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Background: In the framework of the newly developed generalized energy density functional (EDF) called
KIDS, the nuclear equation of state (EoS) is expressed as an expansion in powers of the Fermi momentum or
the cubic root of the density (0'/?). Although an optimal number of converging terms was obtained in specific
cases of fits to empirical data and pseudodata, the degree of convergence remains to be examined not only for
homogeneous matter but also for finite nuclei. Furthermore, even for homogeneous matter, the convergence
should be investigated with widely adopted various EoS properties at saturation.

Purpose: The first goal is to validate the minimal and optimal number of EoS parameters required for the
description of homogeneous nuclear matter over a wide range of densities relevant for astrophysical applications.
The major goal is to examine the validity of the adopted expansion scheme for an accurate description of finite
nuclei.

Method: We vary the values of the high-order density derivatives of the nuclear EoS, such as the skewness of
the energy of symmetric nuclear matter and the kurtosis of the symmetry energy, at saturation and examine the
relative importance of each term in p!/? expansion for homogeneous matter. For given sets of EoS parameters
determined in this way, we define equivalent Skyrme-type functionals and examine the convergence in the
description of finite nuclei focusing on the masses and charge radii of closed-shell nuclei.

Results: The EoS of symmetric nuclear matter is found to be efficiently parameterized with only three parameters
and the symmetry energy (or the energy of pure neutron matter) with four parameters when the EoS is expanded
in the power series of the Fermi momentum. Higher-order EoS parameters do not produce any improvement, in
practice, in the description of nuclear ground-state energies and charge radii, which means that they cannot be
constrained by bulk properties of nuclei.

Conclusions: The minimal nuclear EDF obtained in the present work is found to reasonably describe the
properties of closed-shell nuclei and the mass-radius relation of neutron stars. Attempts at refining the nuclear
EDF beyond the minimal formula must focus on parameters which are not active (or strongly active) in

unpolarized homogeneous matter, for example, effective tensor terms and time-odd terms.
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I. INTRODUCTION

In a series of publications [1-4], we have proposed and
developed a strategy to model nuclear systems based on a
converging power expansion combined with energy density
functional (EDF) theory. Beginning with homogeneous matter
[1], we formulated the energy per particle, which represents
the equation of state (EoS), as an expansion in powers of
the Fermi momentum or equivalently in powers of the cubic
root of the density, as kr o ,01/ 3. This choice is rooted both
in quantum many-body theory and effective field theory. We
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confirmed a posteriori the quick convergence of the expansion
by fitting the parameters to pseudodata from microscopic
calculations. Based on a statistical analysis of the fits, a
robust parameter set was chosen as a baseline for further
explorations, comprising three terms for isospin-symmetric
nuclear matter (SNM) and four for pure neutron matter
(PNM). The naturalness of the expansion was confirmed and
extrapolations to extreme density regimes were found to be
satisfactory [4]. In particular, the extrapolated results agreed
with ab initio calculations to the densities low enough to reach
the core-crust boundary in the neutron star p ~ 0.001 fm >,
a regime to which the model had not been fitted at all, and
reproduced a realistic mass-radius relation of neutron stars,
which represents a dense regime.

In subsequent works reported in Refs. [2-4], the KIDS
EoS was transposed to a Skyrme functional with extended
density-dependent couplings, which we call a KIDS EDF,
to study nuclear ground-state properties, thereby relying on

©2019 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.100.014312&domain=pdf&date_stamp=2019-07-18
https://doi.org/10.1103/PhysRevC.100.014312

GIL, KIM, HYUN, PAPAKONSTANTINOU, AND OH

PHYSICAL REVIEW C 100, 014312 (2019)

the Kohn-Sham scheme [5,6]. With the baseline EoS from
Ref. [1] and only six input data, namely, the ground-state
energies and charge radii of three nuclei, it was possible
to obtain a successful description of the bulk properties of
closed-(sub)shell nuclei over a wide range of atomic number,
say from 160 to 218U [2-4].! Furthermore, the results were
found to be practically independent of the assumption on the
in-medium effective mass [4], which means that the latter
cannot be efficiently constrained by the bulk static proper-
ties of nuclei. The corresponding parameters then remain to
be determined via dynamic properties of nuclei. The above
results showed that with a well-defined nuclear EoS Ansatz,
the convenient Skyrme formalism, and simple rules for fitting,
it would be possible to find a unified and phenomenological
nuclear model describing nuclear matter and nuclei with the
same parameter set, i.e., the same EoS.

