclear
shape is considered. From R ≈ 19.5 fm, scission has occurred, and
the single-particle energies remain unmodified. The ground state
is located around a deformation of R ≈ 4.3 fm. The levels with
spin projection � = 1/2 are plotted with the green curves, those
with � = 3/2 are plotted with the dark blue ones, while those with
� = 5/2 and � = 7/2 are plotted with violet and blue, respectively.
The Fermi single-particle level is identified with red points that are
superimposed on the curves.

The investigation of the main behavior of the inertia for odd
systems is intended. For this purpose, the simplest formulas
for the inertia, given by Rels. (16) and (17), are used. The
effective masses B calculated with the formula (16) along the
fission trajectories are represented in Fig. 4 for the 230–232Th
nuclei analyzed. After scission, produced around an elonga-
tion of R ≈ 19.5 fm, the effective masses remain constant, ap-
proaching the reduced mass. As expected, the inertia is larger
almost overall for the low values of the pairing interaction
G. Larger values of the inertia are obtained in the regions
of the tops of the two barriers. In its path towards scission,
the even-odd nuclear system exhibits abrupt variations of the
collective inertia around R = 10, 12, 14.5, 16, and 19 fm.
These fluctuations are dependent on the nuclear structure
and can be explained in connection with Fig. 3, where the
single-particle level scheme is displayed. For example, at R ≈
10 fm, two single-particle levels of the same spin projection
� = 3/2 enter an avoiding crossing region, one of them being
the Fermi level. A seniority-1 configuration is assigned to
each of these two single-particle levels. As previously men-
tioned, the quasiparticle energies associated with these two
seniority-1 configurations are almost the same in the avoided
level crossing region. As a consequence,the difference in the
denominator of the third term in the right-hand side of Eq. (16)
is very small. The matrix elements of the derivatives of the
Hamiltonian are also very large between two single-particle
states characterized by the same good quantum numbers.
Therefore, the contribution of the radial interaction between
these two states becomes huge. Around R = 12 fm, these two
single-particle levels intersect once again. At 14.5 fm, several
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FIG. 4. The effective masses B along the fission trajectory dis-

played as function of the distance between the centers of the
spheroids associated with the two fragments R. The parent nuclei
are represented in the same order as in Fig. 1 and the meanings of the
lines types are the same. In panel (b), the inertia is represented up to
a maximal value of 19 h̄2/(MeV fm2).

intersections are produced concomitantly. A blue level of spin
� = 7/2 crosses the black level of spin 9/2, but both these
single-particle levels are located near an appropriate avoided
crossing region. The density of single-particle levels is very
high at R = 16 fm and the Fermi level crosses several single-
particle levels. At 19 fm, an avoided level crossing region is
produced between two dark blue levels of spin 3/2.

The perpendicular moment of inertia around the axis x is
denoted I in the following. The variations of I as function
of the elongation R for the 230–232Th nuclei are displayed in
Fig. 5. The calculations are obtained within the two-center
shell model formalism and by using the formula (17). As
expected, again for even-even systems, the moments of inertia
obtained for low values of the pairing interaction G are
slightly larger than those obtained at larger values. The mo-
ment of inertia plotted for the even-odd 231Th nucleus in panel
(b) exhibits large fluctuations, and exceeds by appreciable
amounts the values obtained for the even-even systems for
some regions of the fission path.

In the ground state, the rotational parameter of 231Th ob-
tained from experimental data is 6 keV [83]. From the analysis
of the fission cross section fine structure [84,85], the rotational
band parameter in the region of the outer barrier, where a third
minimum is postulated [86], is h̄2/2I ≈ 1.9−2.1 keV. From
the present theory, the values obtained in the ground state for
I are 47–59, 82–82, and 48–63 h̄2/MeV for 230Th, 231Th, and
232Th, respectively, for the the high and the low values of the
pairing interaction G. These values give rotational parameters
of the order of 8.5–10.6 keV for the mass A = 230, 6.1 keV
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FIG. 5. The moment of inertia I perpendicular to the axis of sym-
metry along the fission trajectory as function of the distance between
the centers of the spheroids associated with the two fragments R. The
parent nuclei are represented in the same order as in Fig. 1 and the
meanings of the lines types are the same. In panel (b), the moments
of inertia are represented up to a maximal value of 410 h̄2/MeV.

for A = 231, and 8–10.4 keV for A = 232. In the ground state
of the 231Th nucleus, the theoretical value of the moment of
inertia agrees well with the experimental data and was not
proved to be very sensitive to different values of the pairing
interaction G, in the present calculations. At R = 15.7 fm in
the case of 231Th, close to the top of the second barrier, the val-
ues obtained for I are 237 and 254 h̄2/MeV for the high and,
respectively, low values of G. These values can be translated
in rotational parameters ranging between 2.1 and 2 keV, that
are also close to those obtained for the third minimum from
experimental evaluations. However, this agreement should not
be considered as a proof for the existence of triple barriers,
because a fine structure can be also produced by dynamical
single-particle effects [87].

