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In nuclear structure calculations, the choice of a limited model space, due to computational needs, leads to
the necessity to renormalize the Hamiltonian as well as any transition operator. Here, we present a study of the
renormalization procedure and effects of the Gamow-Teller operator within the framework of the realistic shell
model. Our effective shell-model operators are obtained, starting from a realistic nucleon-nucleon potential, by
way of the many-body perturbation theory in order to take into account the degrees of freedom that are not
explicitly included in the chosen model space. The theoretical effective shell-model Hamiltonian and transition
operators are then employed in shell-model calculations, whose results are compared with data of Gamow-Teller
transition strengths and double-β half-lives for nuclei which are currently of interest for the detection of the
neutrinoless double-β decay process, in a mass interval ranging from A = 48 up to A = 136. We show that
effective operators are able to reproduce quantitatively the spectroscopic and decay properties without resorting
to an empirical quenching neither of the axial coupling constant gA, nor of the spin and orbital gyromagnetic
factors. This should assess the reliability of applying present theoretical tools to this problematic.
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I. INTRODUCTION

A longstanding issue of nuclear structure calculations is the
need to reduce the number of the configurations available to
the interacting nucleons, which constitute the nuclear system
under investigation. Such approximations, that are necessary
to overcome the computational complexity of the nuclear
many-body problem, drive the nuclear structure practitioners
to resort to effective Hamiltonians and operators, that depend
on a certain set of parameters, built up to account for the
degrees of freedom which do not appear explicitly in the
calculated wave functions. The development of effective op-
erators suitable to describe observables is a problem that has
to be tackled in most nuclear structure models that relies on
the truncation of the number of interacting nucleons and/or
the dimension of the configuration space. This issue does not
affect ab initio approaches when their results are convergent
with respect to the truncation of the nuclear correlations that
is needed to solve the many-body Schrödinger equation (see,
for example, Ref. [1]).

In the nuclear shell model (SM), the physics of a certain
nuclear system is described in terms only of a limited number
of valence nucleons, that interact in a model space consisting
of a major shell, placed outside a closed core made up by the
remaining constituent nucleons, the latter being frozen inside
a number of filled shells.

The status of the theoretical derivation of an effective
shell-model Hamiltonian (Heff ), starting from a realistic nu-
clear potential, has reached notable progress nowadays, espe-
cially within the framework of the many-body perturbation

theory [2,3]. At present, realistic shell-model Hamiltonians
are largely employed in shell-model calculations, exhibiting
a substantial reliability (see, for example, Ref. [4] and refer-
ences therein).

As regards to the theoretical efforts to derive effective
shell-model transition operators starting from realistic poten-
tials, the literature is far less extended, but it is worth men-
tioning an early review about this topic, which can be found in
Ref. [5]. More recently, Suzuki and Okamoto have developed
a formalism to derive effective shell-model operators [6], that
provides an approach that is consistent with the construction
of the corresponding Heff .

In the present work we focus on the derivation of effec-
tive shell-model Gamow-Teller (GT) operators to calculate
observables related to the β-decay transition for nuclei in
different mass regions, aiming to trace back to the roots of
the quenching of the free value of the axial coupling constant
gA in nuclear structure calculations.

It should be mentioned that similar studies have been
reported in Refs. [7,8]. In Ref. [7], the renormalization of the
GT operator, in the form of a one-body operator, has been
carried out to study the role of the weak hadronic current in
the nuclear medium. The authors of Ref. [8] have instead cal-
culated nuclear matrix elements of the two-neutrino double-β
decay (2νββ) building an effective two-body operator within
the so-called closure approximation.

As a matter of fact, effective GT operators are in general
obtained resorting to effective values of gA, via a quench-
ing factor q, to reproduce experimental GT transitions. The
choice of q depends obviously on the nuclear structure model
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employed to derive the nuclear wave functions, the dimen-
sions of the considered Hilbert space, and the mass of the
nucleus under investigation.

This problem, which affects the calculations of the
Gamow-Teller transition strengths and double-β half-lives,
has been investigated within different nuclear-structure mod-
els, such as the interacting boson model [9–11], the quasi-
particle random-phase approximation [12–16], and the shell
model [17–26]. In this regard, it is worth mentioning the
recent review paper by Suhonen [27], where the quenching
is discussed from the points of view of the different methods.

For the sake of clarity, we point out that the quenching
of gA is entangled with both the renormalization of many-
body correlations—due to the truncation of the basis used
to construct the wave functions—and the corrections due to
the subnucleonic structure of the nucleons [28–31], since the
free value gfree

A = 1.2723 [32] is obtained from the data of
the neutron decay under the assumption that the nucleons are
point-like particles.

We will show in the following that the perturbative ap-
proach to the derivation of effective spin-dependent operators
allows to reproduce quantitatively spectroscopic and decay
properties without resorting to an empirical quenching either
of the axial coupling constant gA, or of the spin and orbital g
factors.

In this connection, it is worth noting that an important con-
tribution to understand the quenching of gA within a micro-
scopic framework has been given by the studies of Towner and
co-workers (see the review paper [33] and references therein),
who have extensively investigated the role played by both
the many-body correlations induced by the truncation of the
Hilbert space and the two-body meson-exchange currents in
the renormalization of spin-dependent electromagnetic (M1)
and weak (GT) operators [34].

Nowadays, there is a renewed interest in the problematics
of the renormalization of the GT operator, because of its
connection with the calculation of the nuclear matrix elements
(NME) of the 0νββ decay (see, for example, Ref. [35]). In
fact, the half-life of such a process is expressed by

[
T 0ν

1/2

]−1 = G0ν |M0ν |2〈mν〉2, (1)

where G0ν is the so-called phase-space factor, 〈mν〉 is the
effective neutrino mass, and M0ν is the nuclear matrix ele-
ment, that relates the wave functions of the parent and grand-
daughter nuclei. As a matter of fact, M0ν can be expressed as
the sum of the GT, Fermi (F), and tensor (T) matrix elements,
and depends on the axial and vector coupling constants gA, gV :

M0ν = M0ν
GT −

(
gV

gA

)2

M0ν
F − M0ν

T . (2)

On these grounds, we focus attention on the renormaliza-
tion of the GT operator that takes into account the reduced SM
model space, without considering the corrections arising from
meson-exchange currents [34,36]. Our theoretical framework
is the many-body perturbation theory [3,6,37,38], and, starting
from a realistic nuclear potential, we derive effective shell-
model GT operators and Hamiltonians for nuclei with mass
ranging from A = 48 to A = 136. We also consider in the

derivation of the one-body effective operators the so-called
“blocking effect”, to take into account the Pauli exclusion
principle in systems with more than one valence nucleon [5].

In Sec. II we will sketch out a few details about the deriva-
tion of the effective SM Hamiltonians and operators from a
realistic nucleon-nucleon (NN) interaction. The results of the
shell-model calculations are then reported in Sec. III. More
precisely, we compare calculated and experimental 2νββ-
decay matrix elements, GT transition-strength distributions
for nuclei that are candidates for the detection of the 0νββ

decay. We extend this analysis to magnetic dipole moments
and reduced transition probabilities [B(M1)], and, for the
sake of completeness, the energy spectra and B(E2) values
of the parent and grand-daughter nuclei are also shown. The
conclusions of this study are drawn in Sec. IV, together
with the outlook of our current project. In the Appendix,
tables containing the calculated SP energies of the effective
Hamiltonians and the matrix elements of the effective M1 and
GT operators are reported.

