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We analyze the isoscalar response related to breathing modes with particular attention being paid to low-
lying excitations in neutron-rich nuclei. We use the subtracted second random-phase approximation (SSRPA) to
describe microscopically the response. By increasing the neutron excess, we study the evolution of the response
in Ca isotopes going from 40Ca to 48Ca and to 60Ca as well as in N = 20 isotones going from 40Ca to 36S and
to 34Si. Finally, the case of 68Ni is investigated. We predict soft monopole modes in neutron-rich nuclei which
are driven by neutron excitations. At variance with dipole pygmy modes, these neutron excitations are not only
strongly dominant at the surface of the nucleus but over its entire volume. The effect of the mixing with two
particle–two hole configurations induced by the SSRPA model is analyzed. The properties of such soft neutron
modes are investigated in terms of their excitation energies, transition densities and wave-function components.
Their collectivity is also discussed as a function of the isospin asymmetry and of the mass of the nucleus. The
link between such low-energy compression modes and a compressibility modulus introduced for neutron-rich
infinite matter is finally studied.
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I. INTRODUCTION

Excitation spectra in neutron-rich nuclei are tightly con-
nected to their strong isospin asymmetry. Exotic excitation
modes may occur which are related to the existence of a
neutron excess. The most well known examples are the so-
called pygmy resonances. Pygmy dipole resonances have been
widely studied experimentally (see, for example, Refs. [1–9]
and Refs. [10,11] for review articles) and their complex nature
has been extensively discussed and interpreted in terms of os-
cillations of a neutron skin against a core, mixing of isoscalar
and isovector nature, coupling with a toroidal motion, single-
particle versus collective behavior, deformation effects (see,
for instance, some recent publications [12–23]). Experimental
evidence on the existence of low-energy excitations related to
a neutron excess was also reported in Refs. [24,25] for the
quadrupole channel.

However, soft monopole excitations have been much less
analyzed in neutron-rich nuclei so far. They were predicted
theoretically for neutron-rich Ca [26], Ni [26–28], Pb and Sn
[29] isotopes. A few attempts to measure them in exotic nuclei
have been performed but a clear experimental signature of
their existence is still missing. In the past decade, measure-
ments were done on neutron-rich Ni isotopes, using active
targets as detectors. This type of experimental studies was
carried out for 56Ni with deuterons as probes [30] and for 68Ni
using α and deuteron scattering [31]. In particular, based on
theoretical predictions, 68Ni was expected to be a good candi-
date for presenting a soft breathing mode. However, several
limitations of the experimental setup could not allow for a

clear observation of soft monopole excitations in the measure-
ment described in Ref. [31] for 68Ni and the authors pointed
out the necessity of upgraded active-target setups. However,
most of the available theoretical calculations [26,27,29] are
based on the mean-field approach. It may then be interesting
to have new insights into these excitation modes performing
a theoretical investigation that encompasses beyond-mean-
field effects and that may, for this reason, provide a clearer
and more complete analysis of their nature. This is done in
the present article by using the subtracted second random-
phase approximation (SSRPA) introduced in Refs. [32,33].
Two particle-two hole (2p2h) configurations are coupled with
one particle-one hole (1p1h) elementary excitations and a
subtraction of the self-energy is carried out to remove the
double counting of correlations (if traditional effective func-
tionals are used for such beyond-mean-field models), the
instabilities related to the violation of the Thouless theorem
[34], and the possible ultraviolet divergences (in cases where
zero-range effective interactions are used), as suggested in
Ref. [35]. Details on such a subtraction procedure applied to
the second random-phase-approximation model may be found
in Ref. [32].

The paper is organized as follows. In Sec. II we provide
all the numerical details for the calculations carried out in
the present work. In Sec. III we consider the case of the
N = 20 N = Z nucleus 40Ca to check whether a low-lying
monopole excitation is predicted for this nucleus (having no
neutron excess) and which is its nature. In the same section,
more neutron-rich Ca isotopes are analyzed, 48Ca (δ = (N −
Z )/A = 0.17) and 60Ca (δ = 0.33), and the evolution of the
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physical nature of the predicted low-lying strength is inves-
tigated going from N = 20 to N = 28. The strongly isospin
asymmetric case of 60Ca is studied as an illustration to check
how these excitations, and in particular their collectivity,
further evolve with the neutron excess. Section IV focuses on
N = 20 isotones and the neutron-rich nuclei 34Si and 36S (δ =
0.18 and 0.11, respectively) are analyzed, to be compared with
the N = Z nucleus 40Ca. Section V is finally dedicated to 68Ni
(δ = 0.18), where the isospin asymmetry is comparable to that
of 48Ca and 34Si, but the number of nucleons is higher. This
is done to identify a possible dependence of the collectivity of
low-lying excitations on the mass of the nucleus. An enhanced
collectivity in heavier nuclei would allow for an easier experi-
mental observation in those cases. Finally, Sec. VI describes a
link between the energies of such soft compression modes and
a compressibility modulus introduced for neutron-rich infinite
matter. Conclusions are drawn in Sec. VII.

