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Proton elastic scattering on calcium isotopes from chiral nuclear optical potentials
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We formulate microscopic optical potentials for nucleon-nucleus scattering from chiral two- and three-nucleon
forces. The real and imaginary central terms of the optical potentials are obtained from the nucleon self-energy
in infinite nuclear matter at a given density and isospin asymmetry, calculated self-consistently to second order
in many-body perturbation theory. The real spin-orbit term is extracted from the same chiral potential using
an improved density matrix expansion. The density-dependent optical potential is then folded with the nuclear
density distributions of 40,42,44,48Ca from which we study proton-nucleus elastic scattering and total reaction
cross sections using the reaction code TALYS. We compare the results of the microscopic calculations to those
of phenomenological models and experimental data up to projectile energies of E = 180 MeV. While overall
satisfactory agreement with the available experimental data is obtained, we find that the elastic scattering and
total reaction cross sections can be significantly improved with a weaker imaginary optical potential, particularly
for larger projectile energies.
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I. INTRODUCTION

Nucleon-nucleus optical potentials are a valuable tool for
predicting a wide range of scattering and reaction processes
by replacing the complicated many-body dynamics of nucle-
ons interacting through two- and three-body forces with an
average complex, energy-dependent single-particle potential.
Global phenomenological optical potentials [1,2] have been
constructed by fitting to experimental data spanning a large
range of projectile energies across many nuclei. Although
phenomenological optical potentials are very successful at
describing scattering processes involving nuclei near stability,
microscopic optical potentials are not tuned to experimental
data and therefore may have greater predictive power for
reactions involving exotic isotopes.

Semimicroscopic global optical potentials [3,4] derived in
the 1970s from high-precision one-boson-exchange nucleon-
nucleon interactions are still widely used today [5–9].
Whereas the density and isospin-asymmetry dependence is
computed microscopically, the overall strengths of the real
and imaginary volume terms are often adjusted with energy-
dependent empirical strength factors. The effects of three-
body forces were generally neglected in these early works,
and within the original nuclear matter approach no spin-orbit
optical potential could be derived. More recently, three-body
forces have been implemented [10–12] in calculations of
the real and imaginary central terms, while phenomenolog-
ical spin-orbit optical potentials have been added [7,8,13]
in order to better describe analyzing powers and differential
cross sections at large scattering angles. An alternative ap-
proach [14–21] to constructing microscopic optical potentials
is based on multiple scattering theory involving the nucleon-
nucleon T matrix. Such an approach naturally generates a
spin-orbit contribution, but the implementation of medium
effects [22,23] and three-body forces remains challenging,

which in practice often limits the theory to large scattering
energies E � 200 MeV. Other current approaches to deriv-
ing predictive optical potentials include the self-consistent
Green’s function method [24] and the dispersive optical model
[25].

Recently there has been much interest in the development
of microscopic optical potentials [10,12,21,26–30] based on
chiral effective field theory (EFT) [31–33]. The main moti-
vation is to implement more realistic microphysics involv-
ing multipion exchange contributions to the nuclear force,
three-body interactions, and theoretical uncertainty estimates.
Chiral optical potentials are well suited to describe low-
energy scattering processes but are expected to break down
for energies approaching the relevant momentum-space cutoff
employed. In practice, the presence of the cutoff constrains
nucleon projectile energies to lie below E � 200 MeV.

In the present study, we aim to lay the groundwork for
a revised nuclear matter description of the global nucleon-
nucleus optical potential based on chiral EFT. Ultimately the
goal will be to develop a theory for nucleon-nucleus scattering
across a large range of isotopes, including those off stability,
at energies up to 200 MeV. As a starting point we con-
sider differential elastic and total reaction cross sections for
proton-nucleus scattering along a chain of calcium isotopes,
40,42,44,48Ca, at energies ranging from 2 to 160 MeV where
experimental data are available. We also compare to the global
phenomenological optical potential of Koning and Delaroche
[2] and investigate to what extent modern phenomenological
parametrizations of the optical potential are consistent with
microscopic analyses. Our calculations are performed within
the TALYS [34] reaction code for which we have developed an
implementation of our microscopic optical potential.