II. OUTLINE OF CALCULATIONS

The cornerstone of a realistic shell-model calculation is
the choice of a realistic nuclear potential to start with. We
consider for our calculations the high-precision CD-Bonn NN
potential [39], whose nonperturbative behavior requires to
integrate out its repulsive high-momentum components by
way of the so-called Vlow-k approach [40,41]. This is based
on a unitary transformation that provides a softer nuclear
potential defined up to a cutoff �, and preserves the physics
of the original CD-Bonn interaction.

As in our recent works [38,42–44], the value of the cut-
off � is chosen equal to 2.6 fm−1, since we have found
that the role of missing three-nucleon force (3NF) decreases
by enlarging the Vlow-k cutoff [43]. In our experience, � =
2.6 fm−1 is an upper limit, since with a larger cutoff the
order-by-order behavior of the perturbative expansion may be
not satisfactory.

This Vlow-k is then employed as the two-body interaction
term of the Hamiltonian for the system of A nucleons under
investigation:

H =
A∑

i=1

p2
i

2m
+

A∑
i< j=1

V i j
low−k = T + Vlow-k. (3)

This Hamiltonian should be then diagonalized in an infinite
Hilbert space to describe the physical observables. Obviously,
this task is unfeasible, and in the shell model the infinite
number of degrees of freedom is reduced only to those
characterizing the physics of a limited number of interacting
nucleons, that are constrained in a finite Hilbert space spanned
by a few accessible orbitals. To this end, the Hamiltonian H of
Eq. (3) is broken up, by way of an auxiliary one-body potential
U , into the sum of a one-body term H0, whose eigenvectors set
up the shell-model basis, and a residual interaction H1:

H = T + Vlow-k

= (T + U ) + (Vlow-k − U )

= H0 + H1. (4)
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The following step is to derive an effective shell-model Hamil-
tonian Heff , that takes into account the degrees of freedom that
are not explicitly included in the shell-model framework as the
core polarization due to the interaction, within the full Hilbert
space, between the valence nucleons and those belonging to
the closed core.

We derive Heff by resorting to the many-body perturbation
theory an approach that has been developed by Kuo and
coworkers through the 1970s [45,46]. More precisely, we
use the well-known Q̂ box-plus-folded-diagram method [47],
where the Q̂ box is defined as a function of the unperturbed
energy ε of the valence particles:

Q̂(ε) = PH1P + PH1Q
1

ε − QHQ
QH1P, (5)

where the operator P projects onto the model space and Q =
1 − P. In the present calculations the Q̂ box is expanded as
a collection of one- and two-body irreducible valence-linked
Goldstone diagrams up to third order in the perturbative
expansion [3,48].

Within this framework the effective Hamiltonian Heff can
be written in an operator form as

Heff = Q̂ − Q̂′
∫

Q̂ + Q̂′
∫

Q̂
∫

Q̂

− Q̂′
∫

Q̂
∫

Q̂
∫

Q̂ + · · · , (6)

where the integral sign represents a generalized folding oper-
ation [49], and Q̂′ is obtained from Q̂ by removing first-order
terms [50].

Since the following operatorial identity has been demon-
strated [50]:

Q̂
∫

Q̂ = −Q̂1Q̂, (7)

the solution of Eq. (6) may be obtained using the Q̂ box
derivatives

Q̂m = 1

m!

dmQ̂(ε)

dεm

∣∣∣∣
ε=ε0

, (8)

ε0 being the model-space eigenvalue of the unperturbed
Hamiltonian H0, that we have chosen to be harmonic-
oscillator (HO) one.

Consequently, the expression in Eq. (6) may be rewritten
as

Heff =
∞∑

i=0

Fi, (9)

where

F0 = Q̂(ε0),

F1 = Q̂1(ε0)Q̂(ε0),

F2 = [Q̂2(ε0)Q̂(ε0) + Q̂1(ε0)Q̂1(ε0)]Q̂(ε0)

.... (10)

From Heff for one-valence-nucleon systems we obtain the
single-particle (SP) energies for our SM calculations, while
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FIG. 1. Calculated spectra of 76Ge obtained from the perturbative
expansion of Heff using Q̂-box diagrams up to second-, third-order,
and Padé approximant [2|1] (see text for details).

the two-body matrix elements (TBMEs) are obtained from
Heff derived for the nuclei with two valence nucleons, by
subtracting the theoretical SP energies. The calculated SP
energies for 40Ca, 56Ni, and 100Sn cores are reported in
the Appendix (see Tables XI–XIII), while the corresponding
TBMEs can be found in the Supplemental Material [51].

A detailed description of the perturbative properties of our
Heff , derived from the same Vlow-k of the present work, can
be found in Ref. [52], where the behavior of SP energies and
TBME as a function of both the perturbative order and the
number of the intermediate states has been reported.

In order to exemplify pictorially the impact of the pertur-
bation expansion on the energy spectra, we report in Fig. 1
the low-energy spectra of 76Ge obtained with Heff s derived
from Q̂ boxes at second and third order in perturbation the-
ory, and their Padé approximant [2|1] [53]. We employ the
Padé approximant in order to obtain a better estimate of the
convergence value of the perturbation series [3], as suggested
in Ref. [54]. As can be seen, a rather good convergence is
obtained, apart from the second-excited Jπ = 0+ state, the
largest discrepancy occurring for the yrare Jπ = 4+ that is
about 20% from second to third order and 6% from third order
to Padé approximant [2|1].

As mentioned before, we derive the effective transition
operators, namely the matrix elements of the effective spin-
dependent M1, GT operators, and the effective charges of the
electric quadrupole operator, using the formalism presented
by Suzuki and Okamoto in Ref. [6].

As a matter of fact, a non-Hermitian effective operator �eff

can be expressed in terms of the Q̂ box, its derivatives, and an
infinite sum of operators χn, the latter being defined as

χ0 = (�̂0 + H.c.) + �̂00, (11)

χ1 = (�̂1Q̂ + H.c.) + (�̂01Q̂ + H.c.), (12)

χ2 = (�̂1Q̂1Q̂ + H.c.) + (�̂2Q̂Q̂ + H.c.)