II. NUMERICAL DETAILS

The formalism and the details of the SSRPA model can
be found in Ref. [32]. The calculation scheme is fully
self-consistent, which means that the residual interaction is
consistently employed in the SSRPA model with respect
to the ground-state calculations carried out with the mean-
field Hartree-Fock model. In addition, the residual interac-
tion includes all the rearrangement tems [36]. The Skyrme
parametrization SGII [37,38] is used.

A cutoff of 80 MeV is chosen for building the 1p1h
configurations, ensuring a full preservation of the isoscalar
and isovector energy-weighted sum rules (EWSRs) at the level
of the random-phase approximation (RPA). Deviations of less
than 1% are found. A numerical cutoff of 60 MeV is used
to truncate on the excitation energies of 2p2h configurations
(we recall, however, that the SSRPA results are not affected
by this cutoff and are stable with respect to the choice of its
value [32]).

The same cutoff value on 2p2h configurations is used both
for the construction of the matrix to be diagonalized and for
the evaluation of the corrective terms induced by the subtrac-
tion procedure [32]. The evaluation of these corrective terms
is performed by using a diagonal approximation. We have
shown that this approximation does not affect the results [32].
The interaction between 2p2h configurations is instead fully
taken into account in the 2p2h block matrix of the SSRPA
eigenvalue problem. The SSRPA model does not account
explicitly for pairing correlations. Work to treat superfulid
systems is presently in progress. For this reason, we have
chosen to limit our analysis to systems having both proton
and neutron shell or subshell closures, with therefore a limited
(or negligible) amount or pair correlations as compared to
midshell nuclei.

III. Ca ISOTOPES WITH NEUTRON EXCESS EQUAL TO
0, 0.17, AND 0.33

A first investigation is done on 40Ca (having no neutron
excess) and the corresponding SSRPA monopole strength
distribution is plotted in Fig. 1(a). In addition to the region
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FIG. 1. (a) Monopole strength distribution computed with RPA
(dashed blue bars) and SSRPA (full red bars) for 40Ca; (b) same as in
(a) but for 48Ca; (c) same as in (a) but for 60Ca.

of the isoscalar giant monopole resonance, which may be
easily recognized in the figure, one observes the presence of
some strength for this nucleus in the energy region around
14 MeV. For comparison, also the RPA strength distribution
is shown to indicate the main effects provided by the beyond-
mean-field SSRPA model, compared to the mean-field-based
RPA predictions. A low-lying excitation is found also with
the RPA model, the main difference being a shift to lower
energies and a stronger fragmentation produced by SSRPA
owing to the coupling with 2p2h configurations. To analyze
the nature of these excitation modes, the SSRPA neutron and
proton transition densities multiplied by r2 and associated
with the energy peak located at 14.2 MeV are shown in
Fig. 2. The dominant proton contribution can be clearly seen.
It was in particular found that such an excitation is mainly
driven by the proton 1p1h configuration [π3s1/2, π2s1/2]J=0.
The RPA prediction is analougous, apart from the fact that
(i) an energy shift exists between the two spectra, (ii) only
1p1h configurations compose this excitation in RPA, and
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FIG. 2. Neutron and proton transition densities multiplied by r2

(in units of fm−1) for 40Ca associated with the SSRPA energy peak
located at 14.2 MeV.
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TABLE I. Composition of the peak located at 14.2 MeV for 40Ca. The percentages of the total contributions coming from 1p1h and 2p2h
configurations are indicated and the dominant configurations are listed.

40Ca 1p1h 2p2h
40 % 60 %

[π3s1/2, π2s1/2]J=0 [[π5p3/2, π2 f7/2]JP=2[π1d5/2, π1d3/2]JH =2]J=0

[[π4s1/2, ν3d5/2]JP=3[π1d5/2, ν1d3/2]JH =3]J=0

[[π4p3/2, ν3 f5/2]JP=4[π1d5/2, ν1d3/2]JH =4]J=0

[[π3 f7/2, ν1 f7/2]JP=3[π1d5/2, ν1d3/2]JH =3]J=0

[[π4s1/2, π5d5/2]JP=2[π1d3/2, π1d3/2]JH =2]J=0

[[π2p1/2, ν2d3/2]JP=1[π1d3/2, ν1p3/2]JH =1]J=0

[[π4p3/2, ν1 f7/2]JP=2[π1d3/2, ν1d5/2]JH =2]J=0

[[π3 f7/2, ν1 f7/2]JP=3[π1d3/2, ν1d5/2]JH =3]J=0

[[π2d3/2, ν6s1/2]JP=2[π1d3/2, ν2s1/2]JH =2]J=0

[[ν4s1/2, ν4d5/2]JP=2[ν2s1/2, ν1d3/2]JH =2]J=0

(iii) there is a higher fragmentation of the strength in the
SSRPA spectrum. In the SSRPA case, the mixing with higher-
order configurations leads to a strong contribution coming
from the 2p2h sector. The 2p2h contribution to the norm of
the state is indeed close to 60% and the main configurations
are shown in Table I. The percentage of the EWSR computed
in SSRPA up to 15 MeV is 2.13%.

