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In this work we study approximate and exact solutions for nucleons in a single- j shell, from the perspective
of nucleon-pair basis states, i.e., those coupled by pairs with good spins. We find that for four, five, and six
particles in the 0h11/2 shell, a selected set of independent nucleon-pair basis states leads to approximate solutions
of a realistic two-body interaction, without resorting to the diagonalization. We analytically show that for six
particles in the j = 11

2 shell, two nucleon-pair states with J = 3 and 11—which are coupled by three pairs of
spin 0, 2, and 4 and by pairs of spin 0, 2, and 10, respectively—are eigenstates of any two-body interactions. In
particular, we construct general analytic expressions for states of definite seniority numbers ν = 3, 4, 5 in terms
of nucleon-pair basis states, based on which we further derive exact wave functions for a few eigenstates of any
two-body interactions in the midshells of j = 7

2 , 9
2 , 11

2 . The exact wave functions given here should be useful in
interpreting electromagnetic moment and transition properties of corresponding nuclei.
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I. INTRODUCTION

Atomic nuclei are quantum many-body systems composed
of protons and neutrons. Complicated many-body wave func-
tions are usually obtained by the diagonalization of the Hamil-
tonian matrix in the nuclear shell model [1,2]. Despite the
complexities, simple patterns emerge in the low-lying struc-
tures [3], such as those of the nuclear pairing [4,5] reflecting
the short-range and attractive nature of effective interactions
between (valence) nucleons.

The seniority scheme [6] and its generalization [7,8] are
very useful in interpreting regularities of semimagic nuclei,
and have been receiving renewed interest in recent decades;
see, e.g., [9–25]. The (generalized) seniority number ν refers
to the number of nucleons which are not coupled to spin-zero
pairs (i.e., S pairs) in a state. In the nucleon-pair approxima-
tion [26–28], unpaired nucleons are further coupled into pairs
of nonzero good spins. From this perspective, some of the
present authors have shown [29] that low-lying yrast states
of even-even semimagic N = 82 isotones and Sn isotopes
are well described by one-dimensional structures in terms of
collective pairs of both zero and nonzero spins. Such one-
dimensional structures coincide with the generalized seniority
scheme for those of generalized seniority 0 and 2, but are un-
expected for low-lying states with larger generalized seniority
numbers.

In a single- j shell, the seniority is a quantum number which
can be conveniently used for the classification of jn con-
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figurations. In recent years, solvable eigenstates of systems
with partial dynamical symmetry (suggesting the system has
partial eigenstates keeping all quantum numbers) have been
intensively studied [9–20]. If two-body interactions conserve
the seniority, multiplicity-free states, i.e., those uniquely de-
fined by J and ν, are solvable eigenstates. In Ref. [9] alge-
braic conditions of two-body interactions in the j = 9

2 , 11
2 , 13

2
shells for seniority conservation, and analytic expressions for
eigenenergies of a few multiplicity-free states for n particles
in the j = 9

2 shell, were both derived. In Refs. [10,11] it was
found that, surprisingly, two states of four particles in the j =
9
2 shell with J = 4, ν = 4 and with J = 6, ν = 4, which are
not multiplicity-free, are eigenstates of any two-body interac-
tions. Analytic expressions for energies and wave functions
of these two striking cases were obtained in Ref. [12], and
analytic proofs that these two cases are eigenstates of any
two-body interactions were given in Refs. [13,17]. In Ref. [15]
it was shown that eigenstates of any two-body interactions
have definite seniority quantum numbers, and are solvable
states having their eigenenergies as linear combinations of
two-body matrix elements with rational coefficients. Very
recently, in Ref. [19] an approach using the m scheme and
angular momentum projection technique, to derive solvable
states, was developed, with which analytic expressions for
eigenenergies of a number of solvable states in single- j shells
up to j = 15

2 were obtained.
In this paper we study approximate and exact solutions for

nucleons in a single- j shell from the perspective of nucleon-
pair basis states, i.e., those coupled by pairs of both zero and
nonzero spins. The paper is organized as follows. In Sec. II
we show that a selected set of independent nucleon-pair basis
states, together with the Schmidt orthogonalization, leads
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to approximate solutions of a realistic two-body interaction,
without resorting to the diagonalization. In Sec. III we ana-
lytically show that, for six particles in the j = 11

2 shell, two
nucleon-pair states with J = 3 and 11, both having seniority
4, are eigenstates of any two-body interactions. In Sec. IV, we
construct general analytic expressions for states of seniority
ν = 3, 4, 5 in terms of nucleon-pair basis states, and derive
exact wave functions for a few eigenstates of any two-body
interactions in the midshells of j = 7

2 , 9
2 , 11

2 .

II. APPROXIMATE SOLUTIONS OF A REALISTIC
TWO-BODY INTERACTION

In this section we shall show that a selected set of complete
and independent nucleon-pair basis states leads to approxi-
mate solutions of a realistic two-body interaction. We exem-
plify this with cases of four, five, and six particles in the 0h11/2

shell. We take two-body matrix elements of Ref. [30], which
were derived from the realistic CD-Bonn potential [31] using
the G-matrix approach [32]. The shell-model calculations are
realized using the nucleon-pair approximation [26–28] and
adopting all possible pairs.

Let us first present the definitions of the nucleon-pair basis
state and the shell-model Hamiltonian in a single- j shell. A
pair basis state of 2N nucleons in a single- j shell is given by

(((A†r1 × A†r2 )J2 × A†r3 )J3 · · · A†rN )JN |0〉. (1)

Here the coupled pair with spin r is defined by

A†r
μ = (a†

j × a†
j )

r
μ =

∑
m1m2

Crμ
jm1 jm2

a†
jm1

a†
jm2

, (2)

in which Crμ
jm1 jm2

is the Clebsch-Gordan coefficient. Note that
the pair is not normalized. The shell-model Hamiltonian in a
single- j shell is given by

H = 1

2

∑
JM

VJA†J
M AJ

M = 1

2

∑
J

VJ Ĵ[A†J × ÃJ ](0), (3)

where Ĵ = √
2J + 1, A†J is the pair creation operator defined

in Eq. (2), and ÃJ is the time reversal operator of the pair
destruction. VJ is equal to the antisymmetrized and normalized
two-body matrix element 〈 j jJ|V | j jJ〉.