+ (�̂02Q̂Q̂ + H.c.) + Q̂�̂11Q̂, . . . , (13)
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FIG. 2. One-body second-order diagrams included in the pertur-
bative expansion of �̂. The asterisk indicates the bare operator �,
the wavy lines the two-body potential Vlow-k.

where �̂m, �̂mn have the following expressions:

�̂m = 1

m!

dm�̂(ε)

dεm

∣∣∣∣
ε=ε0

, (14)

�̂mn = 1

m!n!

dm

dεm
1

dn

dεn
2

�̂(ε1; ε2)

∣∣∣∣
ε1=ε0,ε2=ε0

(15)

with

�̂(ε) = P�P + P�Q
1

ε − QHQ
QH1P, (16)

�̂(ε1; ε2) = PH1Q
1

ε1 − QHQ
Q�Q

1

ε2 − QHQ
QH1P, (17)

� being the bare transition operator.
The effective transition operators can be written, in terms

of the above quantities, as follows:

�eff = (P + Q̂1 + Q̂1Q̂1 + Q̂2Q̂ + Q̂Q̂2 + · · · )

×(χ0 + χ1 + χ2 + · · · ). (18)

Now, inserting the identity Q̂Q̂−1 = 1 and taking into account
Eqs. (9), (10), Eq. (18) may be then recast in the following
form:

�eff = (P + Q̂1 + Q̂1Q̂1 + Q̂2Q̂ + Q̂Q̂2 + · · · )Q̂Q̂−1

×(χ0 + χ1 + χ2 + · · · )

= Heff Q̂
−1(χ0 + χ1 + χ2 + · · · ). (19)

The above form provides a strong link between the derivation
of the effective Hamiltonian and all effective operators.

In our calculations for the aforementioned one-body transi-
tion operators, we arrest the χn series to the χ2 term. It is worth
reminding that in Refs. [38,52] we have included only the
leading term χ0. The calculation is performed starting from
a perturbative expansion of �̂0 and �̂00, including diagrams
up to the third order in the perturbation theory, consistent with
the perturbative expansion of the Q̂ box. We have found that
the χ2 contribution is at most 1% of the final results. Since χ3

depends on the first, second, and third derivatives of �̂0 and
�̂00, and on the first and second derivatives of the Q̂ box [see
Eq. (13)], our estimation of these quantities leads to evaluate
χ3 being at least one order of magnitude smaller than χ2.

For the sake of clarity, in Fig. 2 we report all the one-body
�0 diagrams up to the second order, the bare operator �

being represented with an asterisk. The first-order (Vlow-k −
U ) insertion, represented by a circle with a cross inside, arises
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c c cd d

h
p

h

p

p h

*

2

FIG. 3. Two-body second-order diagrams that should appear in
the perturbative expansion of χ0. As in Fig. 2, the asterisk indicates
the bare operator �, the wavy lines the two-body potential Vlow-k.

because of the presence of the U term in the interaction
Hamiltonian H1 (see, for example, Ref. [3] for details).

In Ref. [52] we have carried out a study of the perturbative
properties of the GT operator for the calculation of the NME
(M2ν

GT) of the 130Te, 136Xe2νββ decay. We have found that the
results for the 130Te decay vary by about 10% from second
to third order in perturbation theory, and that for 136Xe by
about 5%.

As it regards the magnetic-dipole operator, we find a sim-
ilar perturbative behavior. As a matter of fact, the calculated
magnetic dipole moments of the yrast Jπ = 2+ states in 130Te
and 136Xe, obtained with an effective operator derived at
second order in perturbation theory, are 0.65 and 1.19 μN ,
respectively, to be compared with 0.71 and 1.15 μN at third
order (see also Tables VII and IX.) The variation from second
to third order is about 8% for 130Te, and 3% for 136Xe.

The authors of Ref. [7] have carried out a perturbative
expansion of the �̂ operator for GT transitions in terms of
similar diagrams, calculated up to third order in perturbation
theory and employing G-matrix energy-dependent interaction
vertices. They have added to them the corresponding folded
diagrams according to the prescription of Ref. [33], but
have neglected all diagrams with (G − U )-insertion vertices,
which—it is worth pointing out—at second order only are
equal to zero for spin-dependent operators.

They have reported a selection of the matrix elements of
their effective GT+ operator, that we compare with our results
in Tables XVII–XIX. As can be observed, both calculations
provide consistent results, even if some matrix elements differ
up to 25%.

The topology of the diagrams reported in Fig. 2 deals,
obviously, with single-valence nucleon systems, and many-
body diagrams should be included starting from nuclei with
two valence nucleons on; in Fig. 3 we report all two-valence-
nucleon diagrams for one-body operators, up to second order
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**
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p

(I) 1(d )

FIG. 4. Density-dependent one-body second-order diagram (I )
that is obtained from diagram (d1) of Fig. 2 by summing over one
incoming and outgoing particles of the two-body diagram (see text
for details).

of the �̂ perturbative expansion. For the sake of simplicity,
for each topology we draw only one of the diagrams which
correspond to the exchange of the external pairs of lines.

Diagrams (a)–(d) are the same as in Fig. 2 but with a
spectator line a, while connected diagrams (d1) and (d2)
correct Pauli-principle violation introduced by diagram (d)
when the particles c and p own the same quantum numbers.

Since it is straightforward to perform shell-model cal-
culations using one-body transition operators, we derive a
density-dependent one-body operator from the two-body ones
by summing and averaging over one incoming and outgoing
particles of the connected diagrams (d1) and (d2) of Fig. 3.
This allows to take into account the filling of the model-space
orbitals when dealing with more than one valence nucleon.

For example, we report in Fig. 4 the second-order density-
dependent one-body diagram (I), obtained from the contribu-
tion (d1) of Fig. 3, and whose explicit expression is

(I ) =
∑

α

∑
pJ

(2J + 1)

(2 jb + 1)

〈a||�||p〉〈pα, J|Vlow-k|bα, J〉
(εb − εp)

ρ(α),

(20)

where α and p indices run over the orbitals in, and above the
model space, respectively, the matrix elements of the Vlow-k

are coupled to the total angular momentum J , εi stands for the
unperturbed energy of the orbital i, and ρ(α) is the occupation
probability of the orbital α.

In this work all the results of the shell-model calculations,
that are shown in Sec. III, have been obtained employing
SP energies, TBMEs, and effective one-body operators de-
rived by way of the above mentioned theoretical approach,
including consistently all contributions up to third order in the
perturbative expansion, without resorting to any empirically
fitted parameter.

In Sec. III, the calculated running sums of the GT strengths
[�B(p, n)], obtained with both bare and effective GT opera-
tors, are reported as a function of the excitation energy, and
compared with the available data extracted from experiment.
The GT strength is defined as

B(p, n) = |〈� f ||
∑

j �σ jτ
−
j ||�i〉|2

2Ji + 1
, (21)

where indices i, f refer to the parent and grand-daughter nu-
clei, respectively, and the sum is over all interacting nucleons.

The single-β decay GT strengths, defined by Eq. (21),
can be accessed experimentally through intermediate energy
charge-exchange reactions, since the β-decay process is for-
bidden for the nuclei under our investigation. The GT strength
can be extracted from the GT component of the cross sec-
tion at zero degree, following the standard approach in the
distorted-wave Born approximation (DWBA) [55,56]:

dσ GT(0◦)

d�
=

(
μ

π h̄2

)2 k f

ki
Nστ

D |Jστ |2B(p, n), (22)

where Nστ
D is the distortion factor, |Jστ | is the volume integral

of the effective NN interaction, ki and k f are the initial and
final momenta, respectively, and μ is the reduced mass.