Just before the ground state of the parent nucleus, at R ≈
3.7 fm, one notices a decrease of the moment of inertia for
231Th. At this elongation, as seen in Fig. 3, the Fermi level
has the projection of the spin � = 9/2. It is surrounded by
� = 5/2 levels, and other levels with spins that differ by
one unit are not nearby. Therefore, for this configuration, the
values of I should be small. Once the single-particle levels
with � = 9/2 and � = 5/2 intersect, a new configuration
is obtained in which the Fermi level is characterized by a
projection of spin 5/2, and has a single-particle level of spin
3/2 in its vicinity. Between these single-particle levels that are
close in energy, the Coriolis coupling contributes significantly
to the value of the moment of inertia. Therefore, the values
of I are magnified for this � = 5/2 configuration. So, the
values of I can vary from one seniority-1 configuration to
another, according to the quantum numbers of the blocked

0

4

8

12

16
(a)

0

100

200

300

400
(b)

0 2 4 6 8 10 12 14 16 18 20
R (fm)

B
 (

h
2 /M

eV
 f

m
2 )

-
I (

h
2 /M

eV
)

-

FIG. 6. The effective masses B are displayed in panel (a) and the
perpendicular moments of inertia I in panel (b) as function of the
distance between the centers of the spheroids associated with the two
fragments R for 231Th. The blocking effect is taken into account. The
full curve indicates high values of the pairing interaction G while the
dashed curve is for low values.

levels. Several large fluctuations are observed for I along the
fission path located at 6, 7.8, 8.5, 9, 14.5, and 16 fm. These are
due mainly to crossings between levels that differ by one unit
in the spin �. For example, at R ≈ 6 fm, two levels of spin
� = 1/2 intersect, and the coupling between the conjugate
states is very large. In another example, at R ≈ 7.8 fm, an
intersection between spin 3/2 (dark blue) and spin 5/2 (violet)
is identified, being surrounded by many levels of spin 1/2 and
spin 7/3.

The differences Ei − EiF in the denominators of the last
sums given the Eqs. (16) and (17) are very small in the avoided
level crossing regions and when two single-particle levels of
different spins intersects and produce strong fluctuations for
the inertia of odd systems. Therefore, the energies of the
seniority-1 configurations should be very accurately calcu-
lated. To improve the accuracy of the numerical evaluations
for 231Th, the collective energies were also determined within
Eqs. (6)–(8) for all the states included in the active pairing
levels space, by taking into account the blocking effect. The
same values of the pairing interaction G were considered for
all the possible configurations. Also, the formulas (14) and
(15) were considered in order to calculate more precisely
the inertia. The results are presented in Fig. 6. The behavior
of the inertia is similar to those obtained in the previous
evaluations, where the blocking effect is neglected, exhibiting
a similar structure. In the ground state, the value of the
moment of inertia is larger than in the case when the block-
ing effect is neglected, and reaches 102.3 h̄2/MeV. The two
lowest energy seniority-1 configurations in the region of the
ground state deformation are both assigned a spin projection
� = 5/2, and their corresponding blocked levels are close in
energy. So, the structures of the active pairing levels space
of the two configurations are similar around the ground state
deformation. Due to the blocking effect, the BCS amplitudes
are modified in such a way that the energies of the two � =
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5/2 seniority-1 configurations become almost identical, and
the overlap of the collective wave functions increases, leading
to larger values of the moment of inertia. It is interesting to
note that in the ground state region an inversion of the values
of the moment of inertia is obtained relative to the strength
of the interaction G. In this region, the system possessing the
higher value of G has larger values of the inertia. When G in-
creases, the differences between the energies of the seniority-1
configurations become smaller, leading to an increase of the
inertia. Overall, this increase compensates the decrease of the
inertia produced for excitations to seniority-3 configurations.
In the ground state, the contribution of the proton distribution
is 17.1 h̄2/MeV. In the case of the neutron distribution, the
successive contributions of the three terms in the right-hand
side of (15) amount to 25.9, 1.1, and 58.2 h̄2/MeV. The
contributions due to the second term in the right-hand side
of Eqs. (14) and (15) is very small, and can be considered
as a correction. The contribution of the term that takes into
account seniority-1 excitations is extremely large. It can be
also specified that the mean value of the overlaps |P(γ )(γ ′ )|2
in the active pairing levels space is close to 1, being 0.93
for the excitations to seniority-3 configurations and 0.96 for
excitations between seniority-1 configurations.