Now let us describe how we obtain our approximate solu-
tions. We first define the energy of a coupled pair with spin r,
denoted as Ep(r), to be equal to the corresponding two-body
matrix element, i.e.,

Ep(r) = 〈 j jr|V | j jr〉. (4)

We further define the unperturbed energy of a nucleon-pair
basis state, coupled by N pairs with spin r1, r2, . . . , rN , re-
spectively, as

E (0) =
∑

i

Ep(ri ). (5)

Then our procedure is as follows.

(1) We consider all combinations of pairs for a given J ,
and construct pair basis states in the form of Eq. (1) by
coupling the pairs successively with r1 � r2 � · · · �

rN . Keeping those having nonvanishing overlaps with
themselves, we obtain an overcomplete set.

(2) We put the above pair basis states in the overcomplete
set in increasing order of E (0).

(3) From the above overcomplete set, we obtain a com-
plete and independent set step by step, using the cri-
terion for linear independence that the corresponding
norm matrix has only nonzero eigenvalues.

(4) From the above complete and independent set of pair
basis states, we use the Schmidt orthogonalization to
obtain a complete and orthogonal set.

Below we shall show that this complete and orthogonal set
provides us with approximate solutions of the shell-model
Hamiltonian of Eq. (3).

We illustrate in Figs. 1 and 2 the accuracy of our approx-
imate solutions for four, five, and six particles in the 0h11/2

shell. We put the approximate solutions (i.e., orthogonal basis
states), in increasing order of the expectation energy (i.e., the
diagonal matrix element, denoted as Hii), and also put the
eigenstates given by the diagonalization in increasing order of
the eigenenergy (denoted as Ei). The approximate solutions
and the eigenstates in such sequences are denoted as φ1,
φ2, . . ., φD and as ψ1, ψ2, . . ., ψD, respectively, where D
is the dimension of the space with a given J . In Fig. 1 we
plot Ei versus Hii for various J values. One sees that, for
each J , Ei versus Hii follows a very compact trajectory of
Ei = Hii. We also present the overlap 〈φi|ψi〉 in Fig. 2, where
one sees the overlaps are all remarkably close to 1. Thus the
orthogonal basis states included in Figs. 1 and 2 are indeed
approximate solutions of the shell-model Hamiltonian, with
very good accuracy.

One easily sees that using our procedure the nucleon-pair
basis state with the lowest E (0) is one of the approximate
solutions. According to our calculation, in most cases, the
nucleon-pair basis state with the lowest E (0) is also the ap-
proximate solution with the lowest expectation energy. This is
consistent with our earlier work [29], where it was shown that
most yrast states of N = 82 isotones and Sn isotopes can be
well represented solely by one nucleon-pair basis state.

Next let us discuss the above approximate solutions from
the perspective of seniority. It is well known that states
with good seniority numbers are eigenstates of the monopole
pairing interaction [33]. Nucleon-pair basis states in the form
of Eq. (1) in general include components of different seniority
numbers. In a nucleon-pair basis state with N ′ non-S pairs,
the component of the largest seniority is that of ν = 2N ′
for an even-number system and that of ν = 2N ′ + 1 for an
odd-number system. This can be understood by noting that
a seniority-ν state of an n-particle system (n � ν) can be
obtained by adding n−ν

2 S pairs to a seniority-ν state of a ν-
particle system [33]. Also note that, for a given J , the nucleon-
pair basis state(s) having the smallest number of non-S pairs
among all possible pair basis states necessarily has a definite
seniority number, and the components of different seniority
numbers are orthogonal to each other. Then we conclude that
if we replace the second step in the previous procedure to
obtain approximate solutions with
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FIG. 1. Eigenvalues versus diagonal matrix elements of realistic shell-model Hamiltonian matrices, i.e., energies of exact solutions versus
those of approximate ones, for (a) four particles, (b) five particles, and (c) six particles in the 0h11/2 shell. See text for further explanations.

(2′) We put the above pair basis states in the overcomplete
set in increasing order of the number of non-S pairs

every basis state in the final complete and orthogonal set will
have a definite seniority number.

According to our calculation, the above condition happens
to be satisfied in our procedure to obtain the approximate
solutions of four, five, and six particles in the 0h11/2 shell
(except for the 4+ and 6+ cases of six particles in the
0h11/2 shell). Thus, the approximate solutions presented in
this work have definite seniority numbers (for the two excep-
tional cases, we have verified that the approximate solutions
also have definite seniority numbers). Then, the approximate
decoupling, as shown in Figs. 1 and 2, indicates the realistic
two-body interaction used in this work [30] approximately
conserve the seniority. In Table I we present dimensions of
subspaces with definite seniority numbers for a given J . As
shown there, some subspaces of definite seniority numbers
are one-dimensional, and thus approximate solutions included
in them are multiplicity-free. These multiplicity-free states
are necessarily the eigenstates if the two-body interaction
conserves the seniority. Meanwhile, it is very interesting to
note that a few subspaces are multidimensional, and thus
approximate solutions included in them are not multiplicity-
free. The origin of such approximate decoupling between
states which are not multiplicity-free, needs further studies.