We take as a starting point for the calculation a partic-
ular high-precision 2N + 3N chiral nuclear potential with
momentum-space cutoff � = 450 MeV. The low-energy
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constants of the potential are fitted to nucleon-nucleon scat-
tering phase shifts, deuteron properties, and in the case of
three-body contact terms also the triton binding energy and
lifetime. The nucleon-nucleon interaction is taken at next-to-
next-to-next-to-leading order (N3LO), while only the N2LO
three-nucleon force is included. The inconsistent treatment of
two- and three-body forces at the level of the chiral expansion
is undesirable, but work toward fully consistent two- and
many-body forces is in progress [35–37]. We note that the
chiral nuclear potential employed in the present work exhibits
good nuclear matter properties (saturation energy and density
[38], thermodynamics [39,40], and Fermi liquid parameters
[41]) when calculated at least to second order in many-body
perturbation theory. In the future we plan to perform calcu-
lations of the nucleon-nucleus optical potential from a wider
range of high-precision chiral nuclear forces in order to better
assess theoretical uncertainties.

In quantum many-body theory, the optical potential for
scattering states is identified with the energy- and momentum-
dependent single-particle self-energy [42]. We first compute
the nucleon self-energy in homogeneous nuclear matter at
arbitrary density and composition (proton fraction) from chi-
ral two- and three-body forces to second order in many-
body perturbation theory. We next compute nuclear density
distributions for selected calcium isotopes (40Ca, 42Ca, 44Ca,
48Ca) from mean field theory employing recently derived [43]
Skyrme effective interactions constrained by chiral effective
field theory. In the local density approximation (LDA) the
nucleon-nucleus optical potential is computed [44] by fold-
ing the nucleon self-energy in homogeneous matter with the
derived density distributions. Since the LDA is known [44] to
underestimate the surface diffuseness of the optical potential
in finite nuclei, we employ the improved local density approx-
imation (ILDA) described in Refs. [7,44] to account for the
nonzero range of the nuclear force.

The method outlined thus far is versatile since it can be
used to produce optical potentials for a very wide range of
nuclei. However, the LDA nuclear matter approach cannot
capture the physics of collective surface modes, shell effects
[45], and surface-peaked spin-orbit optical potentials. The lat-
ter are particularly important for spin observables and elastic
scattering cross sections at large angles. In the present work
we therefore construct a spin-orbit optical potential from the
improved density matrix expansion [46–48], which improves
the description of the spin-dependent part of the energy
density functional compared to the standard density matrix
expansion of Negele and Vautherin [49]. We then benchmark
our approach to experimental data for proton elastic scattering
and total reaction cross sections on the calcium isotopes 40Ca,
42Ca, 44Ca, 48Ca.

The paper is organized as follows. In Sec. II we describe
details of the microscopic calculation of the optical poten-
tial in nuclear matter from chiral EFT. We then calculate
nuclear density distributions from mean field theory and em-
ploy the ILDA to construct nucleon-nucleus optical potentials
for calcium isotopes. The microscopic optical potentials are
parametrized in the form of the Koning-Delaroche (KD) [2]
phenomenological optical potential in order to implement
them into the reaction code TALYS. In Sec. III we compute
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FIG. 1. Diagrammatic representations of the first- and second-
order contributions to the self-energy. The solid lines represent
nucleon propagators and the wavy lines represent the in-medium
two-nucleon interaction.

proton-nucleus elastic differential scattering cross sections up
to projectile energy E = 160 MeV and total reaction cross
sections up to E = 180 MeV. These results are compared to
empirical data and predictions from the KD phenomenologi-
cal optical potential. We end with a summary and conclusions.

II. OPTICAL POTENTIAL FROM CHIRAL EFFECTIVE
FIELD THEORY

A. Real and imaginary central terms

In recent work [10,12] the nucleon self-energy in homo-
geneous nuclear matter has been computed employing a set
of nuclear potentials derived from chiral effective field theory.
The first- and second-order perturbative contributions to the
nucleon self-energy are shown graphically in Fig. 1 and given
quantitatively by

�
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where ni is the occupation probability θ (k f − ki ) for a filled
state with momentum �ki below the Fermi surface, the oc-
cupation probability for particle states is n̄i = θ (ki − k f ),
and the summation is over intermediate-state momenta for
particles �pi and holes �hi, their spins si, and isospins ti. The
nuclear potential V̄ eff

2N represents the antisymmetrized two-
body interaction consisting of the bare nucleon-nucleon (NN)
potential VNN together with an effective, medium-dependent
NN interaction V med

NN derived from the N2LO chiral three-
nucleon force by averaging one particle over the filled Fermi
sea of noninteracting nucleons [50–52]. In the first-order
Hartree-Fock contribution, Eq. (1), the effective interaction
is given by V̄ eff

2N = VNN + 1
2V med

NN , while for the higher-order
contributions, Eqs. (2) and (3), the effective interaction is
given by V̄ eff

2N = VNN + V med
NN . The Hartree-Fock contribution

is nonlocal, energy independent, and purely real, while the
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second-order contributions are in general nonlocal, energy-
dependent, and complex. The single-particle energies in
the denominators of Eqs. (2) and (3) are computed self-
consistently according to