IV. CONCLUSIONS

Formulas for the moments of inertia and the mass param-
eters of a deforming odd-mass nuclear system are derived
from the time-dependent pairing equations. The expressions
obtained for the moments of inertia and the effective masses
take into account the effect due to the dissipation produced
during the deformation of the nuclear system. For low col-
lective velocities, the expressions for the inertia reduce to
those obtained in the framework of the superfluid cranking
approximation. Similar expressions for the collective masses
of odd nuclei have not been given in the literature so far in
order to take into account the influence of the odd nucleon. In
the formalism conceived in this work, if the blocking effect
is taken into consideration it is via additional terms due to
the excitations on virtual states constructed on seniority-1

configurations, that contribute to the radial or rotational in-
ertia. For even systems, both formulations made in this work
for the inertial masses and for the moments of inertia reduce
to classical expressions, as also remarked in Refs. [48,49],
where only even-even systems were treated. Only the inertia
corresponding to the lowest energy state is derived, but the
formalism can be also extended to determine the inertia
relative to other configurations, by changing as a reference
the configuration with blocked level iF to another seniority-
1 configuration. The behavior of the inertial parameters is
investigated for the large amplitude motion of the 230–232Th
isotopes. The fact that the inertia is larger when the pairing
interaction is lower is confirmed. The inertia values for odd
nuclear systems exhibit strong fluctuations. These are due
mainly to the changes of the seniority-1 configuration con-
sidered as reference when single-particles crossings occur. In
the case of 231Th, the moment of inertia given by the theory
agree well with those evaluated from experimental data if the
blocking effect is neglected. In obtaining the results, it should
be mentioned that there are some improvements in the actual
calculations in comparison with the previous ones [48,49]
concerning the effective masses and the moments of inertia.
First of all, a pairing interaction proportional to the nuclear
surface is considered. Second, the dependence of the pairing
interaction as a function of the number of single-particle levels
in the pairing space is obtained with a more sophisticated
method, allowing an increase of its magnitude.
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APPENDIX A: INERTIA FORMALISM

The calculations of the matrix elements required to per-
form the variation of the functional (1) are done in a way
similar to that given in Ref. [48]. For example, in the case of
the time derivatives, the matrix elements between seniority-1
configurations are

〈∑
i

cia
+
i φi

∣∣∣∣−ih̄
∂

∂t

∣∣∣∣∑
i′

ci′a
+
i′ φi′

〉
=
∑

i

⎡
⎣−ih̄c∗

i ċi − |ci|2
∑
m �=i

Tm(i)

⎤
⎦δii′ − ih̄

∑
i,i′ �=i

c∗
i ci′ [u

∗
i′(i)ui(i′ ) + v∗

i′(i)vi(i′ )]〈a+
i | ∂

∂t
|a+

i′ 〉, (A1)

where the terms Tγ (γ ′ ) are given by Eq. (11).
The independent variables of the functional (1) are the BCS amplitudes uγ (γ )′ , vγ (γ ′ ) and the amplitudes cγ of the Bogoliubov

wave functions postulated in the trial function (3). Variations with respect the BCS amplitudes lead to the next equations,

−ih̄v̇∗
γ (γ ′ ) = 2v∗

γ (γ ′ )(εγ − λ) − G
∑
γ ′′ �=γ

∑
γ ′′

{
uγ ′′(γ )vγ ′′(γ )

(
uγ ′(γ ) − vγ ′(γ )vγ ′(γ )

2uγ ′(γ )

)
− uγ ′′(γ )vγ ′′(γ )

v∗
γ ′(γ )v

∗
γ ′(γ )

2uγ ′(γ )

}

− 2Gvγ ′(γ )v
∗
γ ′(γ )vγ ′(γ )v

∗
γ ′(γ ). (A2)