III. NUCLEON-PAIR STATES AS EXACT SOLUTIONS
OF ANY TWO-BODY INTERACTIONS

In this section we shall show that for six particles in the j =
11
2 shell, two nucleon-pair states with J = 3 and 11—which

are coupled by three pairs of spin 0, 2, and 4 and by pairs of
spin 0, 2, and 10, respectively, as shown below—are actually
eigenstates of any two-body interactions:

((A†(2) × A†(4))(3) × A†(0))(3)|0〉, (6)

((A†(2) × A†(10))(11) × A†(0))(11)|0〉. (7)

Here we omit normalization factors for simplicity (they will
be given later in Table III).

For an arbitrary J , the n-dimensional configuration space
can be constructed with a set of complete and indepen-
dent pair basis states in the form of Eq. (1), denoted as
|β1〉, |β2〉, . . . , |βn〉. These pair basis states are in general
nonorthogonal. Using the Schmidt orthogonalization, one can
obtain the orthogonal (and non-normalized) basis states as
follows, denoted by |γ1〉, |γ2〉, . . . , |γn〉:

|γ1〉 = |β1〉,
|γ2〉 = |β2〉 − 〈β2|γ1〉

〈γ1|γ1〉 |γ1〉,

FIG. 2. Overlaps between approximate and exact solutions, namely 〈φi|ψi〉 with i = 1, 2, ..., D, for (a) four particles, (b) five particles, and
(c) six particles in the 0h11/2 shell. See text for further explanations.
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TABLE I. Dimensions (denoted as Di) of subspaces with definite seniority numbers (denoted as νi) for a given J , for four, five, and six
particles in the j = 11

2 shell.

J Subspace 1 Subspace 2 Subspace 3 Subspace 4

ν1 D1 ν2 D2 ν3 D3 ν4 D4

( 11
2 )4 0 0 1 2 0 4 1

2 0 0 2 1 4 2
4 0 0 2 1 4 3
5 0 0 2 0 4 2
6 0 0 2 1 4 3
7 0 0 2 0 4 2
10 0 0 2 1 4 2
12 0 0 2 0 4 2

( 11
2 )5 3/2 1 0 3 1 5 1

5/2 1 0 3 1 5 2
7/2 1 0 3 1 5 3
9/2 1 0 3 2 5 2
11/2 1 1 3 1 5 3
13/2 1 0 3 1 5 3
15/2 1 0 3 2 5 3
21/2 1 0 3 1 5 2
23/2 1 0 3 1 5 2

( 11
2 )6 0 0 1 2 0 4 1 6 1

2 0 0 2 1 4 2 6 1
3 0 0 2 0 4 1 6 2
4 0 0 2 1 4 3 6 2
5 0 0 2 0 4 2 6 1
6 0 0 2 1 4 3 6 3
7 0 0 2 0 4 2 6 2
10 0 0 2 1 4 2 6 2
11 0 0 2 0 4 1 6 1
12 0 0 2 0 4 2 6 2

|γ3〉 = |β3〉 − 〈β3|γ1〉
〈γ1|γ1〉 |γ1〉 − 〈β3|γ2〉

〈γ2|γ2〉 |γ2〉,

...

|γn〉 = |βn〉 − 〈βn|γ1〉
〈γ1|γ1〉 |γ1〉

− 〈βn|γ2〉
〈γ2|γ2〉 |γ2〉 − · · · − 〈βn|γn−1〉

〈γn−1|γn−1〉 |γn−1〉.

If |γ1〉, namely |β1〉, is the (non-normalized) eigenstate of any
two-body interactions, matrix elements of the two-body op-
erator [A†s × Ãs](0) (with s = 0, 2, . . . , 2 j − 1, respectively)
between |γ1〉 and |γi〉 (with i = 2, 3, . . . , n, respectively) must
vanish. This further gives the sufficient and necessary condi-
tion of |β1〉 being the eigenstate of any two-body interactions,
i.e.,

〈β1|[A†s × Ãs](0)|β1〉
〈β1|β1〉 = 〈β2|[A†s × Ãs](0)|β1〉

〈β2|β1〉

= · · · = 〈βn|[A†s × Ãs](0)|β1〉
〈βn|β1〉 , (8)

for s = 0, 2, . . . , 2 j − 1, respectively.

For six particles in the j = 11
2 shell, the space of J = 3

is three-dimensional, constructed by the pair basis states as
follows (the pair basis state ((A†r1 × A†r2 )J2 × A†r3 )J |0〉 is
denoted by |r1, r2, r3; J2, J〉).

J = 3 : |β1〉 = |2, 4, 0; 3, 3〉,
|β2〉 = |2, 2, 2; 2, 3〉,
|β3〉 = |2, 2, 4; 2, 3〉, (9)

where |β1〉 is the nucleon-pair state described by Eq. (6). The
space of J = 11 is two-dimensional, constructed by the pair
basis states as below.

J = 11 : |β1〉 = |2, 10, 0; 11, 11〉,
|β2〉 = |2, 2, 8; 4, 11〉, (10)

where |β1〉 is the nucleon-pair state described by Eq. (7).
Below we shall show that Eq. (8) is exactly satisfied for both
the case of J = 3 and that of J = 11, which suggests that the
|β1〉 state of J = 3 and that of J = 11 are the eigenstates of
any two-body interactions. For the J = 11 case, the space is
two-dimensional, and the orthogonal partner of the |β1〉 state
is the other eigenstate.

The general formulas to calculate matrix elements of two-
body interactions in coupled pair basis states were given in
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TABLE II. Exact matrix elements of the two-body operator [A†s × Ãs](0) (with s = 0, 2, . . . , 2 j − 1, respectively), as well as overlaps,
between |β1〉 and |βi〉 (with i = 1, . . . , n, respectively) for the case of J = 3 and that of J = 11. With these exact values, one sees Eq. (8) is
exactly satisfied for both cases, indicating that the nucleon-pair basis state |β1〉 of J = 3 and that of J = 11 are the eigenstates of any two-body
interactions. See text for details.