Before developing more sophisticated models to describe
various types of nuclei along this approach, we address the
convergence issue in the description of closed-(sub)shell nu-
clei at the present stage. Throughout the previous publica-
tions [1-4] we have shown that the expansion of the EoS
as a power series of the Fermi momentum exhibits excellent
convergence well above the saturation density [2]. However,
careful analyses lead to the observation that the degree of
convergence depends on isospin and, as a result, higher-order
contributions are more important in PNM than in SNM. In
fact, in Ref. [1], it is shown that, while three terms are
sufficient for describing SNM in a fast-converging hierarchy,
at least four terms are needed to have such behavior for PNM.
The origin of this difference is certainly of theoretical interest
and requires sophisticated investigations on nuclear dynamics.
Although we will not address here the issue on its fundamental
origins, it would be important and meaningful to examine
the convergence in the description of finite nuclei. This is
the major motivation of the present article and the purpose
of the this work is to examine the convergence of the power
series expansion in the Fermi momentum for the description
of finite nuclei.

The nuclear EoS is often represented in terms of param-
eters defined at the saturation point such as the saturation
density pg, the binding energy per particle at saturation Ej, the
symmetry energy at saturation J, the slope parameter L, and
the compression modulus Ky. These parameters were used to
constrain the nuclear EoS in our previous publications [1-4].
However, the role of the parameters that are related to higher
derivatives of the EoS with respect to density remains to be
explored. These “EoS parameters” can be readily expressed
analytically in terms of the KIDS expansion coefficients. The
question of how many KIDS parameters are needed for an
efficient description of nuclear systems can be rephrased as
how many high-order derivatives of the SNM energy and of
the symmetry energy are needed. In other words, we also need
to examine how many EoS parameters are necessary for an
efficient and well-converged description of PNM and nuclear
ground states. Furthermore, since higher-order terms in the

'Because only closed-(sub)shell nuclei were considered, we do not
include pairing interactions in the present work.

power series expansion control the behavior of the nuclear
EoS at higher densities, higher-order EoS parameters such as
the skewness and kurtosis would help in constraining the EoS
at higher densities and examining the convergence of the EoS.

Motivated by the above issues, in the present work we
address the following questions. In Refs. [1-4], we success-
fully parameterized the EoS of SNM and PNM by three and
four EoS parameters in the considered range of densities.
Then it is natural to seek how far the constructed EoS can
be applied as a function of density. This is related to the role
of higher-order EoS parameters and we explore the sensitivity
of our EoS to higher-order EoS parameters. Once their role is
identified for homogeneous nuclear matter, we investigate the
role of higher-order EoS parameters in the description of finite
nuclei. To this end, we obtain results for various values of the
skewness of the SNM EoS and the kurtosis of the symmetry
energy at the saturation point to confirm that such higher-order
terms hardly play any role. The corollary is that the skewness
of the SNM EoS and the symmetry-energy kurtosis cannot be
practically constrained by the static properties of nuclei such
as masses and radii.

This paper is organized as follows. In Sec. II, we briefly
review the formalism of the KIDS EDF and the corresponding
Skyrme potentials will be developed. Section III is devoted
to the exploration of the uncertainty in the fourth-order term
in SNM and the role of the skewness of the SNM EoS is
examined. The mass-radius relations of neutron stars are also
computed within the models of the present approach. Then, in
Sec. IV, we increase the number of terms in the asymmetric
part of EDF to investigate the convergence behavior of the
model with respect to the kurtosis of the nuclear symmetry
energy. In Sec. V, we discuss the results in the context of
current efforts to extend the nuclear EDF, in particular, in the
form of extended Skyrme functionals with rich momentum
dependence and tensor forces. Finally, we summarize and
conclude in Sec. VL.