To make clear the difference between this low-lying part
of the spectrum and the isoscalar giant monopole resonance,
SSRPA neutron and proton transition densities multiplied by
r2 are plotted in Fig. 3 for the peak located at 21.3 MeV. One
can observe that, in this case, neutrons and protons participate
together and coherently to the excitation mode.

We then illustrate the case of a neutron excess equal to
0.17 with the Ca isotope 48Ca. Figure 1(b) shows the strength
distributions in the RPA and SSRPA cases. Also this time the
effect of SSRPA is to produce a shift of the strength distribu-
tion to lower energies and to induce more fragmentation in the
spectrum, compared to the RPA case.

The SSRPA peak located at 13.8 MeV is mainly composed
by the 1p1h configuration [ν2 f7/2, ν1 f7/2]J=0 and by the
2p2h configuration [ν2 f7/2, ν4 f7/2]JP [ν1 f7/2, ν1 f7/2]JH ]J=0,
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FIG. 3. Same as described in the caption of Fig. 2 but for the
peak located at 21.3 MeV.

with JP = JH = 0, 2, 4, the dominant component being the
one with JP = JH = 4. The other 2p2h configurations lead to
negligible contributions to the peak and for this reason are not
reported on a table.

SSRPA neutron and proton transition densities are shown
in Fig. 4 for this peak. It may be seen that the physical
nature of this excitation mode has strongly evolved compared
to the case of 40Ca. Now this excitation is mainly driven
by neutrons. The percentage of the EWSR computed up to
15 MeV is 2.5%, slightly larger than for 40Ca. The transition
probability of the state is mainly composed by the most impor-
tant 1p1h contribution but several other 1p1h configurations
(mainly neutron configurations) contribute to the total B(E0).
Consequently, this state is slightly more collective (but still
weakly collective) than the proton state in 40Ca. As could be
expected, by increasing the neutron excess from N = 20 to
N = 28, the low-lying excited mode has acquired a dominant
neutronic nature even if, however, a small proton contribution
ia also predicted. As indicated by the transition densities, the
dominant neutron contribution is not only localized at the
surface of the nucleus but extends over the entire volume of
the system.
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FIG. 4. Same as in Fig. 2 but for 48Ca. The peak for which the
transition densities are calculated is located at 13.8 MeV.
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FIG. 5. (a) Black squares: experimental results of Ref. [39];
green bars: SSRPA predictions for 40Ca; (b) same as in (a) but for
48Ca.

Since the isoscalar giant monopole strength distributions
were measured for both 40Ca and 48Ca [39], we show in
Fig. 5 the comparison between the SSRPA predictions and
the experimental results. The fractions of EWSR/MeV are
reported in Figs. 5(a) and 5(b) for 40Ca and 48Ca, respectively.
The SSRPA results indicate how the SSRPA model signifi-
cantly improves the description of the fragmentation of the
strength compared to the RPA case (the RPA discrete spectra
are plotted in Figs. 1(a) and 1(b) for the two nuclei). Figure 10
of Ref. [39] shows the comparison between the experimental
distributions for 40Ca and 48Ca and the corresponding folded
(thus, with an artificial width) RPA distributions with several
Skyrme parametrizations. One may observe from that figure
that the RPA model systematically predicts strength distribu-
tions which are shifted at higher energies compared to the
experimental ones. We have calculated the centroid energies
produced by the parametrization SGII in the RPA (SSRPA)
model and obtained 21.3 (20.7) and 20.7 (20.4) MeV for
40Ca and 48Ca, respectively. The centroids are computed using√

m1/m−1, where m1 and m−1 are the energy-weighted and the
inverse energy-weighted moments of the strength distribution,
respectively. The experimental values for the centroids are
18.3 and 19.0 MeV for 40Ca and 48Ca, respectively. These
results indicate that the SSRPA predictions lead to a better
agreement (compared to RPA) with these known experimental
values.

Finally, the extreme case of 60Ca is studied. The discovery
of this isotope at the RIKEN Nishina Center was recently
reported in Ref. [40]. The SSRPA and RPA strength distribu-
tions are plotted in Fig. 1(c). One observes the same effects as
for the previous two cases in the comparison between the RPA
and SSRPA spectra. For this extreme case, the strength distri-
bution is localized in three main windows: from 5 to 11 MeV,
from 11 to 16 MeV and, finally, at energies larger than 16
MeV (giant monopole resonance). The first region of the
strength distribution is not predicted for the less neutron-rich
nucleus 48Ca. We investigate the nature of the excitations in
the first two energy regions by analyzing some corresponding
transition densities. The peak located at 8.8 MeV is chosen
to represent the first energy window and the corresponding
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FIG. 6. Same as described in the caption of Fig. 2 but for 60Ca.
The peak for which the transition densities are calculated is located
at 8.8 MeV.

transition densities are plotted in Fig. 6. A dominant neutron
contribution is found also in this case, as for 48Ca (the effect
is more pronounced). This state is mainly composed (70%)
by the 1p1h configuration [ν2 f5/2, ν1 f5/2]J=0. The remaining
30% is provided by highly fragmented 2p2h neutron config-
urations, for which it is not easy to identify some dominant
configurations. The percentage of the EWSR computed up
to 11 MeV is equal to 5.13%, which indicates an enhanced
collectivity compared to the low-lying part of the spectrum in
48Ca.