Overlap s = 0 s = 2 s = 4 s = 6 s = 8 s = 10

J = 3

(β1, β1) 680
429

1360
1287

174080
√

5
184041

403580
184041

149780
14157

√
1
13

157580
√

17
184041

56060
5577

√
1
21

(β2, β1) − 81600
7007

√
6

143 − 54400
7007

√
6

143 − 6963200
1002001

√
30
143 − 16143200

1002001

√
6

143 − 5991200
1002001

√
6
11 − 6303200

1002001

√
102
143 − 6727200

91091

√
2

1001

(β3, β1) 333880
21021

√
2

143
667760
63063

√
2

143
85473280
9018009

√
10
143

198157780
9018009

√
2

143
73541980
9018009

√
2
11

77371780
9018009

√
34
143

27525460
273273

√
2

3003

J = 11

(β1, β1) 200
231

400
693

293600
√

5
693693

208900
231231

568300
129591

√
13

15714700
1882881

√
17

2534500
323323

√
21

(β2, β1) 1200
77

√
2

1729
800
77

√
2

1729
587200
77077

√
10

1729
1253400

77077

√
2

1729
1136600
187187

√
2

133
31429400

209209

√
2

29393
15207000
2263261

√
6

247

Refs. [26–28]. Based on these formulas, we first express
the matrix element of the two-body operator [A†s × Ãs](0)

between coupled pair basis states of three pairs in a single- j
shell in terms of three-pair overlaps, given in Eq. (A1) of
Appendix A. Then we express in closed forms two specific
three-pair overlaps: one overlap between the basis state of
three non-S pairs and the basis state of two non-S pairs and
one S pair, which is given in Eq. (A2) of Appendix A, and
the other overlap between basis states both having two non-S
pairs and one S pair, which is given in Eq. (A3). Using the
above formulas we derive exact values for matrix elements, as
well as overlaps, between |β1〉 and |βi〉 (i = 1, . . . , n). These
exact values are presented in Table II, where one sees Eq. (8) is
exactly satisfied for both the case of J = 3 and that of J = 11,
indicating the nucleon-pair basis state |β1〉 of J = 3 and that
of J = 11 (the factors for normalization will be given later
in Table III) are the eigenstates of any two-body interactions.
With the matrix elements and overlaps listed in Table II we
also have the energies of these two eigenstates, given by

EJ=3,β1 = 1
3V0 + 640

429V2 + 1187
572 V4 + 7489

2244V6

+ 7879
1716V8 + 2803

884 V10, (11)

EJ=11,β1 = 1
3V0 + 3670

3003V2 + 6267
4004V4 + 5683

2244V6

+ 157147
32604 V8 + 76035

16796V10. (12)

The above two eigenstates, which are nucleon-pair states,
both have a definite seniority number ν = 4, as components
with smaller seniority numbers are not possible for J = 3 and
11. They actually belong to a special series [15,19] consisting
of eigenstates of any two-body interactions in the midshells.
In Ref. [19] analytic expressions for eigenenergies of such
states are obtained. The eigenenergies given in Eqs. (11) and
(12) of this work are the same as those derived in Ref. [19].

IV. STATES OF DEFINITE SENIORITY NUMBERS AND
EXACT WAVE FUNCTIONS OF ANY TWO-BODY

INTERACTIONS

In this section we shall construct analytic expressions for
states of definite seniority numbers in terms of nucleon-pair
basis states, and derive exact pair wave functions for a few
eigenstates of any two-body interactions in the midshells of
j = 7

2 , 9
2 , 11

2 .
The states with good seniority quantum numbers are eigen-

states of the monopole pairing interaction [33],

P = 2 j + 1

2
A†(0)Ã(0),

and the states with definite seniority numbers ν = 0, 1, 2
can be easily constructed. For a system with an even particle
number 2N , the seniority-0 state with J = 0 is coupled by N
spin-0 S pairs

A†(0)A†(0) · · · A†(0)︸ ︷︷ ︸
N

|0〉, (13)

and the seniority-2 states with J = 2, . . . , 2 j − 1, respec-
tively, are coupled by (N − 1) S pairs and one spin-J pair

A†(0) · · · A†(0)︸ ︷︷ ︸
N−1

A†J |0〉. (14)

For a system with an odd particle number (2N + 1), the
seniority-1 state with J = j is

A†(0)A†(0) · · · A†(0)︸ ︷︷ ︸
N

a†
j |0〉. (15)

The states with larger seniority numbers can be constructed
numerically. With the procedure consisting of steps (1), (2′),
(3) and (4) described in Sec. II, a complete and orthogonal
set of states all having definite seniority numbers can be con-
structed. One sees that using this procedure, states of definite
seniority numbers for a given J are constructed successively,
from the smallest seniority to the largest one.

From another perspective, we shall construct as follows
analytic expressions for states of definite seniority numbers
ν = 3, 4, 5, directly from one nucleon-pair basis state with
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TABLE III. Exact pair wave functions (denoted by 1
N |α〉 with N 2 = 〈α|α〉) for eigenstates of any two-body interactions in the midshells

of j = 7
2 , 9

2 , 11
2 . Due to the complexity, the normalization factors for the three ν = 6 states in the j = 11

2 shell are numerically calculated.
For systems of 2N particles, we use |r1, r2, . . . , rN ; J2, . . . , J〉 to denote ((A†r1 × A†r2 )J2 · · · ×A†rN )J |0〉; for systems of (2N + 1) particles, we
use | j, r1, r2, . . . , rN ; J1, J2, . . . , J〉 to denote (((a†

j × A†r1 )J1 × A†r2 )J2 · · · ×A†rN )J |0〉. For these eigenstates, exact energies in the form of the
linear combination of two-body matrix elements are given in Ref. [19]. The wave functions presented here should be useful in interpreting
electromagnetic moment and transition properties of corresponding nuclei.