ε(q) = q2

2M
+ Re�(q, ε(q)), (4)

where M is the free-space nucleon mass.
In the present work the self-energy is computed for arbi-

trary isospin asymmetry, δnp = (ρn − ρp)/(ρn + ρp), which is
essential for an accurate description of nuclei for which N �=
Z . The resulting optical potentials for nucleons propagating in
homogeneous matter characterized by its proton and neutron
Fermi momenta kp

f and kn
f are given by
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where the subscript i denotes a propagating proton or neutron.
In relating the physical imaginary part of the optical potential
to the imaginary part of the nucleon self-energy we have
multiplied [53,54] by the effective k mass Mk∗

i defined by

Mk∗
i

M
=

(
1 + M

k

∂

∂k
Vi(k, E (k))

)−1

, (8)

in order to account for the nonlocality of the optical potential.

B. Spin-orbit optical potential

The effective one-body spin-orbit interaction vanishes in
homogeneous nuclear matter and therefore cannot be com-
puted within the framework described above. Instead we em-
ploy an improved density matrix expansion [47,48,55] to con-
struct the one-body spin-orbit interaction from chiral two- and
three-body forces. The improved density matrix expansion
takes advantage of phase space averaging to derive a more
accurate spin-dependent energy density functional compared
to the standard density matrix expansion of Negele-Vautherin
[49].

From the definition of the density matrix

ρ(�r1σ1τ1; �r2σ2τ2) =
∑

α

�∗
α (�r2σ2τ2)�α (�r1σ1τ1), (9)

where �α are energy eigenfunctions associated with occupied
orbitals of the nonrelativistic many-body system, the energy
density functional for N = Z even-even nuclei in the Hartree-
Fock approximation can be expanded up to second order in
spatial gradients as

E[ρ, τ, �J ] = ρ Ē (ρ) +
[
τ − 3

5
ρk2

f

][
1

2MN
+ Fτ (ρ)

]

+ ( �∇ρ)2 F∇ (ρ) + �∇ρ · �J FSO(ρ) + �J 2 FJ (ρ),

(10)

FIG. 2. The nucleon density distributions for 40,42,44,48Ca cal-
culated in mean field theory from the Skyrme Skχ450 effective
interaction constrained by chiral effective field theory.

where ρ(�r ) = 2k3
f (�r )/3π2 = ∑

α �†
α (�r )�α (�r ) defines the

local density with k f (�r ) the local Fermi momentum, τ (�r ) =∑
α

�∇�†
α (�r ) · �∇�α (�r ) is the kinetic energy density, and

�J (�r ) = i
∑

α
��†

α (�r )�σ × �∇�α (�r ) is the spin-orbit density.
These terms are multiplied by the density-dependent strength
functions Ē (ρ), Fτ (ρ), F∇ (ρ), FSO(ρ), FJ (ρ), of which we are
presently only interested in the spin-orbit term FSO(ρ). In
effect, the spin-orbit optical potential is therefore calculated
for N = Z nuclei to first order in many-body perturbation
theory. In the future, higher-order perturbative contributions
[56] to the microscopic nuclear energy density functional may
be investigated. We note that we do not include the isovector
part [57] of the spin-orbit interaction for N �= Z nuclei in this
study since it is known to be small compared to the isoscalar
part [48].

C. Improved local density approximation

We employ the improved local density approximation
(ILDA) to construct the nucleon-nucleus optical potential
for finite nuclei. The density dependent optical potential
(both central and spin-orbit parts) is folded with the radial
density distribution of a target nucleus. The nuclear density
distributions are calculated within mean field theory from
the Skχ450 Skyrme interaction [43], which fits both finite
nuclei properties as well as theoretical calculations of the
asymmetric nuclear matter equation of state from the N3LO
� = 450 MeV chiral potential used in the calculation of the
self-energy. In Fig. 2 we show the resulting nucleon density
distributions for each of the calcium isotopes 40Ca, 42Ca,
44Ca, 48Ca.