II. KIDS EDF: EQUATION OF STATE AND
CORRESPONDING SKYRME FUNCTIONALS

A. KIDS equation of state

In the KIDS model for nuclear EDF, the energy per particle
in homogeneous nuclear matter is expanded in powers of the
Fermi momentum kr or equivalently the cubic root of the
baryon density p. Thus, the nuclear EDF in this approach is
written as

N-1

E(p,8) =T (p,8)+ Y _ci8)p' ", M

i=0

where .7 is the free Fermi-gas kinetic energy and the potential
energy is expanded up to N terms, namely, up to the order
of pN+2)/3 starting from the p term. The isospin asymmetry
8 is defined as 8§ = (o, — pp)/p, Where p, and p, are neu-
tron and proton densities, respectively, which give the total
nucleon density p = p, + p,. Model parameters ¢;(§) could
be expanded in even powers of isospin asymmetry §. For the
purpose of the present work, we adopt the usual quadratic
approximation for the isospin-asymmetry dependence of ¢;(§)
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by writing
ci(8) = a; + Bi8%, 2)

which leads to o; = ¢;(0) and 8; = ¢;(1) — ¢;(0).

The expansion parameters c;(§) can be constrained once
the empirical properties of nuclear matter, i.e., EoS param-
eters, are known. Phenomenologically, these parameters are
defined at nuclear saturation density by the series expansion of
the SNM energy &'(p, 0) and nuclear symmetry energy, which
can be defined and expressed as

2

19 N—1 .
—éa(p,(S)‘ = Tym(P)+ Y _Bin', (3)
8=0

50 = 355 Z

where the contribution from the free kinetic energy reads

hz 372 2/3
zym(p)=6—m(%> P23, )

Then EoS parameters of interest are defined through [7]
E(p,0) = Eo + 5Kox* + §Qox’ + 0(xh),
Sp)=J+Lx+ %Ksymx2 + %stmx3 + ﬁRsymx4
+0@), ©)

where x = (p — po)/(3p0).

Therefore, the SNM energy is characterized by the sat-
uration density pg, the energy per particle at saturation Ej,
the compression modulus Kj, and the skewness coefficient Qg
defined as

d> &£(p.0)
Ko = 905 e :
P P P=pPo
d3
Qo = 27p; —&(p. 0) (©6)
d,O P=pPo

However, the nuclear symmetry energy is customarily charac-
terized at the saturation point by its value J = S(pp), the slope
L, and the curvature Ky, defined as

d
L= 3pg d—S(p) ,
P P=pPo
d* S(p)
Kugm = 905 55—~ @)
P=po

In addition, we consider the skewness Qgym and the kurtosis
Rgym, defined via the third and fourth derivatives, respectively,
as

’

=00

3 d3
stm = 27100 WS(P)

®)

d4
Rym = 81p; 275w

P=Po

These EoS parameters will be discussed in the parametrization
of the KIDS model.

All the above quantities are readily obtained analytically
with the help of expressions of Egs. (1)—(3). Explicitly, we
have

N—1
Ko = =27 (po, 0) + D i(i +3)aipy ", ©)
i=0
N—1 )
Qo = +87 (00, 0) + Y ili +3)(i = 3)aupy*, (10)
i=0
N-1 )
Kom = —2Tym(p0) + Y i+ 3)Bipy ", (11)
i=0
N-1 )
Quym = +8Zym(po) + Y _i(i +3)i —3)Bip, ™. (12)
i=0
N—-1

Roym = =56 Toym(po) + Y ili +3)(i — 3)(i — 6)Bipy ™.
i=0

13)

These relations connect the values of the EoS parameter to
our model parameters ¢; and B;. Once the values of EoS
parameters are known, our approach allows us to find the
nuclear EoS to the desired order in density. However, most
of the above EoS parameters are not known to a satisfactory
accuracy and ranges of their values are to be explored.