J ν |α〉 N 2

(7/2)4 2 2 |2, 0; 2〉 2

2 4 |2, 2; 2〉 − 8
√

6
21 |2, 0; 2〉 132

49

4 2 |4, 0; 4〉 2

4 4 |2, 2; 4〉 + 2
√

110
21 |4, 0; 4〉 1300

441

(9/2)5 5/2 3 | 9
2 , 2, 0; 5

2 , 5
2 〉 4

3

5/2 5 | 9
2 , 2, 2; 5

2 , 5
2 〉 + 5

√
231

132 | 9
2 , 2, 0; 5

2 , 5
2 〉 +

√
455
28 | 9

2 , 4, 0; 5
2 , 5

2 〉 2080
693

7/2 3 | 9
2 , 2, 0; 7

2 , 7
2 〉 416

165

7/2 5 | 9
2 , 2, 2; 5

2 , 7
2 〉 + 78

√
105

1512 | 9
2 , 4, 0; 7

2 , 7
2 〉 442

693

9/2 3 | 9
2 , 2, 0; 9

2 , 9
2 〉 +

√
5

4 | 9
2 , 0, 0; 9

2 , 9
2 〉 26

165

11/2 3 | 9
2 , 2, 0; 11

2 , 11
2 〉 136

165

11/2 5 | 9
2 , 2, 2; 7

2 , 11
2 〉 −

√
91

22 | 9
2 , 2, 0; 11

2 , 11
2 〉 + 13

√
1890

1188 | 9
2 , 4, 0; 11

2 , 11
2 〉 96824

35937

13/2 3 | 9
2 , 2, 0; 13

2 , 13
2 〉 16

11

13/2 5 | 9
2 , 2, 2; 9

2 , 13
2 〉 + 4

√
5

11 | 9
2 , 2, 0; 13

2 , 13
2 〉 + 5

√
78

66 | 9
2 , 4, 0; 13

2 , 13
2 〉 68

1331

15/2 3 | 9
2 , 4, 0; 15

2 , 15
2 〉 456

715

15/2 5 | 9
2 , 2, 2; 11

2 , 15
2 〉 +

√
13090
132 | 9

2 , 4, 0; 15
2 , 15

2 〉 2125
4719

17/2 3 | 9
2 , 4, 0; 17

2 , 17
2 〉 200

143

17/2 5 | 9
2 , 2, 2; 13

2 , 17
2 〉 +

√
5005
66 | 9

2 , 4, 0; 17
2 , 17

2 〉 266
99

(11/2)6 3 4 |2, 4, 0; 3, 3〉 680
429

11 4 |2, 10, 0; 11, 11〉 200
231

11 6 |2, 2, 8; 4, 11〉 − 18
√

2
1729 |2, 10, 0; 11, 11〉 2.596

13 4 |4, 10, 0; 13, 13〉 280
429

13 6 |2, 2, 10; 4, 13〉 + 24
7

√
15
143 |4, 10, 0; 13, 13〉 0.729

14 4 |4, 10, 0; 14, 14〉 868
429

14 6 |2, 2, 10; 4, 14〉 + 24
7

√
15
143 |4, 10, 0; 14, 14〉 4.426

[ ν
2 ] non-S pairs ([ ν

2 ] denotes the largest integer not larger
than ν

2 ). First, we construct a seniority-ν state of a ν-particle
system starting from a nucleon-pair basis state without S
pairs. The key point we make use of is the property that
such a seniority-ν state of a ν-particle system is a special
eigenstate of the monopole pairing interaction, i.e., that with
the eigenvalue of 0. The technique used here is that of cal-

culating commutators between coupled clusters of fermion
pairs [26–28]. In Appendix B we exemplify our method with
the case of ν = 5 and J �= j. Second, we obtain the corre-
sponding seniority-ν state of an n-particle system simply by
adding n−ν

2 S pairs.
Using the above procedure, for a system with an even

particle number 2N , we have the ν = 4 states given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A†(0) · · · A†(0)︸ ︷︷ ︸
N−2

[(A†r × A†r )(0) + 2r̂
2 j−1 A†(0)A†(0)]|0〉 if J = 0,

A†(0) · · · A†(0)︸ ︷︷ ︸
N−2

[(A†r1 × A†r2 )J − 4r̂1 r̂2 ĵ
2 j−3

{
j j r1

r2 J j

}
A†(0)A†J ]|0〉 if J = 2, . . . , 2 j − 1,

A†(0) · · · A†(0)︸ ︷︷ ︸
N−2

(A†r1 × A†r2 )J |0〉 otherwise.

(16)
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Here r, r1, and r2 are all not equal to 0. For a system with an odd particle number (2N + 1), we have the ν = 3 states given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A†(0)A†(0) · · · A†(0)︸ ︷︷ ︸
N−1

[(a†
j × A†r )J + 4r̂

4 j−2 A†(0)a†
j ]|0〉 if J = j,

A†(0)A†(0) · · · A†(0)︸ ︷︷ ︸
N−1

(a†
j × A†r )J |0〉 otherwise,

(17)

where r is not equal to 0. It is worthwhile to mention that, for example, for the ν = 4 and J = 0 case, one knows in advance
that the pair basis state (A†r × A†r )(0) includes the seniority-4 and seniority-0 components, and the seniority-0 component is
A†(0)A†(0), thus one can obtain the same expression for this case as in Eq. (16) by calculating corresponding overlaps and using
the Schmidt orthogonalization. Similarly, the expression for the case of ν = 4 and J = 2, 4, . . . , 2 j − 1 as in Eq. (16) and that
for the case of ν = 3 and J = j as in Eq. (17) can be also obtained by calculating corresponding overlaps and using the Schmidt
orthogonalization.