As regards the calculation of the NME of the 2νββ decay,
it can be obtained via the following expression:

M2ν
GT =

∑
n

〈0+
f ||�στ−||1+

n 〉〈1+
n ||�στ−||0+

i 〉
En + E0

, (23)

where En is the excitation energy of the Jπ = 1+
n intermediate

state, E0 = 1
2 Qββ (0+) + �M, Qββ (0+) and �M being the Q

value of the ββ decay and the mass difference between the
daughter and parent nuclei, respectively. In the above equation
the index n runs over all possible intermediate states of the
daughter nucleus. The NMEs have been calculated using
the ANTOINE shell-model code, using the Lanczos strength-
function method as in Ref. [57], and including as many as
intermediate states to obtain at least a four-digit accuracy
(see also Figs. 5, 11 in Ref. [38]). The theoretical values are
then compared with the experimental counterparts, that are
extracted from the observed half life T 2ν

1/2,[
T 2ν

1/2

]−1 = G2ν
∣∣M2ν

GT

∣∣2
. (24)

The calculation of M2ν
GT may be also performed without

calculating explicitly the intermediate Jπ = 1+
n states of the

daughter nucleus, namely resorting to the so-called closure
approximation [58]. The price to be paid is that the transition
operator is no longer a one-body operator but a two-body
one. It is worth pointing out that this approximation is largely
employed to calculate the 0νββ NME (M0ν), since the high
momentum of the neutrino—which appears explicitly in the
definition of M0ν—is about 100 MeV that is one order of mag-
nitude greater than the average Jπ = 1+

n excitation energy. As
a matter of fact, it has been estimated that this approximation
is valid within 10% of the exact result [59]. Actually, the same
approximation has turned out to be very unsatisfactory for
the calculation of M2ν

GT, because the energies of the neutrinos
which are emitted in the 2νββ process are much smaller. For
instance, in Ref. [8] the authors obtain a result for 76Ge M2ν

GT
that is about two times larger than the one calculated with
the Lanczos strength-function method by employing the same
SM wave functions [25,60], and about 5 times larger than the
experimental value [61].

III. RESULTS

In this section we present the results of our SM calcula-
tions. We compare the calculated low-energy spectra of 48Ca,
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FIG. 5. Experimental and calculated spectra of 48Ca and 48Ti.
B(E2) strengths (in e2fm4) are also reported (see text for details).

48Ti, 76Ge, 76Se, 82Se, 82Kr, 130Te, 130Xe, 136Xe, and 136Ba,
and their electromagnetic properties with the available experi-
mental counterparts. As mentioned in the Introduction, special
attention will be focused on the magnetic dipole properties,
since both M1 and GT operators are spin dependent.

We show also the results of the GT− strength distributions
and the calculated NMEs of the 2νββ decays for 48Ca, 76Ge,
82Se, 130Te, and 136Xe, and compare them with the available
data. All the calculations have been performed employing
theoretical SP energies, TBMEs, and effective transition oper-
ators. In particular, for the M1 and GT properties we report the
calculated values obtained by using the bare (I) and effective
(II) operators, as well as those including the blocking effect—
and labeled as (III)—by way of a density-dependent effective
operator as mentioned in Sec. II. The latter give us the
opportunity to investigate the role of many-body correlations
on the spin- and spin-isospin-dependent one-body operators
in nuclei with more than one valence nucleon.

A. 48Ca

The shell-model calculation for 48Ca and 48Ti are per-
formed within the full f p shell, namely the proton and neutron
0 f7/2, 0 f5/2, 1p3/2, and 1p1/2 orbitals. In Fig. 5, we show
the experimental [62,63] and calculated low-energy spectra of
48Ca and 48Ti. Next to the arrows, that are proportional to the
B(E2) strengths, we report the explicit experimental [62,63]
and calculated B(E2)s in e2fm4.

As can be seen, we do not reproduce the observed shell
closure of the neutron 0 f7/2 orbital in 48Ca and the agree-
ment between the experimental and calculated spectra is
only qualitative, while experimental B(E2)s are satisfactorily
reproduced by the theory.

In Table I the low-energy experimental and calculated
observable related to the M1 operator are reported. The cal-
culated values reported in columns I, II, III are obtained with
the bare magnetic-dipole operator, the effective one without
blocking effect, and the one including the blocking effect,
respectively.

From an inspection of Table I, it can be seen that the
calculated magnetic-dipole transition rates B(M1)s compare
well with the observed value for 48Ca. In particular, from
Table XIV, the values obtained employing the effective shell-
model operators (II,III) are quenched with respect to that
calculated with the bare operator (I), and in a better agreement

TABLE I. Experimental and calculated B(M1) strengths (in μ2
N )

and magnetic dipole moments (in μN ) of 48Ca and 48Ti. We report
those for the observed states in Fig. 5 (see text for details).

Nucleus Ji → Jf B(M1)exp I II III

48Ca
3+

1 → 2+
1 0.023 ± 0.004 [64] 0.051 0.046 0.046

Nucleus J μexp I II III
48Ti

2+
1 +0.78 ± 0.04 [62] +0.37 +0.54 +0.54

+0.9 ± 0.4 [62]
4+

1 +2.2 ± 0.5 [62] +1.2 +1.5 +1.5

with experiment. The blocking effect is very tiny because the
number of valence nucleons is rather small compared with the
full capacity of the f p shell.

Regarding the magnetic moments, data are available for
48Ti, and they are underestimated by the theory. However, the
contribution due to the effective operators points in the right
direction, leading to a better agreement with experiment.

In Table II we report the observed and calculated values of
the NMEs for the 2νββ decay of 48Ca into 48Ti. The NME
obtained with the bare operator (I) slightly underestimates the
experimental one, and it is 20% larger than those obtained
with the effective operators (II) and (III). This corresponds
to a quenching factor q = 0.9, that is roughly the average
value of the reduction factor that can be extracted from
Table XVII, comparing the single-particle elements of the
bare GT operator with the effective ones. In this context, it
should be mentioned that our 2νββ NME calculated with the
bare operator is very different from those obtained by way of
SM calculations employing phenomenological Heff [20,21],
which reproduce correctly the observed shell closure of 0 f7/2

orbital in 48Ca.
It is worth noting that, as for the M1 properties, the

blocking effect plays a negligible role also in the calculation
of the 2νββ NME.

In Fig. 6, the calculated �B(p, n) for 48Ca are shown as
a function of the excitation energy, and compared with the
data reported with a red line [65]. The results obtained with
the bare operator (I) are drawn with a blue line, while those
obtained employing the effective GT operators without and
with the blocking effect are plotted using continuous and
dashed black lines, respectively.

It can be seen that the distribution obtained using the bare
operator (I) overestimates the observed one, and it is very
close to those provided by both the effective GT operators
(II,III), the blocking effect being almost negligible. Finally,
we report about the theoretical total GT− strengths that are

TABLE II. Experimental [61] and calculated NME of the 2νββ

decay (in MeV−1) for 48Ca. The same notation of Table I is used (see
text for details).