In the standard local density approximation, the strength of
the nucleon-nucleus optical potential at a given radial distance
r is evaluated as

V (E ; r) + iW (E ; r) = V
(
E ; kp

f (r), kn
f (r)

)

+ iW
(
E ; kp

f (r), kn
f (r)

)
, (11)

where kp
f (r) and kn

f (r) are the local proton and neu-
tron Fermi momenta. This approximation is strictly valid
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FIG. 3. Left (right): The real, imaginary, and spin-orbit terms of the microscopic optical potential for proton-40Ca scattering at E =
2.35 MeV before (after) applying the improved local density approximation. In the left panel the dots represent raw results from chiral EFT,
while the solid black lines represent fits to the Koning-Delaroche (KD) form. We also compare to the global KD phenomenological optical
potential, shown as the dashed green line, at the same energy.

only for zero-range nuclear forces, and when applied to
nucleon-nucleus optical potentials it is known to underesti-
mate the surface diffuseness [44,58]. Consequently, such an
approach is inadequate for an accurate description of nuclear
elastic scattering and reaction processes. The improved local
density approximation applies a Gaussian smearing

V (E ; r)ILDA = 1

(t
√

π )3

∫
V (E ; r′)e

−|�r−�r′ |2
t2 d3r′ (12)

characterized by an adjustable length scale t associated with
the nonzero range of the nuclear force. In the limiting case of
t → 0, a factor of δ(|�r − �r′|) replaces the Gaussian, giving
VILDA(E ; r) → V (E ; r). In Ref. [7] it is found that for the
central part of the interaction tC = 1.2 fm gives the best fit to
experimental reaction cross sections for 10 < E < 200 MeV
and targets ranging from 40Ca to 208Pb. In the present work we
vary the range parameter 1.15 < tC < 1.25 fm. This variation
is used to estimate the theoretical uncertainty associated with
our choice of the length scale tC . For the spin-orbit part of the
optical potential, we estimate the range parameter tSO from
the root mean square radius of the Argonne v18 spin-orbit
nucleon-nucleon potential [59]. We found tSO = 1.07 fm and
took two values, tSO = 1.0, 1.1 fm to estimate the uncertainty.

In Figs. 3 and 4 we show the comparison between the
central and spin-orbit optical potentials in the LDA (left
panels) and ILDA (right panels) for the proton-40Ca opti-
cal potential at projectile energies E = 2.35 MeV and E =

35 MeV respectively. In the left panels, the dots indicate the
results from chiral effective field theory, and for comparison
we show as the green dashed lines the phenomenological op-
tical potentials from Koning and Delaroche [2]. In particular,
the real central part of the microscopic optical potential has
a much smaller surface diffuseness compared to phenomenol-
ogy. When the improved local density approximation is em-
ployed in the right panels (solid blue bands), the comparison
to phenomenology is much improved. In addition, the overall
strength of the real central part of the optical potential is in
very good agreement with the Koning-Delaroche phenomeno-
logical optical potential. Varying the ILDA range parameter
tC between 1.15 and 1.25 fm yields only a small change in the
overall shape of the real central part, which suggests that the
theoretical predictions for scattering cross sections computed
in the next section will not be especially sensitive to the
precise choice of tC .

In the middle panels of Figs. 3 and 4 we plot the imag-
inary part of the microscopic optical potential for proton-
40Ca scattering at E = 2.35 MeV and E = 35 MeV. This
is again compared to the phenomenological optical potential
of Koning and Delaroche, which is written as the sum of a
volume imaginary part WV and a surface imaginary part WD.
In the microscopic description of the imaginary part, there
is no distinction between these two components. We observe
that in contrast to the real central part of the optical poten-
tial, the microscopic imaginary part exhibits large qualitative
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FIG. 4. Same as Fig. 3, except that the projectile energy is E = 35 MeV.

differences compared to phenomenology. The most striking
difference is a much smaller surface peak, which only appears
at low projectile energies in the microscopic calculation but
persists to much higher energies (E 	 100 MeV) in the phe-
nomenological optical potential. For instance, at the scattering
energy E = 35 MeV, the surface peak has essentially vanished
in the microscopic calculation, and the remaining “volume”
imaginary part is large compared to phenomenology. In fact,
this is a common feature [4,6,60,61] in microscopic optical
potentials computed in the nuclear matter approach. Modern
semimicroscopic optical potentials therefore include empiri-
cal energy-dependent strength factors multiplying the real and
imaginary central parts [7,9].

In the bottom panels of Figs. 3 and 4 we show the real spin-
orbit part of the microscopic optical potential compared to
the Koning-Delaroche phenomenological optical potential for
proton-40Ca scattering at E = 2.35 MeV and E = 35 MeV.
The radial shape of the microscopic spin-orbit optical poten-
tial is found to be very similar to that of the Koning-Delaroche
optical potential, however, the strength of the microscopic po-
tential is larger. Indeed, the density matrix expansion carried
out at the Hartree-Fock level is known [48,62] to produce
a stronger spin-orbit interaction, by about 20–50%, than is
required from traditional mean field theory studies of finite
nuclei. Higher-order perturbative contributions are expected
to remedy this feature. In particular, multi-pion-exchange
processes have been shown [63] to reduce the strength of the
one-body spin-orbit interaction in finite nuclei. This provides
additional motivation for including G-matrix correlations in
the density matrix expansion as outlined in [56]. As in the

case of the central components of the optical potential, we
find relatively small differences between spin-orbit potentials
produced with two choices of the ILDA length scale tSO =
1.0, 1.1 fm.