The expressions for seniority-5 states are more complicated. For J �= j, we have ν = 5 states given by

A†(0)A†(0) · · · A†(0)︸ ︷︷ ︸
N−2

⎧⎨
⎩[(a†

j × A†r1 )J1 × A†r2 ]J −
∑
{r′

1}
[λ1(r′

1)]A†(0)(a†
j × A†r′

1 )J − λ2A†(0)(a†
j × A†r1 )J − λ3A†(0)(a†

j × A†r2 )J

⎫⎬
⎭|0〉,

(18)

where

λ1(r′
1) = (−) j+J 8 ĵ r̂1r̂2r̂′

1Ĵ1

4 j − 10

{
j r1 J1

r2 J r′
1

}{
j j r1

r2 r′
1 j

}
,

λ2 = (−) j+J1+1 4 ĵ r̂2Ĵ1

4 j − 10

{
j r1 J1

J r2 j

}
,

λ3 = −δ j,J1

4r̂1

4 j − 10
. (19)

Here r1 and r2 are not equal to 0; the new pair A†r′
1 is still described by Eq. (2), and r′

1 is an even number satisfying the triangle
conditions indicated by corresponding 6 j symbols. For J = j, we have ν = 5 states given by

A†(0)A†(0) · · · A†(0)︸ ︷︷ ︸
N−2

⎧⎨
⎩[(a†

j × A†r1 )J1 × A†r2 ] j −
∑
{r′

1}
(1 − δr′

1,0)[λ1(r′
1)]A†(0)(a†

j × A†r′
1 ) j

− λ2A†(0)(a†
j × A†r1 ) j − λ3A†(0)(a†

j × A†r2 ) j + λ4A†(0)A†(0)a†
j

⎫⎬
⎭|0〉, (20)

where λ1, λ2, λ3 can be obtained by substituting J = j in Eq. (19), and

λ4 = 4r̂1r̂2

(4 j − 10)(2 j − 3)

⎛
⎝ ĵ Ĵ1

∑
{r′

1}
[2(1 − δr′

1,0)(2r′
1 + 1) + 1

2
δr′

1,0(2 j + 1)]

×
{

j r1 J1

r2 j r′
1

}{
j j r1

r2 r′
1 j

}
+(−) j+J1 ĵ Ĵ1

{
j r1 J1

j r2 j

}
+ δ j,J1

⎞
⎠. (21)

For the ν = 5 case, it is not feasible to obtain general
expressions as in Eqs. (18)–(21), using the Schmidt or-
thogonalization. We have verified the above Eqs. (16)–
(21) numerically. Note that the above states of definite
seniority numbers are not normalized, and the normaliza-
tion factors can be obtained by calculating corresponding
overlaps.

As shown in Sec. III, two nucleon-pair states of six parti-
cles in the j = 11

2 shell are the eigenstates of any two-body
interactions. These two states having seniority 4 belong to a

special series [15,19] consisting of eigenstates of any two-
body interactions, which are in the midshells and multiplicity-
free, i.e., uniquely defined by J and ν. As explained in
Refs. [15,19], the emergence of such a series is related to
the fact that nondiagonal elements of the Hamiltonian matrix
between two states with seniority numbers differing by 2,
vanish in the midshells. In Ref. [19] exact eigenenergies in the
form of the linear combination of two-body matrix elements
are derived for a number of states of this series in the midshells
of j = 7

2 , 9
2 , 11

2 , 13
2 , 15

2 .
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Below we shall derive exact wave functions for a few states
of this series in terms of nucleon-pair basis states. Note that
an eigenstate of this series is uniquely defined by J and ν,
thus a wave function of such J and ν values is necessarily
the eigenfunction of any two-body interactions. We derive
and present in Table III such eigenfunctions of any two-
body interactions in the midshells of j = 7

2 , 9
2 , 11

2 , denoted as
1
N |α〉 with N 2 = 〈α|α〉. For the states with definite seniority
numbers ν = 2, 3, 4, 5, the non-normalized wave function |α〉
is constructed starting from a pair basis state of [ ν

2 ] non-S pairs
and using the analytic expressions given in Eqs. (14), (16)–
(21), respectively. For the three ν = 6 states of six particles
in the j = 11

2 shell, the non-normalized eigenfunction |α〉
is constructed by using the Schmidt orthogonalization, with
exact overlaps which are calculated using Eqs. (A2) and (A3)
of Appendix A. The normalization factors N are given by
N 2 = 〈α|α〉. Due to the complexity, the normalization factors
for the three ν = 6 states of six particles in the j = 11

2 shell
are numerically calculated.

As shown in Table III, the structures of these eigenstates of
any two-body interactions, in terms of coupled nucleon-pair
basis states, are very compact. Note that in Table III the
pair basis states included in the same pair wave function
are nonorthogonal. It is also worthwhile to mention that, for
example, for the J = 5

2 and ν = 5 case of five particles in the
j = 9

2 shell, the expression of |α〉 is derived starting from the
pair basis state | 9

2 , 2, 2; 5
2 , 5

2 〉 and using Eqs. (18) and (19);
one easily sees the second and third pair basis states in the
|α〉, i.e., | 9

2 , 2, 0; 5
2 , 5

2 〉 and | 9
2 , 4, 0; 5

2 , 5
2 〉, both have ν = 3; as

the J = 5
2 and ν = 3 subspace of five particles in the j = 9

2
shell is one-dimensional, these two pair basis states are dif-
ferent from each other only by a factor, i.e., | 9

2 , 4, 0; 5
2 , 5

2 〉 =√
39
55 | 9

2 , 2, 0; 5
2 , 5

2 〉. Similarly, in the |α〉 of J = 11
2 and ν = 5,

| 9
2 , 4, 0; 11

2 , 11
2 〉 =

√
30
13 | 9

2 , 2, 0; 11
2 , 11

2 〉; in the |α〉 of J = 13
2

and ν = 5, | 9
2 , 4, 0; 13

2 , 13
2 〉 = 3

√
3

130 | 9
2 , 2, 0; 13

2 , 13
2 〉. One can

transform the exact wave functions of Table III into those of
the m scheme by using the Clebsch-Gordan coefficients. Note
that, as shown in Eq. (2), coupled pairs used in this work are
not normalized.