In the energy region from 11 to 16 MeV, the most collective
state is located at 14.1 MeV. It is a state with a dominant
2p2h nature (86%) with two strong 1p1h configurations,
[ν4p3/2, ν2p3/2]J=0 and [ν3 f5/2, ν1 f5/2]J=0. Also in this case
the 2p2h components are highly fragmented. The correspond-
ing transition densities are plotted in Fig. 7. The percentage
of the EWSR computed up to 16 MeV is equal to 26.81%.
This means that more than 20% of the contribution to the
EWSR is produced between 11 and 16 MeV, whereas only
5% comes from lower energies. This result indicates that the

0 5 10 15
r (fm)

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

r2 ρ ν

Neutron
Proton

E = 14.1 MeV

FIG. 7. Same as in Fig. 2 but for 60Ca. The peak for which the
transition densities are calculated is located at 14.1 MeV.
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FIG. 8. Monopole isoscalar strength distributions calculated for
the nuclei 36S (a) and 34Si (b).

states located in the second energy are much more collective.
The nature of these low-lying excitation modes is the same in
the two nuclei 48Ca and 60Ca (neutron excitation extending
over the entire volume of the nucleus) but the collectivity
is strongly increased in 60Ca. Comparing the states located
around 14 MeV in 48Ca and in 60Ca, one observes that the
excitations have changed from mostly single-particle excita-
tions with low collectivity to states with a dominant 2p2h
nature, where numerous configurations are mixed to build the
excitation modes and the collectivity is highly enhanced.

For the other systems that will be studied in this work,
the comparison with the RPA spectrum will not be illustrated
because the found results have always the same trend: the
excitation modes are found also in RPA, but the SSRPA model
leads to a shift to lower energies and to spreading effects
produced by the mixing with 2p2h configurations.

IV. N = 20 ISOTONES: SOFT MODES IN 34Si AND 36S.

After having analyzed the evolution of low-lying monopole
modes in Ca isotopes going from N = 20 to N = 40, we
present in this section a similar analysis done this time with
N = 20 isotones, going from 40Ca to the neutron-rich nuclei
36S and 34Si.

Figure 8 shows the isoscalar monopole strength distribu-
tions in 36S and 34Si. One observes the presence of some
strength above 10 MeV for both nuclei. For 36S there is a
first peak placed at around 13 MeV, whereas for 34Si the first
peak is located about 2 MeV downwards. The analysis of the
nature of these excitations tells us that there is a non negligible
mixing between 1p1h and 2p2h excitations and that the 1p1h
contribution is driven in both nuclei by the neutron single-
particle configuration [ν2d3/2, ν1d3/2]J=0. The difference of
∼2 MeV in the excitation energies of the first peaks for the
two nuclei is essentially due to the difference in the energies
of the dominant neutron single-particle configuration. For
34S (36S) the 1p1h contribution to the peak located at 11.07
(12.99) MeV is 54 (52)%. The rest of the contribution is
given by the mixing of several 2p2h configurations. The most
important configurations are listed in Table II. For 34Si the
1p1h configuration [ν2d3/2, ν1d3/2]J=0 contributes to 53% of
the total composition of this excitation whereas the listed
2p2h configurations contribute together to 31%. For 36S the
1p1h configuration [ν2d3/2, ν1d3/2]J=0 contributes to 51%
of the total composition and the listed 2p2h configurations
contribute together to 29%.

Figure 9 shows the neutron and proton transition densities
multiplied by r2 for the two nuclei associated with the en-
ergy peak located at 12.99 (11.07) MeV for 36S (34Si). The
dominant neutron contribution is clearly visible both in the
interior and at the surface of the nucleus as for the previous
cases 48Ca and 60Ca. The excitation energies are affected by

TABLE II. Composition of the peak located at 11.07 (12.99) MeV for 34Si (36S). The percentages of the total contributions coming from
1p1h and 2p2h configurations are indicated and the dominant configurations are listed.