Decay NMEexp I II III

48Ca → 48Ti 0.038 ± 0.003 0.030 0.026 0.026
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FIG. 6. Running sums of the 48Ca B(p, n) strengths as a function
of the excitation energy Ex up to 5 MeV (see text for details).

24.0, 23.1, and 23.0 with the bare operator (I), and the
effective ones (II) and (III), respectively.

B. 76Ge

The shell-model calculations for 76Ge and 76Se are per-
formed within the model space spanned by the four proton
and neutron orbitals 0 f5/2, 1p3/2, 1p1/2, and 0g9/2, considering
56Ni as a closed core. The experimental [62,63] and calculated
low-energy spectra of 76Ge and 76Se are reported in Fig. 7,
together with the experimental [62,63] and calculated B(E2)
strengths (in e2fm4), as in Fig. 5.

The agreement between the experimental and calculated
spectra and B(E2)s is far more satisfactory than that obtained
for A = 48.

In Table III we report the experimental and calculated
B(M1) strengths as well as magnetic dipole moments of 76Ge
and 76Se.

It can be observed that, with respect to the calculations for
48Ca and 48Ti, now the contribution arising from an effective
transition operator—whose matrix elements are reported in
Table XV—is more relevant, and significantly improves the
comparison with data. This traces back to the fact that, as it is
well known [33], spin- and spin-isospin-dependent operators
need larger renormalizations when orbitals belonging to the

FIG. 7. Same as in Fig. 5, but for 76Ge and 76Se (see text for
details).

TABLE III. Same as in Table I, but for 76Ge and 76Se (see text
for details).

Nucleus Ji → Jf B(M1)exp I II III

76Ge
2+

2 → 2+
1 0.003+0.002

−0.003 [66] 0.006 0.004 0.005
4+

2 → 3+
1 0.02 ± 0.01 [66] 0.062 0.027 0.025

0.002 ± 0.001 [66]
4+

2 → 4+
1 0.03+0.02

−0.03 [66] 0.07 0.03 0.03
0.04 ± 0.02 [66]

Nucleus J μexp I II III
76Ge

2+
1 +0.64 ± 0.02 [67] +0.53 +0.83 +0.84

2+
2 +0.78 ± 0.10 [67] +0.93 +1.10 +1.09

4+
1 +0.96 ± 0.68 [67] +0.58 +1.33 +1.36

76Se
2+

1 0.81 ± 0.05 [68] +0.37 +0.60 +0.58
2+

2 0.70 ± 0.12 [68] +0.64 +0.82 +0.79
4+

1 2.6 ± 0.4 [68] +0.3 +0.9 +0.9

model space lack their spin-orbit counterpart. As a matter of
fact, this regards single-body matrix elements of the effec-
tive M1—and GT operators—involving the 0 f5/2 and 0g9/2

orbitals. We observe that also for 76Ge and 76Se, the blocking
effect on the M1 operator seems rather unimportant.

As regards the comparison with experiment, both calcu-
lated B(M1)s and dipole moments agree with data, especially
those obtained with the effective operators (II) and (III). It
is worth pointing out that, using the effective operators, the
quenching of the nondiagonal one-body matrix elements in
Table XV is responsible for the reduction of the calculated
B(M1)s with respect to those obtained with the bare operator.
On the other side, the enhancement of the proton diagonal
matrix element 〈0 f5/2||M1||0 f5/2〉 (see Table XV) leads to an
increase of the magnetic dipole moments of the yrast states.

As can be seen in Table XVIII, the renormalization effect
of the GT operator is much stronger than that observed for
the M1 operator. This is reflected in our shell-model results
for the NMEs of the 2νββ decay of 76Ge into 76Se, that are
compared with the experimental value [61] in Table IV.

From the inspection of Table IV, it can be observed that us-
ing the bare GT operator (I) the calculated NME overestimates
the datum by almost a factor of 3, and this gap is recovered
employing the effective operator (II) which introduces an
average quenching factor q 	 0.6. As a matter of fact, this
renormalization leads to a theoretical result that is very close
to the experimental one. Moreover, it can be observed that a
tiny blocking effect pushes the calculated value (III) within
the experimental error.

TABLE IV. Same as in Table II, but for the 2νββ decay of 76Ge
(see text for details).

Decay NMEExpt I II III

76Ge → 76Se 0.113 ± 0.006 0.304 0.095 0.104
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FIG. 8. Running sums of the 76Ge B(p, n) strengths as a function
of the excitation energy Ex up to 3 MeV (see text for details).

The role played by the effective operator is also evi-
dent when we compare the calculated and experimental [69]
�B(p, n) for 76Ge as a function of the excitation energy. This
is done in Fig. 8, where the running sums of the GT strengths
are reported up to a 3 MeV excitation energy. Note that the
same notation as in Fig. 6 is used here.

This figure, as Table IV, evidences how crucial it is to take
into account the renormalization of the GT operator to obtain
a good agreement between theory and experiment. It is worth
adding that the contribution of the blocking effect is almost
irrelevant.

For the sake of completeness, we have calculated the
theoretical total GT− strengths, and obtained the values 18.2,
6.9, and 7.2 with the bare operator (I), and the effective ones
(II) and (III), respectively.

C. 82Se

As for 76Ge and 76Se, the shell model calculation for
82Se and 82Kr has been carried out using, as model space,
the four proton and neutron orbitals 0 f5/2, 1p3/2, 1p1/2, and
0g9/2 placed outside 56Ni. In Fig. 9 the calculated low-energy
spectra and B(E2)s are compared with experiment [62,63].

The agreement between theory and experiment can be
considered satisfactory, the largest discrepancy, in both nuclei,

FIG. 9. Same as in Fig. 5, but for 82Se and 82Kr (see text for
details).

TABLE V. Experimental and calculated magnetic dipole mo-
ments (in nm) of 82Se and 82Kr. We report those for the observed
states in Fig. 9.

Nucleus J μexp I II III

82Se
2+

1 +0.99 ± 0.06 [62] +0.72 +1.03 +1.05
4+

1 2.3 ± 1.5 [62] +1.17 +1.88 +1.93
82Kr

2+
1 +0.80 ± 0.04 [62] +0.50 +0.83 +0.83

4+
1 +1.2 ± 0.8 [62] +0.5 +1.3 +1.3

occurring for the B(E2; 0+
2 → 2+

1 )s, whose calculated values
are about a factor 3 smaller than the observed ones.

Regarding the observables linked to the M1 operator, the
only available data for the low-lying states reported in Fig. 9
are the magnetic dipole moments shown in Table V.

Since the model space is the same as for A = 76 nuclei,
the matrix elements of the effective M1 operator (II) are those
reported in Table XV. The action of the effective operators, as
can be observed from the inspection of Table V, is to improve
the comparison with the data of the shell-model results, with
respect to those obtained with the bare operator (I). This result
evidences the role of the renormalization of the bare operator
to take into account the degrees of freedom that have been left
out by constraining the nuclear wave function to the valence
nucleons interacting in the truncated model space.