As exemplified in, e.g., Refs. [18,20], seniority quantum
numbers are very useful in interpreting electromagnetic prop-
erties of semimagic nuclei with valence particles or holes
dominantly occupying a high- j shell. It will be interesting

to study electromagnetic moment and transition properties
of semimagic nuclei—such as Ca isotopes around 44Ca with
neutrons in the 0 f7/2 shell, Rh isotopes with proton holes in
the 0g9/2 shell, Sn isotopes around 126Sn with neutron holes in
the 0h11/2 shell, and Pb isotopes around 213Pb with neutrons
in the 1g9/2 shell—using the exact wave functions given in
Table III which have definite seniority quantum numbers and
are eigenfunctions of any two-body interactions.

V. SUMMARY

In this work we study approximate and exact solutions for
nucleons in a single- j shell from the perspective of nucleon-
pair basis states, i.e., those coupled by pairs with both zero
and nonzero good spins [26–28]. We find that for four, five,
and six particles in the 0h11/2 shell, a selected set of indepen-
dent nucleon-pair basis states leads to approximate solutions
of a realistic two-body interaction, without resorting to the
diagonalization.

We analytically show that for six particles in the j = 11
2

shell, two nucleon-pair states with J = 3 and 11—which are
coupled by three pairs of spin 0, 2, and 4 and by pairs of
spin 0, 2, and 10, respectively—are eigenstates of any two-
body interactions. We also present exact energies of these two
eigenstates, which are the same as corresponding results of
Ref. [19].

In particular, we construct general analytic expressions
for states of definite seniority numbers ν = 3, 4, 5 in terms
of nucleon-pair basis states. Based on these expressions, we
further derive exact wave functions for a few eigenstates of
any two-body interactions in the midshells of j = 7

2 , 9
2 , 11

2 .
Exact energies of these eigenstates were derived recently in
Ref. [19]. The exact wave functions obtained in this work
should be useful in interpreting electromagnetic moment and
transition properties of corresponding nuclei.
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APPENDIX A: MATRIX ELEMENTS BETWEEN COUPLED PAIR BASIS STATES OF THREE PAIRS IN A SINGLE- j SHELL

In this Appendix we describe how we derive exact values for matrix elements of the two-body operator [A†s × Ãs](0)

between coupled pair basis states of three pairs in a single- j shell [the pair basis state ((A†r1 × A†r2 )J2 × A†r3 )J |0〉 is denoted
by |r1, r2, r3; J2, J〉 here]. The general formulas to calculate matrix elements of two-body interactions in coupled pair basis states
were given in Refs. [26–28]. Based on these formulas, we first express the matrix element of the two-body operator [A†s × Ãs](0)

in terms of three-pair overlaps, and then obtain closed-form expressions for two specific three-pair overlaps, i.e., that between
the basis state of three non-S pairs and the basis state of two non-S pairs and one S pair, and that between basis states both having
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two non-S pairs and one S pair. The matrix element of the two-body operator [A†s × Ãs](0) is given by

〈r1, r2, r3; J2, J|[A†s × Ãs](0)|s1, s2, s3; J ′
2, J〉

= 2

ŝ
(δr3,s + δr2,s + δr1,s)〈r1, r2, r3; J2, J|s1, s2, s3; J ′

2, J〉 +
∑
{r′

2},t2
8r̂2r̂3Ĵ2t̂2r̂′

2〈r1, r′
2, s; t2, J|s1, s2, s3; J ′

2, J〉
∑

t

(−)J2+J+t+t2+1

× (2t + 1)

{
J2 t t2
s J r3

}{
r1 r2 J2

t t2 r′
2

}{
j j r2

t r′
2 j

}{
j j r3

s t j

}

+
∑
{r′

1},t2
8r̂1r̂3Ĵ2t̂2r̂′

1〈r′
1, r2, s; t2, J|s1, s2, s3; J ′

2, J〉
∑

t

(−)J+t+1

× (2t + 1)

{
J2 t t2
s J r3

}{
r1 r2 J2

t2 t r′
1

}{
j j r1

t r′
1 j

}{
j j r3

s t j

}

+
∑
{r′

1}
8r̂1r̂2r̂′

1〈r′
1, s, r3; J2, J|s1, s2, s3; J ′

2, J〉
∑

t

(−)J2+1(2t + 1)

{
r1 t r′

1
s J2 r2

}{
j j r1

t r′
1 j

}{
j j r2

s t j

}
. (A1)

Note that r1, r2, r3 and s1, s2, s3 can be zero or nonzero. In the summations r′
1, r′

2 are even numbers, and r′
1, r′

2, t, t2 must satisfy
the triangle conditions indicated by corresponding 6 j symbols. The new pairs, i.e., the spin-r′

1 and spin-r′
2 pairs, are still described

by Eq. (2). The overlap between one basis state of three non-S pairs and one basis state of two non-S pairs and one S pair is
given by

〈r1, r2, r3; J2, J|s1, s2, 0; J, J〉

=
∑
{r′

2}
(−)J 32r̂2r̂3r̂′

2Ĵ2

ĵ

{
r1 r2 J2

r3 J r′
2

}{
j j r2

r3 r′
2 j

}⎛
⎝δr1,s1δr′

2,s2 + (−)Jδr1,s2δr′
2,s1 − 4r̂1r̂′

2ŝ1ŝ2

⎧⎨
⎩

j j r1

j j r′
2

s1 s2 J

⎫⎬
⎭

⎞
⎠

+
∑
{r′

1}
(−)J2

32r̂1r̂3r̂′
1Ĵ2

ĵ

{
r1 r2 J2

J r3 r′
1

}{
j j r1

r3 r′
1 j

}⎛
⎝δr′

1,s1δr2,s2 + (−)Jδr′
1,s2δr2,s1 − 4r̂′

1r̂2ŝ1ŝ2

⎧⎨
⎩

j j r′
1

j j r2

s1 s2 J

⎫⎬
⎭

⎞
⎠

+ [1 + (−)J2 ]
16r̂1r̂2

ĵ

{
j j r1

r2 J2 j

}⎛
⎝δJ2,s1δr3,s2 + (−)JδJ2,s2δr3,s1 − 4Ĵ2r̂3ŝ1ŝ2

⎧⎨
⎩

j j J2

j j r3

s1 s2 J

⎫⎬
⎭

⎞
⎠, (A2)