34Si 1p1h 2p2h
54 % 46 %

[ν2d3/2, ν1d3/2]J=0 [[π3p1/2, ν3 f7/2]Jp=3[π1d5/2, ν2s1/2]Jh=3]J=0

[[π4p1/2, ν1 f5/2]Jp=2[π1d5/2, ν2s1/2]Jh=2]J=0

[[π4p1/2, ν1 f5/2]Jp=3[π1d5/2, ν2s1/2]Jh=3]J=0

[[π6s1/2, ν2d3/2]Jp=2[π1d5/2, ν1d3/2]Jh=2]J=0

[[π6s1/2, ν2d5/2]Jp=2[π1d5/2, ν1d3/2]Jh=2]J=0

[[π3d3/2, ν3s1/2]Jp=2[π1d5/2, ν1d3/2]Jh=2]J=0

[[π3d3/2, ν2d5/2]Jp=1[π1d5/2, ν1d3/2]Jh=1]J=0

[[π3d3/2, ν2d5/2]Jp=2[π1d5/2, ν1d3/2]Jh=2]J=0

[[π3d3/2, ν2d5/2]Jp=3[π1d5/2, ν1d3/2]Jh=3]J=0

[[ν3d3/2, ν2d5/2]Jp=2[ν1d3/2, ν1d3/2]Jh=2]J=0

36S 1p1h 2p2h
52 % 48 %

[ν2d3/2, ν1d3/2]J=0 [[π3d3/2, ν4d3/2]Jp=2[π1d5/2, ν1d3/2]Jh=2]J=0

[[π4d3/2, ν4s1/2]Jp=2[π2s1/2, ν1d3/2]Jh=2]J=0

[[π4d3/2, ν5s1/2]Jp=1[π2s1/2, ν1d3/2]Jh=1]J=0

[[π4d3/2, ν4d3/2]Jp=2[π2s1/2, ν1d3/2]Jh=2]J=0

[[π4d3/2, ν2d5/2]Jp=1[π2s1/2, ν1d3/2]Jh=1]J=0
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FIG. 9. Neutron and proton transition densities multiplied by r2

(in units of fm−1) for 36S (a) and 34Si (b) associated with the energy
peak located at 12.99 (11.07) MeV for 36S (34Si).

a non negligible mixing between the dominant 1p1h neutron
configuration and several types of 2p2h configurations (the
same peaks, composed only by 1p1h configurations, are lo-
cated 1 MeV upwards in energy in the RPA spectra for the
two nuclei). The nature of this soft mode is the same for
the two N = 20 isotones under study, the difference between
the two nuclei being only the energy location of the first peak
and a slightly larger strength found for the most neutron-rich
system 34Si. To illustrate quantitatively this aspect, we have
calculated the percentage of the EWSR in energy regions
below the giant resonance for the two nuclei and found that,
up to 15 MeV, the percentage of EWSR is equal to 3.15 (4.5)
% for 36S (34Si). The low-energy contribution to the EWSR is
more important in 34Si compared to the case of 48Ca. In spite
of the fact that the two nuclei have similar isospin asymmetry,
we predict more collectivity in the case of 34Si.

V. THE CASE OF 68Ni

It may be interesting to extend this type of analysis to a
heavier neutron-rich nucleus. We choose for this investigation
68Ni because this nucleus was already indicated as a good
candidate for a soft monopole mode with mean-field calcu-
lations and because a first experimental study was already
carried out for this system, even if definite conclusions could
not be drawn from the measurement. By the comparison,
for example, with the lighter nucleus 34Si (having a similar
isospin asymmetry), we wish to check whether the SSRPA
model predicts a modification of the nature (and of the collec-
tivity) of the soft mode for a heavier exotic system placed in a
different region of the nuclear chart. The comparison between
34Si and 68Ni is particularly meaningful because these two
isotopes present a very similar shell structure. Both of them
have, for example, a double shell closure, of spin-orbit type
for protons and of harmonic-oscillator type for neutrons. A
possible modification of the nature and of the collectivity
of the soft mode in the two nuclei is thus expected to be
weakly affected by their respective shell structure and mostly
impacted by the mass difference of the two systems.
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FIG. 10. Monopole isoscalar strength distribution for 68Ni.

The response function is plotted in Fig. 10 for 68Ni.
One may observe the existence of several peaks located
below 14 MeV. The percentage of the EWSR computed
below 14 MeV is 5.37%. Compared to the lighter system
34Si, the percentage is larger indicating an enhancement of
collectivity. This enhancement of collectivity is, however,
much weaker than the one that was predicted going from 48Ca
to 60Ca. The collectivity seems to be more strongly dependent
on the neutron excess than on the mass of the system. The
neutron and proton transition densities corresponding to the
three peaks placed at 11.02, 12.53, and 12.92 MeV are plotted
in Fig. 11.
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FIG. 11. Neutron and proton transition densities multiplied by r2

(in units of fm−1) associated with the peaks located at 11.2, 12.53,
and 12.92 MeV in the monopole spectrum of 68Ni.
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For the three peaks there is a dominant neutron 1p1h
contribution given by the configurations [ν3p1/2, ν2p1/2]J=0,
[ν3p3/2, ν2p3/2]J=0, and [ν2 f5/2, ν1 f5/2]J=0, respectively,
whereas the 2p2h contribution corresponds to 0.18%, 0.49%,
and 0.29% of the EWSR for the three cases, respectively. We
conclude that the mixing with 2p2h configurations is very
weak in this nucleus for the soft monopole excitations under
study.

VI. NEUTRON COMPRESSION MODES: A LINK WITH
THE EQUATION OF STATE OF NEUTRON-RICH MATTER

The link existing between the centroid energies of isoscalar
giant monopole resonances and the compressibility modulus
K of symmetric infinite nuclear matter has been discussed
for several decades (see, for instance, Ref. [41] and, for
recent reviews, Refs. [42,43]). The compressibility modulus
for symmetric matter is defined as

K = 9ρ2
0

(∂2E sym/A

∂ρ2

)
ρ=ρ0

, (1)

where E sym/A is the equation of state of symmetric matter and
ρ0 is the saturation density, equal to 0.16 fm−3 for the mean-
field equation of state produced for symmetric matter with the
parametrization SGII (which corresponds to the accepted em-
pirical value). A more refined and less qualitative link between
the centroid energies and a compressibility modulus may be
defined by introducing a compressibility modulus for finite
nuclei (where several terms appear and the compressibility
for symmetric matter corresponds to the volume contribution
[41]). We will, however, remain here on a qualitative level
and employ compressibility moduli associated with infinite
matter.