D. Parameterization of the chiral optical potential

In order to facilitate the implementation of our microscopic
optical potential into standard nuclear reaction codes, such as
TALYS, we fit our optical potential to the phenomenological
form of Koning and Delaroche. Eventually our aim is to
construct a global microscopic optical potential and make it
available in a convenient form for nuclear reaction practition-
ers. This exercise may also help to reveal any deficiencies in
the assumed form of phenomenological optical potentials. We
recall that in the phenomenological description, the optical
potential takes the form

U (r, E ) = VV (r, E ) + iWV (r, E ) + iWD(r, E )

+VSO(r, E )�� · �s + iWSO(r, E )�� · �s + VC (r), (13)

consisting of a real volume term, an imaginary volume and
surface term, real and imaginary spin-orbit terms, and finally
the central Coulomb interaction. In Eq. (13), �� and �s are the
single-particle orbital angular momentum and spin angular
momentum operators, respectively. Since the phenomeno-
logical imaginary spin-orbit term is very small and cannot
be extracted within the present microscopic approach, we
neglect it in the rest of the discussion. The energy and radial
dependence of the different terms in the phenomenological
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optical potential are assumed to factorize according to

VV (r, E ) = VV (E ) f (r; rV , aV ), (14)

WV (r, E ) = WV (E ) f (r; rW , aW ), (15)

WD(r, E ) = −4aDWD(E )
d

dr
f (r; rD, aD), (16)

VSO(r, E ) = VSO(E )
1

m2
π

1

r

d

dr
f (r; rSO, aSO), (17)

where

f (r; ri, ai ) = 1

1 + e(r−A1/3ri )/ai
(18)

is of the Woods-Saxon form with A the mass number and
{ri, ai} the energy-independent geometry parameters that en-
code the size and diffuseness of a given target nucleus respec-
tively. In phenomenological optical potentials, these shape
parameters vary weakly with the target nucleus. The energy-
dependent strength functions in the KD parametrization have
the form

VV (E ) = v1(1 − v2Ẽ + v3Ẽ2 − v4Ẽ3), (19)

WV (E ) = w1
Ẽ2

Ẽ2 + w2
2

, (20)

WD(E ) = d1
Ẽ2 e−d2Ẽ

Ẽ2 + d2
3

, (21)

VSO(E ) = vSO1e−vSO2Ẽ , (22)

where Ẽ = E − EF is the projectile energy relative to the
Fermi energy EF .

In the left panels of Figs. 3 and 4 we show as the solid
black lines the best fit functions of the form Eqs. (14)–
(22) to the microscopic calculations. We see that overall
the phenomenological form can reproduce well the radial
dependence of the microscopic optical potential. In the present
study we have isolated the optical potential at low energy,
where there is a defined surface imaginary peak, and fitted
to the phenomenological form separately. At larger energies
E > 50 MeV, we have also fitted to the phenomenological
form separately. To show that no crucial features of the chiral
potential are lost in this parametrization, we also display in
Figs. 3 and 4 the accompanying coefficient of determination
defined by

R2 = 1 −
∑

i[yi − f (ri )]2∑
i(yi − ȳ)2

, (23)

where yi represents the value of the potential from chiral EFT
at location ri, f (ri ) is the value of the fitted function, and ȳ
is the mean of the chiral optical potential values. In the right
panels of Figs. 3 and 4, the ILDA results are obtained from the
parametrized form of the corresponding parts of the optical
potentials.

For the global KD phenomenological optical potentials we
note that the real and imaginary volume terms have identical
Woods-Saxon shape functions. From the microscopic per-
spective there is little justification for this assumption. In fact,
we find that the shape parameters of the real and imaginary

TABLE I. Shape parameters for the proton-40Ca microscopic
optical potential at the three energies E = 2.35, 35, 100 MeV. Also
shown are the corresponding shape parameters for the Koning-
Delaroche (KD) optical potential that are independent of energy.