In Ref. [1], we determined the baseline KIDS parameter
set labeled “KIDS-ad2” in the following way. We began by
fitting many possible combinations (of varying order N) of
KIDS parameters «; and B; to the Akmal-Pandharipande-
Ravenhall (APR) EoS [8]. Having concluded that the three
lowest-order terms are sufficient for the description of SNM,
we set o3 =0, and determined o, by widely adopted
empirical properties at saturation, namely, pp = 0.16 fm~2,
Ey = —16MeV, and Ky, = 240 MeV. (These values are also
consistent with the APR EoS.) This model is then found
to give the skewness coefficient Qy ~ —373 MeV. The co-
efficients c;(1), or equivalently fB;, were also fitted to the
APR EoS for PNM. In this case, we found that at least four
terms had to be retained in the KIDS EDF to reproduce the
APR EoS for PNM. The resulting EDF gives J = 32.8 MeV,
L =493MeV, Kym = —156MeV, Qg =583 MeV, and
Ryym = —2470 MeV.

The KIDS-ad2 EoS determined in this way was sub-
sequently transposed into a zero-range, density-dependent
effective interaction for nuclei and applied successfully to
Hartree-Fock calculations of nuclear ground states of closed-
shell nuclei [3,4], providing satisfactory results, on a par
with generalized Skyrme-type functionals. The question to be
addressed at the present work is to examine whether superior
results can be obtained with higher-order terms.

B. Corresponding Skyrme functionals

In this subsection, we review a simple procedure for ap-
plying a given KIDS EoS to the description of finite nuclei,
which will be employed in the present work. The Fermi
momentum expansion of EDF in Eq. (1) leads to a convenient
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Skyrme-type effective interaction [4] in the form of
vij = (o + yoFo)3(xr; — 1)
1 /
+ 5+ i P)I8(r; — r)k? + K25(r — ;)]

+(t2 + 2P )K - 8(r; — rj)k
N1

1 n
+2 ;(m + y3.P)p" 8 (x; — 1))
+iWok' x 8(r; —rp))k - (0; 4+ 0)), (14)

where k = (V; — V;)/(2i), k' = —(V; — V;)/(Zi), and P, is
the spin-exchange operator. Here, W, denotes the strength
of the effective spin-orbit coupling, which is not active in
homogeneous matter. It, therefore, must be determined from
nuclear data. This is similar in form to a generalized Skyrme
model proposed in Refs. [9—11], but the protocol for determin-
ing the Skyrme potential parameters is quite different. In the
so-called generalized Skyrme potential model, the parameters
are determined by some properties of specific nuclei. In our
case, however, we will begin with an unchanged EoS and use
very few nuclear data for remaining undetermined parameters.
We also retain the freedom to have, e.g., £33 = 0 but ys3 # 0.
The corresponding EDF in terms of the local densities as well
as gradient and kinetic terms can be obtained from a standard
calculation as

2

i 3 1 1=
E=—1+ ~tgp — —(tg + 2y0) p8> —E taup' T3
2mz+80/o 8(o+ Yo)P +16n:1 300

N-1

1 1
- tan + 2y3) 0 7387 + — (9t — 51, — 4
48;(3+y3>p + 5 On =5t — 4y)

§ (Vp)? (Vpd)?

1
——@BHn+6 Hh+2
64( 1+ 6y + 1+ 2y)

1 1
+§(2l‘1 +y1+ 2t +y2)T — g(ll +2y1 — 1 — 2y)

Pty 1 J-Vp Jg- Vo,
W , 15

q
where 7 denotes the kinetic energy density and J the current
density. The sum over g means the summation over isospin,
i.e., ¢ = (n, p). Matching the KIDS EDF in Eq. (2) and the
Skyrme functional in Eq. (15) leads to the following relations:

8 8
fo = 360(0), Yo = 300(0) —4co(1),

t3n = 16¢,(0), y3, = 16¢,(0) — 24c,(1), (n #2),
f = 16¢2(0) — §<§n2)2/39
5\2 s
= 16¢,(0)(1 — ¢),
vz = 16¢2(0) — 24c,(1) + 2(3712)2/3 <39u - 22%)
= [16¢2(0) — 24c2(1)](1 = &), (16)

which defines ¢ and ¢’ with

5372\
93‘ = 31‘] —+ 5t2 + 4_)72 = 5(%) 16C2(0)§,

0, =t +36 -y +3n»
0y

5
= 3.22/3 - 5(37‘[2)_2/3[1662(0) — 246‘2(1)]4". (17)

The matching reveals that there are two sources for the p°/3
term in the EoS which corresponds to n = 2 in Eq. (14): one
from the density-dependent terms in Eq. (14) with the Skyrme
parameters f3p, y3», and the other from the momentum-
dependent terms in Eq. (14) with the Skyrme parameters 7,
12, ¥1, y2. The partition is encoded in the unknown parameters
¢ and ¢’ in Egs. (16) and (17). Also undetermined at this point
is the effective spin-orbit coupling strength Wj.

Following the simple procedure of Ref. [3], in the present
work, we set y; =y, = 0 and assume ¢ = ¢’, which leaves
only two parameters, i.e., { and Wy, to be determined by
nuclear data. In this case, the isoscalar and isovector effec-
tive mass parameters, u, = m*/m and w, = m;,/m, where m
denotes the nucleon mass in free space, are not independent
but are determined via ¢ according to their relations to 6; and
0, as [12]

w = m*/m 1:1—}——9?,
2 1_— m*/m 1——1+—9 -0 18
v (v/ ) lz(x p,)~ ( )

A refined method taking full advantage of the momentum-
dependent terms was developed and applied in Ref. [4]. The
refinement was found inconsequential for bulk and static
nuclear properties. Therefore, the above simplified procedure
with y; = y» = 0 suffices for our present purpose. We now
return to the issue of the expansion and examine whether
three SNM terms and four PNM terms, a total of seven EoS
parameters, are sufficient to achieve convergence of results in
the case of nuclei as well as in homogeneous matter.

TABLE L. Fitted values of parameters o, in units of MeV fm>*'.
Model S3b with N = 3 the EoS parameters are fixed assuming a3 =
0 with py = 0.16fm™>, Ey = —16.0MeV, and K, = 240.0 MeV
with B; of KIDS-ad2. Models S4a, S4b, and S4c correspond to
Qo = —360, —390, and —420 MeV, respectively. For S3b, we obtain
Qo = —372.65MeV. The EoS of PNM is fixed by the baseline
parameters shown at the bottom, which corresponds to KIDS-ad2.

Model N o o o o3

S3b 3 —664.52 763.55 40.13 0

Sda 4 —677.69 836.34 —93.95 82.33
S4b 4 —646.44 663.65 224.15 —112.99
S4dc 4 —615.19 490.96 542.24 —308.30
PNM N  ap+Bo ar + B ar + B a3+ B
KIDS-ad2 4 —411.13 1007.78 —1354.64 956.47
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FIG. 1. Relative magnitude of each interaction potential for symmetric matter for model (a) S3b, (b) S4a, (c) S4b, and (d) S4c.

III. EXPANSION IN SYMMETRIC PART

Equipped with the formalism as discussed above, we now
consider the issue of convergence in the description of nuclear
properties. The question we address at this stage is how many
terms are required for convergence of the expansion in Eq. (1);
put in another way, at which order further EoS parameters,
such as curvature or compressibility, and skewness, become
inconsequential for nuclear applications and thus cannot be
constrained by nuclear data. Specifically, we want to know
whether higher accuracy can be achieved with more than three
terms in SNM and more than four terms in PNM (or the
symmetry energy) in practical applications. A negative answer
would be of great importance since it would mean that the
use of more terms can only lead to overfitting and risk loss of
predictive power. The case of SNM will be investigated in this
section and the next section is devoted to the case of PNM.