By treating the nucleus as a liquid drop characterized by
a compressibility modulus K (the compressibility of sym-
metric infinite matter) and by linerazing the hydrodynamics
equations, one may write a relation between the centroid
energy of a giant monopole resonance and the corresponding
compressibility modulus,

E =
√

h̄2π2

15m

√
K

η2
0

, (2)

where η0 is the root mean square radius [41]. By using, for
example, η0 = r0A1/3, with r0 ∼ 1 fm, Eq. (2) becomes

E ∼ 5.22A−1/3
√

K . (3)

The compressibility of symmetric matter is equal to
214.6 MeV for the parametrization SGII used here (and for a
mean-field equation of state). By using this value of K , Eq. (3)
describes qualitatively the evolution of the centroid energies
of giant monopole resonances as a function of the mass A.

Now, we have seen in the previous sections that the soft
modes which are predicted for neutron-rich nuclei have typ-
ically a neutronic nature and, thus, cannot be described as
compression modes where neutrons and protons participate
together and coherently (that means, as breathing modes

where the restoring force can be related to the compressibility
modulus of symmetric infinite matter). In practice, only neu-
trons breath in soft modes. This also implies that these soft
excitations should not be included when estimations for the
compressibility modulus of symmetric matter are extracted
from measured isoscalar monopole strength distributions. For
these estimations, only the giant resonance region should be
taken into account.

We discuss here a different connection, between the ener-
gies of these low-energy excitation modes and a compress-
ibility modulus associated this time with neutron-rich matter.
This link is intended to be qualitative for two main reasons:
(i) it is based on the use of a liquid drop model (as for the link
existing between the centroids of giant monopole resonances
and K); (ii) it is obtained by employing numerical values
for the compressibility modulus computed with a mean-field
equation of state for infinite matter (whereas our predicted
excitation energies are obtained employing a beyond-mean-
field model).

We introduce an isospin-asymmetry parameter X . Whereas
δ (introduced in Sec. I) refers to the isospin asymmetry of a
given nucleus, X , equal to (ρn − ρp)/ρ (where ρn, ρp and ρ

are the neutron, proton and total densities, respectively), will
refer in what follows both to the isospin asymmetry of infinite
matter and to the isospin asymmetry of the oscillating system
involved in a given excited state. Through the compressibility
of asymmetric matter with isospin asymmetry X , we will
indeed discuss here a link between the isospin asymmetry
of neutron-rich matter and the isospin asymmetry of the
oscillating neutron-rich system involved in the low-energy
excitation. From the SSRPA microscopic calculations, such
an isospin asymmetry may be estimated by introducing the
quantities

XN = 4π

∫ ∣∣ρn
ν

∣∣r2dr (4)

and

XP = 4π

∫ ∣∣ρ p
ν

∣∣r2dr, (5)

where ρn
ν and ρ

p
ν are the microscopic SSRPA neutron and

proton transition densities, respectively. These quantities es-
timate the number of neutrons and protons involved in a
given excitation |ν〉. Since only 1p1h amplitudes enter in the
computation of the transition densities, XN and XP are a partial
estimation taking into account only the 1p1h contribution.
The isospin asymmetry X of the oscillating system in a given
excited state is related to XN and XP by

X = XN − XP

XN + XP
. (6)

A compressibility modulus may be introduced for isospin-
asymmetric matter,

KX = 9ρ2
eq

(∂2EX /A

∂ρ2

)
ρ=ρeq

, (7)

where EX /A is the equation of state of asymmetric matter and
ρeq is the equilibrium density of such a neutron-rich matter at
any isospin asymmetry for which the corresponding equation
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FIG. 12. Equations of state computed with the parametrization
SGII, from symmetric to pure neutron matter. Dotted lines represent
the equations of state of asymmetric matter with asymmetry values
X (from the bottom to the top) equal to 0.1 (KX = 211.59 MeV),
0.2 (KX = 203.54 MeV), 0.3 (KX = 187.33 MeV), 0.4 (KX = 166.40
MeV), 0.5 (KX = 139.90 MeV), 0.6 (KX = 108.30 MeV), 0.7 (KX =
72.35 MeV), 0.8 (KX = 33.74 MeV), and 0.85 (KX = 13.32 MeV).
The compressibility value associated with symmetric matter for the
parametrization SGII is also indicated in the figure. The equilibrium
points (at which the compressibility values KX are calculated) are
represented by green circles for each equation of state.

of state still has an equilibrium point (see Fig. 12 where the
equilibrium points are indicated by green circles for different
values of X ).