VV WV VSO

E = 2.35 MeV
r (fm) 1.213 1.344 1.015
a (fm) 0.723 0.583 0.706
E = 35 MeV
r (fm) 1.183 1.204 1.015
a (fm) 0.730 0.751 0.706
E = 100 MeV
r (fm) 1.173 0.846 1.015
a (fm) 0.713 0.702 0.706
KD
r (fm) 1.185 1.185 0.996
a (fm) 0.672 0.672 0.590

central optical potentials have to be fitted separately in order
to achieve a good fit to the microscopic results. In Table I we
show the values of all shape parameters for the three energy
windows over which we fit to the phenomenological form to-
gether with those of the phenomenological Koning-Delaroche
optical potential, whose shape parameters are independent
of energy. For these results we have chosen the values tC =
1.15 fm and tSO = 1.0 fm in the ILDA. We see that there is
not a very large energy dependence in the shape parameters
of the real volume part of the microscopic optical potential,
but there is a significant difference among the real volume,
imaginary volume, and real spin-orbit parts.

Finally, we note that the microscopic real spin-orbit optical
potential calculated from the density matrix expansion has
no energy dependence. The phenomenological energy depen-
dence used in TALYS (vSO2 = 0.004) is constant across all
nuclei, and in fact since vSO2 is small, the real spin-orbit term

TABLE II. Volume integrals for the real central VC , imaginary
central WC , and real spin-orbit VSO parts of the proton-40Ca optical
potential. Results are shown for the microscopic chiral optical poten-
tial and for the phenomenological Koning-Delaroche (KD) optical
potential.

Chiral (MeV fm3) KD (MeV fm3)

E = 2.35 MeV
VC 524 480
WC 64 80
VSO 19 13
E = 35 MeV
VC 413 374
WC 120 113
VSO 17 11
E = 100 MeV
VC 236 220
WC 163 109
VSO 13 9
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40Ca E=2.35 MeV

FIG. 5. Differential elastic scattering cross sections for proton-
40Ca at projectile energy E = 2.35 MeV. The microscopic cross
section is given by the blue band. The KD phenomenological cross
section is given by the green dashed curve, and experimental data are
represented by red circles.

does not strongly depend on the energy. We have therefore
incorporated this phenomenological energy dependence into
our parametrization of the spin-orbit optical potential. As
mentioned above, the imaginary spin-orbit part of the optical
potential is neglected since its magnitude for the relevant
energy range is ∼0.1 MeV and has been shown to have a neg-
ligible effect on elastic scattering cross sections at relatively
low energies [64].

E. Volume integrals of the real and imaginary parts
of the optical potential

We end this section by comparing the volume integrals of
the various components of the microscopic optical potential to
those from phenomenology. It has been demonstrated [3] that
physical scattering observables can remain unchanged even if
the various parameters of an optical potential are allowed to

vary, provided that the volume integrals, defined by

J

A
= 1

A

∫
U (r)d3r, (24)

remain roughly constant. In Table II we show the volume
integrals for each term of the microscopic and phenomenolog-
ical optical potentials for the proton-40Ca system at the three
energies E = 2.35, 35, 100 MeV. We see that the microscopic
real volume and spin-orbit terms are both slightly larger than
their phenomenological counterparts for all three energies
considered. The central imaginary term features a volume part
that grows with energy and a surface peak that diminishes
with energy. The imaginary term of the chiral optical potential
overestimates the volume component and underestimates the
surface component. For E = 35 MeV these competing effects
nearly cancel out and the chiral volume integral is close to
the phenomenological volume integral. At E = 2.35 MeV, the
volume integral for the chiral imaginary term is smaller than
the KD model since its surface peak is at a smaller r value.
For higher energies, the microscopic imaginary term becomes
larger than the phenomenological imaginary term.

III. RESULTS

As a first test of the microscopic optical potentials con-
structed in the present work, we consider proton scattering
on calcium isotopes. Both the differential elastic scattering
cross sections and total reaction cross sections are calculated
for selected calcium isotopes at energies for which there are
available experimental data. In particular, we compute differ-
ential elastic scattering cross sections for 40,42,44,48Ca targets
at E = 25, 35, 45 MeV projectile energies. For 40Ca, differ-
ential elastic scattering cross sections are also calculated at
E = 2.35, 55, 65, 80, 135, 160 MeV. Experimental data are
taken from Refs. [65–69]. The total reaction cross sections for
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FIG. 6. Differential elastic scattering cross sections for proton projectiles on calcium targets at the energies E = 25, 35, 45 MeV. The
microscopic cross sections are shown as the blue band. The KD phenomenological cross sections are given by the green dashed curves and
experimental data are represented by red circles.
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FIG. 7. Differential elastic scattering cross sections for proton projectiles on calcium targets at the energies E = 25, 35, 45 MeV. In
comparison to Fig. 6, the black bands show the cross sections that result from replacing the microscopic imaginary part in the chiral optical
potential by the Koning-Delaroche phenomenological imaginary part.

proton scattering on 40,42,44,48Ca are calculated and compared
to experimental data [70–73]. Energies exceeding 200 MeV
are not considered, since the chiral expansion is expected to
breakdown around that energy scale.