As for the 2νββ decay of 76Ge, the quenching of the matrix
elements of the GT operator, shown in Table XVIII, is crucial
to improve our calculation of the NME of the decay of 82Se
into 82Kr. In fact, the NME calculated with the bare operator
overestimates the experimental value [61] by a factor 4, as can
be inferred from Table VI, while calculations performed with
the effective operators (II,III) provide far better results.

The quenching of the effective GT operator is a feature
that is crucial also in providing a calculated �B(p, n) curve
for 82Se, as a function of the excitation energy, that almost
overlaps with the experimental one [70], as can be seen in
Fig. 10 where the running sums of the 82Se GT strengths up
to a 3 MeV excitation energy are reported.

As for the calculations of 48Ca, 76Ge �B(p, n), we observe
a negligible role of the blocking effect.

We conclude this section reporting the calculated total GT−

strengths that are 21.6, 8.5, and 8.9 with the bare operator (I),
and the effective ones (II) and (III), respectively.

D. 130Te

The shell-model calculations for 130Te and 130Xe are per-
formed within the model space spanned by the five proton and

TABLE VI. Same as in Table II, but for the 2νββ decay of 82Se
(see text for details).

Decay NMEExpt I II III

82Se → 82Kr 0.083 ± 0.004 0.347 0.111 0.109
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FIG. 10. Running sums of the 82Se B(p, n) strengths as a func-
tion of the excitation energy Ex up to 3 MeV (see text for details).

neutron orbitals 0g7/2, 1d5/2, 1d3/2, 2s1/2, and 0h11/2, consid-
ering 100Sn as a closed core. For the sake of completeness, the
experimental [62,63] and calculated low-energy spectra and
B(E2)s, already reported in Ref. [38], are also presented in
this work in Fig. 11.

From an inspection of Fig. 11, we observe that the com-
parison between the calculated and experimental low-energy
spectra is very good for 130Te, while it is less satisfactory
for 130Xe. As regards the calculated B(E2)s, they compare
well with the observed values for both nuclei, providing good
expectations about the reliability of the SM wave functions.

In Table VII the calculated B(M1; 2+
3 → 2+

1 ) of 130Te is
reported and compared with the two experimental values of
Ref. [71]. In the same table the calculated and observed
magnetic dipole moments of 130Te and 130Xe can be found.

As can be seen, similar to the results of the calculations for
76Ge and 82Se, the role of the effective M1 operator is relevant.
As a matter of fact, the smaller B(M1) values, compared with
the one calculated with the bare operator, are a consequence
of the general quenching of the nondiagonal matrix elements
reported in Table XVI. On the other side, the enhancement of
the proton 0g7/2 diagonal matrix element is responsible for the
larger dipole moments, when they are calculated employing
the effective operators (II) and (III). Actually, because of the
large experimental errors, it is not clear if the effective oper-

FIG. 11. Same as in Fig. 5, but for 130Te and 130Xe (see text for
details).

TABLE VII. Same as in Table I, but for 130Te and 130Xe (see text
for details). We report those for the observed states in Fig. 11.

Nucleus Ji → Jf B(M1)exp I II III

130Te
2+

3 → 2+
1 0.037+0.03

−0.04 [71] 0.057 0.085 0.077
0.097+0.08

−0.11 [71]
Nucleus J μexp I II III
130Te

2+
1 0.58 ± 0.10 [62] +0.52 +0.71 +0.71

130Xe
2+

1 0.57 ± 0.14 [62] +0.50 +0.67 +0.66

ators are able to provide a better agreement with experiment
for the dipole moments with respect to the bare operator. As it
regards the B(M1; 2+

3 → 2+
1 ), it turns out that our calculated

values are closer to the smallest of the two values reported in
Ref. [71]. Finally, it is worth noting that there is no sizable
role of the blocking effect.

The calculated and experimental values of the NME for the
130Te 2νββ decay [61] are reported in Table VIII.

As shown in our previous study [38], the quenching of the
bare operator (I) provided by the effective ones (II,III) (see
Table XVII) plays a fundamental role to obtain a reasonable
comparison with the experimental NME. As a matter of fact,
our shell model calculation gives a 2νββ NME that is almost
4 times bigger than the experimental one, starting from GT
operator (I). On the other hand, the effective operators, derived
via many-body perturbation theory, take into account the re-
duction of the full Hilbert space to configurations constrained
by the valence nucleons interacting in the model space and
provide NMEs that are almost within experimental error bars.

These considerations hold, obviously, also for the calcu-
lation of the 130Te �B(p, n), whose results are reported in
Fig. 12 and compared with available data [72] up to 3 MeV
excitation energy.

As for the 76Ge and 82Se running sums, the curves obtained
with the effective operators (II,III) lie much closer to the
experimental one than that calculated employing the bare
operator (I), and almost overlap each other.

The total GT− strengths, obtained with effective operators
(I–III), are 46.4, 18.3, and 18.6, respectively.

E. 136Xe

The shell-model calculations for 136Xe and 136Ba are car-
ried out using the same model space, effective Hamiltonian,
and transition operators as for 130Te and 130Xe, and details

TABLE VIII. Same as in Table II, but for the 2νββ decay (in
MeV−1) of 130Te (see text for details).

Decay NMEexp I II III

130Te → 130Xe 0.031 ± 0.004 0.131 0.057 0.061
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FIG. 12. Running sums of the 130Te B(p, n) strengths as a func-
tion of the excitation energy Ex up to 3 MeV (see text for details).

about SP energies, TBMEs, effective charges, and effective
GT matrix elements can be found in Ref. [38].

We present, as in our previous study, the experimental
[62,63] and calculated low-energy spectra and B(E2)s which
we have reported in Fig. 13.

The comparison between theory and experiment, as it
regards the low-lying excited states and the B(E2) transition
rates, is excellent for both nuclei, showing once more the
reliability of the realistic shell model.

In Table IX we report the calculated and experimental
B(M1)s of 136Ba, involving some of the excited states reported
in Fig. 13, together with the J = 2+

1 magnetic dipole moment.
We compare also theory and experiment for the J = 2+

1 , 4+
1

magnetic dipole moments of 136Xe.
As a matter of fact, we observe the same tendency we have

found in the previous calculations, that is the quenching of
B(M1) values obtained with effective operators (II,III), and
the enhancement of the dipole moments when the same oper-
ators are employed. This is grounded on the same observations
we have made in Sec. III D, and supported by the inspection
of the list of the matrix elements in Table XVI.

Actually, both features lead to an improvement in the
description of the data, and support again the crucial role
of the renormalization of transition operators by way of the
many-body perturbation theory.

FIG. 13. Same as in Fig. 5, but for 136Xe and 136Ba (see text for
details).

TABLE IX. Same as in Table I, but for 136Xe and 136Ba (see text
for details). We report those for the observed states in Fig. 13.

Nucleus Ji → Jf B(M1)exp I II III

136Ba
2+

2 → 2+
1 0.02 ± 0.1 [73] 0.07 0.06 0.06

2+
3 → 2+

1 0.002 ± 0.002 [73] 0.006 0.002 0.001
4+

2 → 4+
1 0.06+0.08

−0.05 [73] 0.15 0.10 0.09
Nucleus J μexp I II III
136Xe

2+
1 1.53 ± 0.09 [62] +1.05 +1.15 +1.14

4+
1 3.2 ± 0.6 [62] +2.02 +2.24 +2.22

136Ba
2+

1 0.69 ± 0.10 [62] +0.48 +0.60 +0.59

This consideration is even more valid when we consider
the calculation of the NME for the 136Xe 2νββ decay, whose
results are reported in Table X and compared with the datum
[61].