By extending Eq. (3), one may thus write, for a given mass
A, a relation of the type

E (X ) ∼ 5.22A−1/3√KX , (8)

where, when the isospin asymmetry X goes to 0, KX is equal
to K and E (X ) describes qualitatively the centroid of the giant
monopole resonance. Using the values of KX reported in the
legend of Fig. 12, one may plot Eq. (8) as a function of the
isospin asymmetry for a given value of the mass A. This is
done in Fig. 13 for the cases where we have predicted, in the
corresponding energy window, an EWSR percentage at least
equal to 4%, that is the nuclei for 34Si, 60Ca, and 68Ni.

We observe that, by increasing the isospin asymmetry of
the breathing system in a given nucleus, the excitation energy
is expected to decrease compared to the centroid energy of
the giant monopole resonance (corresponding to X = 0). By
using the energies of the peaks located at 8.8, 11.07, and
11.02 MeV for 60Ca, 34Si, and 68Ni, respectively, one may
deduce from the figure that these soft modes are expected to
be characterized by a strong isospin asymmetry in the range
0.69 ÷ 0.77. In particular, we have found X ∼ 0.77, 0.76, and
0.69 for the three peaks in 60Ca, 34Si, and 68Ni, respectively.
These asymmetries are represented by the green region in the
figure. For any state with a dominant neutronic nature that
we predict in these neutron-rich systems, the reduction of its
excitation energy, compared to the isoscalar giant monopole
energy (reduction that we predict microscopically), may be

FIG. 13. Trends provided by Eq. (8) for three values of A, 34,
60, and 68. The estimations provided for the centroid of the giant
monopole resonance and obtained by using the compressibility value
associated with symmetric nuclear matter are the energy values
corresponding to X = 0. The green area represents the range of
isospin asymmetries predicted for the oscillating system involved in
the excitations located at 8.838 (60Ca), 11.075 (34Si), and 11.021
(68Ni) MeV. The magenta arrow indicates the isospin asymmetry
associated with the oscillating system involved in the excitation
mode located at 14.087 MeV for 60Ca.

qualitatively understood by the trends shown in Fig. 13. In
general, for the lowest states found in the three nuclei, it is
expected that the oscillating system is dominantly composed
by neutrons with an isospin asymmetry larger than X ∼ 0.7.

Let us now consider the states belonging to the energy
region between 11 and 16 MeV in 60Ca and let us choose
as an illustration the collective peak located at 14.1 MeV.
Even if this state still has a neutron dominance, the qualitative
prediction for the isospin asymmetry of the oscillating system
is lower, ∼0.6. This qualitative prediction is indicated by a
magenta arrow in the figure.

Such estimations are coherent with the microscopic pre-
dictions obtained using Eq. (6). The values found for all the
excitations under study in this Section are listed in Table III.

We see that, as for the qualitative estimation, the highest
asymmetry is found for the 8.8-MeV state in 60Ca, where
X = 0.84. The 8.8, 11.07, and 11.02-MeV states for 60Ca,
34Si, and 68Ni, respectively, are characterized by values of X
in the range 0.73 ÷ 0.84 (to be compared with 0.69 ÷ 0.77
of the qualitative estimation). Finally, the 14.1-MeV state of
60Ca has a value of X equal to 0.73. This value is the same as

TABLE III. Values of X (third column) for a given excited state
(second column) in the three nuclei under study.

Nucleus E (MeV) X

34Si 11.07 0.73
68Ni 11.02 0.78
60Ca 8.8 0.84
60Ca 14.1 0.73
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the one obtained for 34Si (whereas, in the previous qualitative
estimation, we have found a more significant difference in
the isospin asymmetry between the 14.1-MeV state in 60Ca
and the other states in 34Si, 68Ni and 60Ca). Note, however,
that the 14.1-MeV state in 60Ca is strongly mixed (it is only
14% 1p1h) and, thus, its isospin asymmetry (estimated here
taking into account only 1p1h contributions) may be expected
to be significantly modified by the 2p2h contribution. The
estimation of X obtained for this state using Eq. (6) is then
less meaningful than for the other states under study which
have a more pronounced 1p1h nature.

VII. CONCLUSIONS

We analyzed low-lying isoscalar monopole excitations
with a special focus on some selected neutron-rich nuclei,
employing the beyond-mean-field SSRPA model based on
the Skyrme interaction SGII. For the results discussed for Ca
isotopes, a comparison was shown between RPA and SSRPA
spectra. A general trend was found: the excitation modes are
predicted both in RPA and in SSRPA. However, the SSRPA
excitations are in all cases slightly shifted to lower energies
owing to a mixing between 1p1h and 2p2h configurations.
This mixing induces a higher fragmentation and renders the
nature of these excitations more complex in the SSRPA
model. Similar remarks may be done by comparing RPA and
SSRPA spectra also for the other nuclei under study in this
work and these comparisons were not shown here.

The evolution of the low-lying monopole strength was first
studied in Ca isotopes, by increasing the neutron number
from N = 20 in 40Ca to N = 28 and N = 40 in 48Ca and
60Ca. A low-lying strength was predicted around 14 MeV in
both 40Ca and 48Ca. The main peaks are not very collective
in both nuclei. The main difference is that the excitation is
driven by protons in 40Ca, whereas in 48Ca it is driven by
neutron configurations extending over the entire volume of
the nucleus, with one dominant neutron 1p1h configuration.
The extreme case of 60Ca was also studied, where the neutron
excess is much higher. The soft breathing modes maintain the
same nature as in 48Ca but with a more pronounced neutron
nature. Such modes are distributed in two energy regions, the
first one being at energies lower than 10 MeV. The collectivity
of such excitations is strongly enhanced in 60Ca compared to
48Ca.