The TALYS reaction code is used to calculate the cross
sections in the different reaction channels. In all cases we
employ the microscopic optical potential parametrized to the
KD form implemented in the ILDA. In the present work,
the only theoretical uncertainties considered are those for the
ILDA length scales tC and tSO. In the future, we will consider
a wider class of chiral nuclear potentials in order to more
accurately assess the complete theoretical uncertainty. We also
benchmark against results from the KD global phenomenolog-
ical optical potential [2].

A. Microscopic optical potential at low energy

Low-energy nuclear reactions are important for a wide
range of astrophysical applications. One of the primary moti-
vations for the construction of new global microscopic optical
potentials is to reduce the uncertainty in calculated radiative
neutron capture reaction rates on exotic, neutron-rich isotopes.
These reactions play an important role in r-process nucleosyn-
thesis [74,75], especially in cold r-process environments such
as neutron star mergers where freeze-out is achieved rapidly
and neutron capture plays an enhanced role. Neutron-capture
rates are included in most modern r-process reaction network
codes, and the neutron-nucleus optical potential (together with
level densities and γ transition strength functions) is one
of the key ingredients for the theoretical calculations. Most
relevant is the imaginary part of the optical potential at low
energies [9].

In Fig. 5 we show the differential elastic scattering cross
sections for proton projectiles on a 40Ca target at E =
2.35 MeV. The red circles indicate experimental data [65–69],

the green dashed curve is the result of the global phenomeno-
logical optical potential from Koning and Delaroche, while
the blue band is the prediction from the microscopic optical
potential constructed in the present work. Interestingly, there
is very little difference between the phenomenological optical
potential predictions and those from chiral effective field
theory. Both calculations agree well with experimental data
at scattering angles up to θ 	 120◦, but overpredict the cross
section at large angles.

B. Microscopic optical potential at medium energy

In Fig. 6 we plot the differential elastic scattering cross
sections for protons on 40,42,44,48Ca targets at E = 24, 35, 45
MeV. For scattering angles in the range 0◦ < θ < 80◦, the
microscopic optical potential yields cross sections that are
consistent with experiment and often more accurate than
predictions based on the phenomenological KD optical po-
tential. However, at larger scattering angles the microscopic
calculations of the cross sections exhibit a weaker interference
pattern, which persists as the energy increases. Overall, the
microscopic elastic scattering cross sections are larger than
experiment at high scattering angles.

From Fig. 4, we suspect that the underlying cause of these
discrepancies may be due to the imaginary part of the micro-
scopic optical potential. At these intermediate projectile ener-
gies, the imaginary volume integral is close to phenomenol-
ogy according to Table II. However, the microscopic surface
imaginary peak is too small, as can be seen in Fig. 4, which
leads to larger elastic scattering cross sections. In contrast the
imaginary volume part, probed at higher projectile energies,
is much larger than phenomenology.

In order to investigate this conjecture, we substitute the
phenomenological imaginary term into the microscopic opti-
cal potential. This replacement is meant to be a simple way
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FIG. 8. Differential elastic scattering cross sections for proton
projectiles on a 40Ca target at the energies E = 55, 65, 80, 135, 160
MeV. Full microscopic cross sections are shown as the blue bands,
microscopic real optical potential plus phenomenological imaginary
optical potential are shown by the black bands, the KD phenomeno-
logical cross sections are given by the green dashed curves, and
experimental data are represented by red circles.

of showing the possible improvements in the chiral optical
potential and should not be interpreted as a substitute for
proper microscopic modeling. In Fig. 7 we show the differen-
tial elastic scattering cross sections for protons on 40,42,44,48Ca
targets at E = 24, 35, 45 MeV with this phenomenological
replacement. Indeed we find that the calculated cross sections
are much improved at large angles across all isotopes. The en-
hanced surface imaginary part leads to stronger interferences
and an overall decrease in the elastic scattering cross section.
Hence, there is a strong motivation for future work aimed at
improving the microscopic description of the imaginary part
of the optical potential.