The preceding equation can be recast in terms of single-particle densities ργ (γ ′ ) = |vγ (γ ′ |2 and pairing moment components
κγ (γ ′ ) = uγ (γ ′ )vγ (γ ′ ) yielding the well known time-dependent pairing equations [50,54], that are similar to the time-dependent
Hartree-Fock-Bogoliubov equations [88–91]. These equations were also generalized to take into account the Landau-Zener effect
[52], the pair-breaking mechanism [55,57], and the Coriolis coupling [58,92]. Moreover, it is also possible to fix the number of
particles in the two nascent fragments [56,93] by using appropriate projections techniques in the case of fission.
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The inertia emerges from the mixing of different seniority configurations through the couplings determined by the matrix
elements of the time derivative and of the angular momentum operators. According to the variational principle, the derivatives
with respect the independent variables c∗

i are equal to zero. That yields the equations

∂L
∂c∗

i

= ciEi − ih̄ċi − ci

∑
m �=i

Tm(i) −
∑
i′ �=i

ci′ [u
∗
i′(i)ui(i′ ) + v∗

i′(i)vi(i′ )]

(
ih̄〈a+

i | ∂

∂t
|a+

i′ 〉 + 〈a+
i | �� �J|a+

i′ 〉
)

P(i)(i′ )

− ih̄
∑
j′ �=i

ci, j′ (−u∗
j′(i)v̇

∗
j′(i) + v∗

j′(i)u̇ j′(i) ) −
∑

i′

∑
j′ �=i

ci′, j′ (−u j′(i)v
∗
j′(i′ ) + u j′(i′ )v

∗
j′(i) )

(
ih̄〈a+

i | ∂

∂t
|a+

i′ 〉 + 〈a+
i | �� �J|a+

i′ 〉
)

P(i)(i′, j′ )

−
∑
j′>i

∑
k′ �=i, j′

ci, j′,k′ (u j′(i)v
∗
k′(i) − v∗

j′(i)uk′(i) )

(
ih̄〈a+

k′ | ∂

∂t
|a+

j′ 〉 + 〈a+
i | �� �J|a+

i′ 〉
)

P(i)(i, j′,k′ )

+
∑
i′<i

∑
k′ �=i,i′

ci′,i,k′ (ui′(i)v
∗
k′(i) − v∗

i′(i)uk′(i) )

(
ih̄〈a+

k′ | ∂

∂t
|a+

i′ 〉 + 〈a+
k′ | �� �J|a+

i′ 〉
)

P(i)(i′,i,k′ )

= 0 (A3)

where the notation Tγ given by Eq. (11). The terms Tγ are used for the expressions involving the time derivative of the BCS
amplitudes. Because of the antisymmetry ci′,i,k′ = −ci,i′,k′ , it follows that +∑i′<i

∑
k′ �=i,i′ ci′,i,k′ = −∑i′<i

∑
k′ �=i,i′ ci,i′,k′ . As a

consequence, the last two terms in the right-hand side of Eq. (A3) finally give only one sum.
The same procedure applies also for the amplitudes for c∗

i, j and c∗
i, j,k . So, two other equations are obtained:

∂L
∂c∗

i, j

= ci, jEi, j − ih̄ċi, j + ci, j

⎡
⎣T ∗

j(i) −
∑

m �=i, j

Tm(i, j)

⎤
⎦−

∑
i′

ci′, j[u
∗
i′(i)ui(i′ ) − vi′(i)v

∗
i(i′ )]

(
ih̄〈a+

i | ∂

∂t
|a+

i′ 〉 + 〈a+
i | �� �J|a+

i′ 〉
)

P(i, j)(i′, j)

− ih̄ci(u j(i)v̇ j(i) − v j(i)u̇ j(i) ) −
∑
i′ �=i

ci′ (u j(i)v j(i′ ) − u j(i′ )v j(i) )

(
ih̄〈a+

i | ∂

∂t
|a+

i′ 〉 + 〈a+
i | �� �J|a+

i′ 〉
)

P(i, j)(i′ )

= 0 (A4)

and
∂L

∂c∗
i, j,k

= ci, j,kEi, j,k − ih̄ċi, j,k − ci, j,k

∑
m �=i, j,k

Tm(i, j,k)

−
∑

i′
ci′, j,k[u∗

i′(i, j,k)ui(i′, j,k) + v∗
i′(i, j,k)vi(i′, j,k)]