We see that the (II,III) NMEs are more than a factor of 3
smaller than the value obtained with the bare operator (I), and
closer to the experimental value. The same feature comes out
in Fig. 14, where we report the calculated and experimental
[74] �B(p, n) of 136Xe up to 4.5 MeV excitation energy.

Also for the 136Xe running sums, the many-body renormal-
ization of the GT operator is crucial to reproduce the experi-
mental curve with a negligible contribution of the blocking
effect.

The total GT− strengths, obtained with bare and effective
operators (I–III), are 51.9, 20.7, and 21.0, respectively.

IV. CONCLUSIONS AND OUTLOOK

In this paper we have studied the role of effective operators
to calculate, within the realistic shell model, observables that
are related to spin- and spin-isospin-dependent transitions.
Our main focus has been on GT transitions for nuclei that
are candidates for the detection of the 0νββ decay, and we
have calculated, for several nuclei and over a wide mass
range, 2νββ-decay NMEs and the running sums of the B(p, n)
strengths to compare them with the available data. Since
the magnetic-dipole M1 operator incorporates an isovector-
spin term with the same structure of the GT operator, we
have extended this analysis to the calculation of B(M1)s and
magnetic dipole moments to strengthen our investigation.

As a matter of fact, our aim has been to demonstrate that
the present status of the many-body perturbation theory allows
to derive consistently effective Hamiltonians and transition
operators that are able to reproduce quantitatively the ob-
served spectroscopic and decay properties, without resorting

TABLE X. Same as in Table II, but for the 2νββ decay (in
MeV−1) of 136Xe (see text for details).

Decay NMEexp I II III

136Xe → 136Ba 0.0181 ± 0.0007 0.0910 0.0332 0.0341
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FIG. 14. Running sums of the 136Xe B(p, n) strengths as a func-
tion of the excitation energy Ex up to 4.5 MeV (see text for details).

to an empirical quenching of the axial coupling constant gA,
or to empirically fitted spin and orbital g factors gs, gl .

The quenching factors corresponding to the matrix ele-
ments of the effective M1 and GT operators are reported
in Tables XIV–XVI and Tables XVII–XIX, respectively. It
is worth noting that the calculated quenching effect on the
M1 operator is overall smaller than for GT transitions, which
points to the fact that the two operators are differently affected
by the renormalization procedure. This result highlights that
for the renormalization of the M1 operator a non-negligible
role is played by its isoscalar and isovector orbital com-
ponents. As a matter of fact, from the inspection of these
tables, the quenching of proton-proton M1 matrix elements
is overall largely different from the GT one, the latter being
much closer to that obtained for neutron-neutron M1 matrix
elements (which own the spin component only).

In order to show and stress pictorially the main outcome of
our study about the relevance played by effective transition
operators, in Fig. 15 we report a correlation plot between
our calculated 2νββ decay NMEs and the corresponding
experimental values. The quantities in Fig. 15 are already
reported in Tables II, IV, VI, VIII, X.

The red symbols correspond to the results obtained em-
ploying the bare operators (I), while the black ones indicate
the results obtained with the effective operators (III).

As can be seen, the red points are all spread on the lower
side of the figure, except the one corresponding to 48Ca, and
lie far away from the identity, that is represented by a dashed
line. This feature characterizes the nuclei that are described
by way of a model space where some of its orbitals lack their
spin-orbit counterparts, leading to an overestimation of the
calculated NME with respect to the experimental value.

The black points, that correspond to the effective GT
operators, on the other hand regroup themselves close to the
identity, as a reliable calculation should do.

It is worth reminding the reader that our results may
be traced back to earlier investigations carried out by
Towner and collaborators since the 1980s (see, for instance,
[33,34,75,76]), where the role of microscopically derived
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FIG. 15. Correlation plot between the calculated (x axis) and the
experimental (y axis) 2νββ decay NMEs (see text for details).

effective spin-dependent operators is enlightened. Present
work takes advantage of modern developments to derive
the effective shell-model Hamiltonians and operators (see,
for example, Refs. [3,6]), and up-to-date approaches to the
renormalization of realistic NN potentials [41].

On the above grounds, we intend to extend our study by
investigating the role of meson-exchange corrections to the
electroweak currents [28–31]. More precisely, we aim, in the
near future, at building up effective shell-model Hamiltonians
and operators starting from two- and three-body nuclear po-
tentials derived within the framework of chiral perturbation
theory [77], and taking also into account the contributions
of chiral two-body electroweak currents to the effective GT
operators. As a matter of fact, recent studies have shown that
β- and neutrinoless double-β decays may be significantly
affected by these contributions [78,79], when consistently
starting from chiral potentials.

At last, our final goal is to benefit from the expertise we
have gained to evaluate the 0νββ decay NMEs for the nuclei
studied in present paper [80].

APPENDIX: TABLES OF SP ENERGIES
AND EFFECTIVE OPERATORS

1. SP energies

TABLE XI. Theoretical proton and neutron SP energy spacings
(in MeV) for 40Ca core.

Proton SP spacings Neutron SP spacings

0 f7/2 0.0 0.0
0 f5/2 8.6 7.8
1p3/2 1.6 2.1
1p1/2 3.3 4.0
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TABLE XII. Theoretical proton and neutron SP energy spacings
(in MeV) for 56Ni core.

Proton SP spacings Neutron SP spacings

0 f5/2 0.2 0.0
1p3/2 0.0 0.5
1p1/2 0.6 1.1
0g9/2 3.1 3.5

TABLE XIII. Theoretical proton and neutron SP energy spacings
(in MeV) for 100Sn core.

Proton SP spacings Neutron SP spacings

0g7/2 0.0 0.0
1d5/2 0.3 0.6
1d3/2 1.2 1.5
2s1/2 1.1 1.2
0h11/2 1.9 2.7

2. Effective M1 and GT operators

TABLE XIV. Proton and neutron matrix elements of the effective
magnetic dipole operator M1 (I) (in μN ) for the 40Ca core. In the
last column we report the corresponding quenching factors. For l-
forbidden matrix elements there is no quenching factor to be shown.