A soft monopole mode driven by neutrons was also pre-
dicted in the N = 20 neutron-rich isotones 36S and 34Si. To
explore the same mass region as 60Ca but with a smaller
isospin asymmetry (comparable to the one of 48Ca and 34Si)
the nucleus 68Ni was investigated. The monopole response
of this nucleus was already studied in previous analyses
both theoretically and experimentally (but without definite
conclusions on the existence of a soft monopole mode from
the measurement). At variance with Ref. [28], which excluded
the existence of a soft breathing mode in 68Ni, we confirm in
this work the results of Refs. [27,29], where this mode was
predicted. The latter predictions were provided based on a
mean-field model. We use in the present work a model which
encompasses beyond-mean-field effects. This enriches the na-
ture of such soft neutron excitations owing to the mixing with

Proton excitations Neutron excitations

δ => 0 0.17 0.33
40Ca 48Ca

60Ca
Neutron excess and mass, Ca isotopes

Neutron excess, N=20 isotones

Mass dependence (same iso. asymm.)

δ =>

δ =>

2.13% (15 MeV) 2.5% (15 MeV) 5.13% (11 MeV)

26.81% (16 MeV)

0
40Ca

2.13% (15 MeV)

0.11 0.18
36S 34Si

3.15% (15 MeV)
4.5% (15 MeV)

0.18 0.18
34Si 68Ni

4.5% (15 MeV) 5.37% (14 MeV)

(a)

(b)

(c)

FIG. 14. Percentages of the EWSR computed up to the energy
value written in parentheses for several nuclei. The isospin asym-
metry δ corresponding to each nucleus is indicated. (a) Ca isotopes:
evolution of the percentage as a function of the neutron excess and
the mass; (b) N = 20 isotones: evolution of the percentage as a
function of the neutron excess; (c) evolution as a function of the mass
for two nuclei with the same isospin asymmetry, 34Si and 68Ni.

2p2h configurations and leads to a slightly different energy
location of the peaks as well as to a higher fragmentation of
the strength.

The disagreement between the findings of Ref. [28] and
the results of Refs. [27,29] is maybe related to the fact that the
escape width is included in Ref. [28], due to the treatment of
continuum states. In our case, as in Refs. [27,29], such a con-
tribution to the total width of an excited mode is not taken into
account because continuum is not included. However, in our
study, the spreading width is properly accounted for, owing to
the coupling with 2p2h configurations (such a contribution to
the width is missing in Refs. [27–29]). The difference between
our results and those of Ref. [28] is thus maybe related
to the fact that we include a spreading width, whereas the
authors of Ref. [28] include an escape width. Reference [44]
is an example of RPA calculations where the escape width
is described through the inclusion of continuum (calculations
are done on the isoscalar E0 excitations in 40Ca, 48Ca, and
60Ca). However, Ref. [45] describes isoscalar E0 excitations
in 68Ni within a beyond-RPA approach which includes the
coupling to single-particle continuum: spreading and escape
widths are thus both included. In these latter calculations the
treatment of continuum states is carried out following the
work of Tselyaev et al. [46].

We summarize in Fig. 14 the evolution of the low-energy
contribution to the EWSR for Ca isotopes as a function of
the mass and the neutron excess (a), for N = 20 isotones as a
function of the neutron excess (b), and for two nuclei with the
same isospin asymmetry but different masses (c).

Finally, we have discussed a qualitative link between the
excitation energies of neutron-driven soft breathing modes
and a compressibility modulus introduced for neutron-rich
matter. This link also shows that the excitation energies of
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such predominantly neutron excited states are indeed expected
to be lower than the centroids of giant monopole resonances
(for the same nucleus) where neutrons and protons participate
together and coherently (and where the excitation energies
may be related to the compressibility of symmetric nuclear
matter). This link between the soft modes and neutron-rich
matter may lead to important constraints (coming from mea-
surements of soft modes) on the theoretical models employed
for describing neutron-rich matter which may be eventually
used in astrophysical applications, for instance for the study
of neutron star crusts.

It is also important to stress that these soft modes should
not be included in the estimations of the compressibility
modulus of symmetric infinite matter done from measure-
ments: the breathing system is not composed by neutrons and
protons oscillating coherently (where the restoring force may
be related to the compressibility of symmetric matter) but
mainly by neutrons.

Apart from the extreme case of 60Ca, measurements for
detecting these soft modes are in principle feasible for all the
other nuclei studied in this work (34Si and 68Ni are short-lived
but measurements are possible).

As an additional conclusive remark, since we have pre-
dicted a proton-driven low-energy strength in the nucleus 40Ca
(where the neutron excess is equal to zero), we stress that,
to really identify experimentally a low-lying soft monopole
mode driven by neutrons in neutron-rich systems, one should
conceive and design an experimental setup where the probe is
able to evidentiate the dominant neutronic nature.
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