(
ih̄〈a+

i | ∂

∂t
|a+

i′ 〉 + 〈a+
i | �� �J|a+

i′ 〉
)

P(i, j,k)(i′, j,k)

−
∑

j′
ci, j′,k[u∗

j′(i, j,k)u j(i, j′,k) + v∗
j′(i, j,k)v j(i, j′,k)]

(
ih̄〈a+

j | ∂

∂t
|a+

j′ 〉 + 〈a+
j | �� �J|a+

j′ 〉
)

P(i, j, k)(i, j′, k)

−
∑

k′
ci, j,k′ [u∗

k′(i, j,k)uk(i, j,k′ ) + v∗
k′(i, j,k)vk(i, j,k′ )]

(
ih̄〈a+

k̄
| ∂

∂t
|a+

k̄′ 〉 + 〈a+
k̄
| �� �J|a+

k̄′ 〉
)

P(i, j, k)(i, j, k′)

+
{

(−ci )(u j(i)vk(i) − v j(i)uk(i) )
(
ih̄〈a+

j | ∂
∂t |a+

k 〉 + 〈a+
j | �� �J|a+

k 〉)P(i, j,k)(i)δii′ , for j > i

+c j (ui( j)vk(i) − vi( j)uk( j) )
(
ih̄〈a+

i | ∂
∂t |a+

k 〉 + 〈a+
i | �� �J|a+

k 〉)P(i, j,k)( j)δ ji′ , for j < i

}

= 0. (A5)

For a quasiadiabatic motion, one assumes that the system is in its lowest energy seniority-1 state denoted iF . Accordingly,
the amplitudes of the trial wave functions are ciF = 1, ci �=iF = 0, ci, j = 0, and ci, j,k = 0. Within these assumptions, solutions
of Eqs. (A3)–(A5) are obtained in a simple way. The case ci, for i �= iF , is worked out as an example. By considering that the
nucleus is in its lowest energy state, the equations for the mixing of seniority-1 configurations are obtained from Eq. (A3) as

ċi + i

h̄
ci

⎡
⎣Ei −

∑
m �=i

Tm(i)

⎤
⎦+ i

h̄
ciF

[
uiF (i)ui(iF ) + v∗

iF (i)vi(iF )
](

ih̄〈a+
i | ∂

∂t

∣∣a+
iF

〉+ 〈a+
i | �� �J∣∣a+

iF

〉)
P(iF )(i) = 0. (A6)

This kind of equation can be solved using the method of variation of constants. The previous equation is put in the form

∂ci

∂t
+ Pci = Q, (A7)
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where

P = i

h̄

⎛
⎝Ei +

∑
m �=i

Tm(i)

⎞
⎠ (A8)

and

Q = − i

h̄
ciF

[
uiF (i)ui(iF ) + v∗

i′(i)vi(i′ )
](

ih̄〈a+
i | ∂

∂t

∣∣a+
iF

〉+ 〈a+
i | �� �J∣∣a+

iF

〉)
P(iF )(i). (A9)

The homogeneous solution is

cH
i = C1 exp

(
−
∫

Pdx

)
= C1 exp

⎡
⎣− i

h̄

∫ t

0

⎛
⎝Ei −

∑
m �=i

Tm(i)

⎞
⎠dt

⎤
⎦, (A10)

and the general solution is

ci = C1

[∫
Q exp

(∫
Pdt

)
dt + C2

]
exp

(∫
−Pdt

)

= C1

⎧⎨
⎩− i

h̄

∫
cH

iF

[
uiF (i)ui(iF ) + v∗

iF (i)vi(iF )
](

ih̄〈a+
i | ∂

∂t

∣∣a+
iF

〉+ 〈a+
i | �� �J∣∣a+

iF

〉)
P(iF )(i)

× exp

⎡
⎣∫ i

h̄

⎛
⎝Ei −

∑
m �=i

Tm(i)

⎞
⎠dt

⎤
⎦dt + C2

⎫⎬
⎭ exp

⎡
⎣∫ − i

h̄

⎛
⎝Ei −

∑
m �=i

Tm(i)

⎞
⎠dt

⎤
⎦, (A11)

C1, C2 being constants. In the above equation, I denoted the homogeneous solution for the seniority-1 state with cH
iF . Therefore,

I obtain by setting the constants C2 = 0 and C1 = 1

ci = − i

h̄

∫ [
uiF (i)ui(iF ) + v∗

iF (i)vi(iF )
](

ih̄〈a+
i | ∂

∂t

∣∣a+
iF

〉+ 〈a+
i | �� �J∣∣a+

iF

〉)
P(iF )(i)