nala ja nblb jb Tz M1eff quenching factor

0 f7/2 0 f7/2 +1/2 8.760 0.965
0 f7/2 0 f5/2 +1/2 −3.986 0.961
0 f5/2 0 f7/2 +1/2 4.640 1.118
0 f5/2 0 f5/2 +1/2 1.310 1.073
0 f5/2 1p3/2 +1/2 −0.017
1p3/2 0 f5/2 +1/2 0.014
1p3/2 1p3/2 +1/2 4.462 0.933
1p3/2 1p1/2 +1/2 −2.396 0.926
1p1/2 1p3/2 +1/2 2.377 0.919
1p1/2 1p1/2 +1/2 −0.304 0.962
0 f7/2 0 f7/2 −1/2 −2.237 0.746
0 f7/2 0 f5/2 −1/2 3.308 0.956
0 f5/2 0 f7/2 −1/2 −3.582 1.035
0 f5/2 0 f5/2 −1/2 2.727 1.409
0 f5/2 1p3/2 −1/2 −0.026
1p3/2 0 f5/2 −1/2 0.024
1p3/2 1p3/2 −1/2 −2.074 0.859
1p3/2 1p1/2 −1/2 2.025 0.938
1p1/2 1p3/2 −1/2 −2.008 0.930
1p1/2 1p1/2 −1/2 0.799 1.047

TABLE XV. Same as in Table XIV, but for the 56Ni core.

nala ja nblb jb Tz M1eff quenching factor

0 f5/2 0 f5/2 +1/2 2.212 1.812
0 f5/2 1p3/2 +1/2 −0.033
1p3/2 0 f5/2 +1/2 0.026
1p3/2 1p3/2 +1/2 3.358 0.739
1p3/2 1p1/2 +1/2 −1.554 0.601
1p1/2 1p3/2 +1/2 1.586 0.613
1p1/2 1p1/2 +1/2 −0.091 0.288
0g9/2 0g9/2 +1/2 10.174 0.877
0 f5/2 0 f5/2 −1/2 1.338 0.691
0 f5/2 1p3/2 −1/2 −0.024
1p3/2 0 f5/2 −1/2 0.028
1p3/2 1p3/2 −1/2 −1.233 0.511
1p3/2 1p1/2 −1/2 1.178 0.546
1p1/2 1p3/2 −1/2 −1.209 0.560
1p1/2 1p1/2 −1/2 0.512 0.671
0g9/2 0g9/2 −1/2 −0.473 0.145

TABLE XVI. Same as in Table XIV, but for the 100Sn core.

nala ja nblb jb Tz M1eff quenching factor

0g7/2 0g7/2 +1/2 3.013 1.120
0g7/2 1d5/2 +1/2 −0.064
1d5/2 0g7/2 +1/2 0.060
1d5/2 1d5/2 +1/2 5.190 0.765
1d5/2 1d3/2 +1/2 −2.180 0.628
1d3/2 1d5/2 +1/2 2.274 0.655
1d3/2 1d3/2 +1/2 0.407 2.599
1d3/2 2s1/2 +1/2 −0.123
2s1/2 1d3/2 +1/2 0.119
2s1/2 2s1/2 +1/2 2.453 0.734
0h11/2 0h11/2 +1/2 12.349 0.861
0g7/2 0g7/2 −1/2 1.984 0.851
0g7/2 1d5/2 −1/2 −0.008
1d5/2 0g7/2 −1/2 0.008
1d5/2 1d5/2 −1/2 −1.417 0.523
1d5/2 1d3/2 −1/2 1.681 0.580
1d3/2 1d5/2 −1/2 −1.756 0.606
1d3/2 1d3/2 −1/2 1.081 0.746
1d3/2 2s1/2 −1/2 0.076
2s1/2 1d3/2 −1/2 −0.071
2s1/2 2s1/2 −1/2 −1.414 0.618
0h11/2 0h11/2 −1/2 −0.696 0.198
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TABLE XVII. Matrix elements of the proton-neutron effective GT+ and GT− operators for the
40Ca core. In the last two columns we report the corresponding quenching factors of the present work
(I) and those reported in the work of Ref. [7] (see text for details). For l-forbidden matrix elements
there is no quenching factor to be shown.

nala ja nblb jb GT−
eff quenching factor

0 f7/2 0 f7/2 2.870 0.995
0 f7/2 0 f5/2 −3.210 0.964
0 f5/2 0 f7/2 3.941 1.183
0 f5/2 0 f5/2 −2.104 1.130
0 f5/2 1p3/2 −0.033
1p3/2 0 f5/2 0.001
1p3/2 1p3/2 2.162 0.931
1p3/2 1p1/2 −1.906 0.918
1p1/2 1p3/2 1.901 0.915
1p1/2 1p1/2 −0.691 0.953
nala ja nblb jb GT+

eff quenching factor (I) quenching factor (II)

0 f7/2 0 f7/2 2.706 0.938 0.905
0 f7/2 0 f5/2 −3.012 0.904 0.856
0 f5/2 0 f7/2 3.276 0.984
0 f5/2 0 f5/2 −1.737 0.932 0.882
0 f5/2 1p3/2 −0.001
1p3/2 0 f5/2 0.026
1p3/2 1p3/2 2.135 0.921 0.880
1p3/2 1p1/2 −1.879 0.904 0.863
1p1/2 1p3/2 1.871 0.901
1p1/2 1p1/2 −0.686 0.935 0.932

TABLE XVIII. Same as in Table XVII, but for the 56Ni core.

nala ja nblb jb GT−
eff quenching factor

0 f5/2 0 f5/2 −0.674 0.362
0 f5/2 1p3/2 −0.085
1p3/2 0 f5/2 0.006
1p3/2 1p3/2 1.441 0.620
1p3/2 1p1/2 −1.141 0.549
1p1/2 1p3/2 1.189 0.572
1p1/2 1p1/2 −0.482 0.657
0g9/2 0g9/2 1.608 0.511
nala ja nblb jb GT+

eff quenching factor (I) quenching factor (II)

0 f5/2 0 f5/2 −0.638 0.342 0.458
0 f5/2 1p3/2 −0.011
1p3/2 0 f5/2 0.061
1p3/2 1p3/2 1.405 0.605 0.689
1p3/2 1p1/2 −1.159 0.558 0.680
1p1/2 1p3/2 1.121 0.539
1p1/2 1p1/2 −0.468 0.638
0g9/2 0g9/2 1.536 0.488 0.802
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TABLE XIX. Same as in Table XVII, but for the 100Sn core.

nala ja nblb jb GT−
eff quenching factor

0g7/2 0g7/2 −1.168 0.521
0g7/2 1d5/2 −0.108
1d5/2 0g7/2 0.000
1d5/2 1d5/2 1.686 0.647
1d5/2 1d3/2 −1.525 0.547
1d3/2 1d5/2 1.708 0.613
1d3/2 1d3/2 −0.888 0.638
1d3/2 2s1/2 −0.124
2s1/2 1d3/2 0.093
2s1/2 2s1/2 1.405 0.638
0h11/2 0h11/2 1.931 0.570
nala ja nblb jb GT+

eff quenching factor (I) quenching factor (II)

0g7/2 0g7/2 −1.168 0.521 0.472
0g7/2 1d5/2 0.001
1d5/2 0g7/2 0.102
1d5/2 1d5/2 1.686 0.647 0.595
1d5/2 1d3/2 −1.688 0.606 0.513
1d3/2 1d5/2 1.543 0.553
1d3/2 1d3/2 −0.888 0.638 0.652
1d3/2 2s1/2 −0.098
2s1/2 1d3/2 0.117
2s1/2 2s1/2 1.405 0.638
0h11/2 0h11/2 1.931 0.570
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