Here r1, r2, and r3, as well as s1 and s2, are all not equal to 0. In the summations r′
1, r′

2 are even numbers satisfying the triangle
conditions indicated by corresponding 6 j symbols. The overlap between basis states both having two non-S pairs and one S pair
is given by

〈r1, r2, 0; J, J|s1, s2, 0; J, J〉 =
(

8 − 64

2 j + 1

)⎛
⎝δr1,s1δr2,s2 + (−)Jδr1,s2δr2,s1 − 4r̂1r̂2ŝ1ŝ2

⎧⎨
⎩

j j r1

j j r2

s1 s2 J

⎫⎬
⎭

⎞
⎠, (A3)

where r1 and r2, as well as s1 and s2, are all not equal to 0. Using the above formulas we obtain exact values presented in Table II,
for matrix elements of the two-body operator [A†s × Ãs](0), as well as overlaps, between the three-pair basis states.

APPENDIX B: CONSTRUCTION OF A SENIORITY-ν STATE OF A ν-PARTICLE SYSTEM WITH ν = 5 AND J �= j

In this Appendix we describe how we construct a seniority-ν state of a ν-particle system. We denote such states as |α〉 =
α†|0〉. Because |α〉 manifests itself as the eigenfunction of the monopole pairing interaction with a special eigenvalue of 0, the
commutator between A†(0)Ã(0) (proportional to the operator of the monopole pairing interaction) and the creation operator of |α〉
must satisfy

[A†(0)Ã(0), α†]|0〉 = A†(0)Ã(0)α†|0〉 = 0. (B1)

We then construct the expression of |α〉 satisfying Eq. (B1), using the technique of calculating commutators between coupled
clusters of fermion pairs [26–28].

We exemplify our method with the case of ν = 5 and J �= j. We start from a nucleon-pair basis state without S pairs, denoted
as

|β〉 = β†|0〉 = ((a†
j × A†r1 )J1 × A†r2 )J |0〉, (B2)
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where r1 and r2 are not equal to 0, and J �= j. The commutator between A†(0)Ã(0) and the creation operator of |β〉 is given by

[A†(0)Ã(0), ((a†
j × A†r1 )J1 × A†r2 )J ]|0〉 =

⎧⎨
⎩

∑
{r′

1}
[c1(r′

1)]A†(0)(a†
j × A†r′

1 )J + c2A†(0)(a†
j × A†r1 )J + c3A†(0)(a†

j × A†r2 )J

⎫⎬
⎭|0〉, (B3)

where

c1(r′
1) = (−) j+J 8r̂1r̂2r̂′

1Ĵ1

ĵ

{
j r1 J1

r2 J r′
1

}{
j j r1

r2 r′
1 j

}
,

c2 = (−) j+J1+1 4r̂2Ĵ1

ĵ

{
j r1 J1

J r2 j

}
, (B4)

c3 = −δJ1, j
4r̂1

2 j + 1
,

and r′
1 is an even number satisfying the triangle conditions indicated by corresponding 6 j symbols. As J �= j in this case, r′

1 �= 0.
Then one sees [A†(0)Ã(0), β†]|0〉 is equal to a linear combination of pair basis states all having one S pair, denoted as

|β ′〉 = β ′†|0〉 = A†(0)(a†
j × A†r )J |0〉, (B5)

with r �= 0 and J �= j. We next obtain the commutator between A†(0)Ã(0) and the creation operator of |β ′〉,

[A†(0)Ã(0), A†(0)(a†
j × A†r )J ]|0〉 = dA†(0)(a†

j × A†r )J |0〉, d = 4 j − 10

2 j + 1
. (B6)

One sees that [A†(0)Ã(0), β ′†]|0〉 is proportional to |β ′〉 itself. This is because A†(0)(a†
j × A†r )J |0〉 with r �= 0 and J �= j has definite

seniority number ν = 3 and is an eigenstate of the monopole pairing interaction.
We now construct the |α〉 of ν = 5 and J �= j as follows, using the above Eqs. (B3), (B4), and (B6):⎧⎨

⎩[(a†
j × A†r1 )J1 × A†r2 ]J −

∑
{r′

1}
[λ1(r′

1)]A†(0)(a†
j × A†r′

1 )J − λ2A†(0)(a†
j × A†r1 )J − λ3A†(0)(a†

j × A†r2 )J

⎫⎬
⎭|0〉, (B7)

where λi is given by ci/d ,

λ1(r′
1) = c1(r′

1)

d
= (−) j+J 8 ĵ r̂1r̂2r̂′

1Ĵ1

4 j − 10

{
j r1 J1

r2 J r′
1

}{
j j r1

r2 r′
1 j

}
,

λ2 = c2

d
= (−) j+J1+1 4 ĵ r̂2Ĵ1

4 j − 10

{
j r1 J1

J r2 j

}
,

λ3 = c3

d
= −δ j,J1

4r̂1

4 j − 10
. (B8)

One sees that, with the |α〉 given by Eqs. (B7) and (B8), Eq. (B1) is exactly satisfied. Thus this |α〉 is the (non-normalized)
eigenfunction of the monopole pairing interaction, which has a special eigenvalue of 0.
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