× exp

⎡
⎣∫ i

h̄

⎛
⎝Ei − EiF −

∑
m �=i

Tm(i) +
∑
m �=iF

Tm(iF )

⎞
⎠dt

⎤
⎦dt exp

⎡
⎣∫ − i

h̄

⎛
⎝Ei −

∑
m �=i

Tm(i)

⎞
⎠dt

⎤
⎦

= −
[
uiF (i)ui(iF ) + v∗

iF (i)vi(iF )
](

ih̄〈a+
i | ∂

∂t

∣∣a+
iF

〉+ 〈a+
i | �� �J∣∣a+

iF

〉)
P(iF )(i)

Ei − EiF −∑m �=i Tm(i) +∑m �=iF
Tm(iF )

cH
iF . (A12)

The same procedure is repeated for the seniority-3 and virtual states. By assuming that the nuclear system is in the lower energy
state cH

iF = 1, four solutions are obtained: ci for the seniority-1 real states, ciF , j and ci′, j for the virtual seniority-3 states, and
ciF , j,k for the seniority-3 real states.

Now the amplitudes obtained for the different configurations should be related to the variation of the collective kinetic energy.
To make the problem tractable, first of all the derivatives of the Hamiltonian instead of the time derivatives are involved:

〈a+
i | ∂

∂t
|a+

i′ 〉 = 〈a+
i | ∂H

∂t |a+
i′ 〉

εi − εi′
. (A13)

The derivative with respect to time is substituted by the partial derivatives with respect to the collective coordinates qν (ν = 1, N).

〈a+
i |∂H

∂t
|a+

i′ 〉 =
∑

ν

〈a+
i | ∂H

∂qν

|a+
i′ 〉q̇ν . (A14)
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By preserving the total energy of the nuclear system, the moments of inertia and the effective masses emerge. The collective
excitations are translated in variations of the collective velocities and of the collective rotations∑

ν,μ

1

2
Bν,μq̇ν q̇μ +

∑
n

1

2
�2

nI2
n =

∑
i �=iF

|ci|2
(
Ei − EiF

)+
∑
j �=iF

∣∣ciF , j

∣∣2(EiF , j − EiF

)+
∑
i �=iF

∑
j �=i,iF

|ci, j |2
(
Ei, j − EiF

)

+
∑
j �=iF

∑
k �= j,iF

∣∣ciF , j,k

∣∣2(EiF , j,k − EiF

)
, (A15)

where In are principal moments of inertia about the axis n = x, y, z.
By identifying the terms proportional to the collective velocities q̇ν q̇μ and the collective frequencies �2

i , the collective inertia
are obtained as given by formulas (9) and (13), eventually.

APPENDIX B: QUASISTATIONARY STATES
WITHOUT BLOCKING

By neglecting the blocking effect, the second terms in
the right-hand sides of Eqs. (14) and (15) vanish because
v j(iF )u j(iF ) − u j(iF )v j(iF ) = 0. The overlaps P(γ )(γ ) become
unity. For stationary states, the BCS amplitudes are real
numbers:

v2
m = 1

2

(
1 − εm − λ

Em

)
, u2

m = 1

2

(
1 + εm − λ

Em

)
, (B1)

where Em =
√

(εm − λ)2 + �2 are quasiparticle energies.
The excitations are given in terms of quasiparticle energies,

EiF , j,k − EiF = E j + Ek; Ei − EiF = Ei − EiF . (B2)

In the BCS theory, the relation(
vmun − umvn

εm − εn

)2

=
(

vmun + umvn

Em + En

)2

(B3)

holds and the first term of the right-hand side of Eq. (14) is
transformed.

Concerning the third term of Eq. (14), one needs the
following identities derived from the BCS equations:

∂u2
m

∂qν

= 2um
∂um

∂qν

= −2vm
∂vm

∂qν

= �

2E3
m

[
�

(
∂εm

∂qν

− ∂λ

∂qν

)
− (εm − λ)

∂�

∂qν

]
, (B4)

〈a+
i | ∂H

∂qν

|a+
i 〉 = ∂εi

∂qν

, (B5)

and

(umvm)2 = 1

4

�2

E2
m

. (B6)

Within the previous identities and after some obvious calcula-
tions, the third term in the right-hand side of Eq. (14) becomes
the second term of the Eq. (16).
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