C. Microscopic optical potential at high energy

To test the chiral optical potential at higher energies,
we calculate proton-40Ca differential elastic scattering cross
sections at E = 55, 65, 80, 135, 160 MeV. In Fig. 8 we plot

FIG. 9. The proton-40Ca total reaction cross section as a function
of energy calculated from the microscopic optical potential (blue
band), the phenomenological KD optical potential (dashed green
curve), and the microscopic optical potential with the phenomeno-
logical KD imaginary part (black band). Experimental data are
shown as red circles.

the results from the chiral optical potential and the KD
phenomenological optical potential together with experimen-
tal data from Refs. [65–69]. The cross sections from the
chiral optical potential stay close to phenomenological and
experimental results for E = 55, 65 MeV but begin to deviate
strongly for E > 80 MeV. The microscopic imaginary term
becomes much more absorptive for E > 80 MeV, as the large
volume contribution from the chiral optical potential becomes
more relevant. The effect of this can be seen especially in
the lower three plots of Fig. 8, where the cross sections
exhibit large interference oscillations. Since there are more
open inelastic channels at higher energy, a stronger imaginary
part in general corresponds to a lower elastic scattering cross
section.

In order to assess the quality of the microscopic imag-
inary part of the optical potential, we again substitute the
KD phenomenological imaginary part into the chiral optical
potential. The results for proton-40Ca elastic scattering cross
sections at E = 55, 65, 80, 135, 160 MeV are shown in Fig. 8.
Again, we find that the replacement of the large microscopic
imaginary optical potential by the KD phenomenological
imaginary part leads to significant improvements in the elastic
scattering cross sections across all energies. For E = 135
and 160MeV, the purely phenomenological cross sections are
still more accurate, but the microscopic optical potential with
phenomenological imaginary part gives a quality description
of the data.

D. Total reaction cross section

In Figs. 9 and 10 we plot the total reaction cross sections
for proton scattering on 40,42,44,48Ca from our microscopic op-
tical potential and the KD phenomenological optical potential.
The chiral EFT results are shown as the blue band, while the
KD predictions are shown as dashed green lines. Experimental
data [70–73] are shown with red circles. We see that for all
energies the purely microscopic optical potential predicts a
total reaction cross section that is too large, while the phe-
nomenological potential gives an overall good description for
most isotopes and energies. However, for proton-48Ca, the KD
phenomenological potential also gives a larger total reaction
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FIG. 10. The proton-42,44,48Ca total reaction cross sections for
20 < E < 50 MeV calculated from the microscopic optical potential
(blue bands), the phenomenological KD optical potential (dashed
green curves), and the microscopic optical potential with the phe-
nomenological KD imaginary part (black bands). Experimental data
are shown as red circles.

cross section compared to experiment. This suggests that there
might be room for improvement in the phenomenological
description of the global isovector optical potential probed in
this neutron-rich nucleus.

We also show in Figs. 9 and 10 the results for the total
reaction cross sections (black solid bands) when the micro-
scopic imaginary part is replaced by the KD phenomeno-
logical imaginary potential. For intermediate energies (20 <

E < 50 MeV), there is not a substantial improvement in the
comparison to experimental data. However, beyond energies
of E = 50 MeV that are shown in Fig. 9, the replacement
of the phenomenological imaginary part again leads to a
significant improvement in the description of the total reaction
cross section. Nevertheless, the modified microscopic optical
potential still overestimates the total reaction cross section for

all energies due to the real volume and real spin-orbit terms
having slightly larger depths than their phenomenological
counterparts.

IV. CONCLUSIONS

We have calculated a microscopic optical potential from
chiral two- and three-body forces for proton scattering on
calcium isotopes. We started from a self-consistent second-
order calculation of the proton and neutron self-energies in
isospin-asymmetric nuclear matter from which we derived the
central real and imaginary parts of the optical potential in fi-
nite nuclei within the framework of the improved local density
approximation. The real spin-orbit potential was constructed
from the improved density matrix expansion using the same
chiral two- and three-body forces.

We found that chiral nucleon-nucleus optical potentials
describe low-energy (E � 5 MeV) scattering processes rather
well, due in part to a well-defined surface peak in the imag-
inary part of the optical potential. At all energies, the real
central term is consistent with phenomenological modeling,
while the microscopic spin-orbit strength is larger by ∼20%.
At moderate energies (E � 35 MeV), the imaginary part of
the chiral optical potential develops a large volume term
without a significant surface peak. This leads to discrepancies
between our theoretical calculations and experimental data,
especially at large scattering angles. At the highest energies
(E 	 100–160 MeV) considered in the present work, the
large imaginary term leads to over suppression of the elastic
scattering cross section. We have shown that substituting the
microscopic imaginary part with the KD phenomenological
optical potential leads to excellent agreement with elastic
scattering and total reaction cross sections for nearly all
isotopes and projectile energies investigated. In the future we
plan to compute higher-order perturbative contributions that
may improve the description of the imaginary part of the
optical potential and the overall spin-orbit strength. We will
also explore a wider range [76] of chiral nuclear potentials
in order to provide a more comprehensive estimate of the
theoretical uncertainties.
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