We proceed to examine whether variations in the value
of Qy affect strongly the nuclear EoS and the quality of the

— 250 T I T

D

C S3b ——

—~ 2007 sd4a ---- 7]
> S4b === ‘1
o 150 S4c == .
9] IR A
LIC.I "",ll
a 100 B ’\“:‘:I n
40_5 “’ \:¢‘¢

£ 50 - N
-

>

n 0 | L | L L

0O 0.2 04 0.6 0.8 1 1.2

Density p [fm3]
FIG. 2. Symmetry energy obtained with the parameter sets for

symmetric nuclear matter from Table I. The EoS of pure neutron
matter is fixed to the baseline set KIDS-ad2.

description of nuclear structure. The empirically determined
range of Qp value is between —1200MeV and —200 MeV
[13], which shows a huge uncertainty. An analysis of nuclear
models provides a narrower range —425.6 ~ —362.5MeV
[7], which still represents an uncertainty of the order of
15%. Taking this range as a reference, we choose three
values of skewness coefficient, —360 MeV, —390 MeV, and
—420MeV. The four parameters o ;2,3 are now determined
by solving a 4 x 4 system of equations where the coefficients
are determined by the assumed values of py, Ey, Ky, Qp.

In the following, the sets of parameters resulting from
Qo = —360, —390, and —420 MeV are labeled as S4a, S4b,
and S4c, respectively, with the number 4 referring to the num-
ber of expansion terms. Presented in Table I are the obtained
values of the parameters ;. In this process, ¢;(1) = «; + B; in
Eq. (2) are fixed to the KIDS-ad2 values of Ref. [1], which
parametrize the APR EoS for pure neutron matter. The N = 3
case, model S3b is obtained with setting a3 = 0 but with
a3 + B3 = 956.47.2 It can be found that the ranges of og and
«; are rather stable but those of higher-order «; 3 are sensitive
to the input data. Even the signs of the higher-order parame-
ters are not robust. This uncertainty is expected because the
input data are provided at nuclear saturation density and the
higher-order coefficients are influenced by higher- and lower-
density regions. However, the resulting physical quantities of
our interests are not so sensitive as will be shown below.

Figure 1 shows the relative magnitude of each interaction
term &; = ¢;(0)p'" " = a;p'™/3, namely, |&;|/ Y, |e:|. The
converging behavior |gg| > |e1| > |e2| > |e3]| is satisfied well
up to densities around 3p, regardless of N or Qy values. At
higher densities, where high-order terms are more active, the
effects of varying Qp values become clearer as expected. The
dominance of the lowest-order term ¢, persists in all cases.

2For consistency, the model with N = 3 should be determined with
N = 3 parametrization for PNM. In fact, this model is equivalent to
model P3 described in the next section. The final results for S3b and
P3 are similar, but, in this section, we work with S3b to vary the SNM
parameters only.
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FIG. 3. Neutron star mass-radius relations: Results correspond to
the respective symmetry-energy curves of Fig. 2. The bands are the
range of neutron star masses reported in Refs. [14,15].

Extrapolation of the model to higher densities is tested
by considering properties of the neutron star. It is widely
accepted that the core of a neutron star is very asymmetric, so
the EoS of a neutron star could be sensitive to the symmetry
energy in Eq. (3) that is written in terms of §;. Since ¢;(1) =
a; + B; is fixed by the parameter set KIDS-ad2, but «; varies
according to Qg value, B; changes to keep c;(1) unchanged,
and, consequently, S(p) depends on the Q, value. Figure 2
shows the symmetry energy in various choices of N and
Qo values. The dependence on Qp becomes more evident as
density increases. However, even around 0.8 fm =3 (~5p,), the
maximum difference is only about 20 MeV. The difference
becomes appreciable as density reaches about 1 fm~3, which

is close to the maximum density in the neutron star core and
where, in any case, an EDF based on nucleonic degrees of
freedom is questionable.

The difference in model predictions on the mass-radius
relation of neutron stars is shown in Fig. 3. Predictions for
the maximum neutron star mass are 2.11, 2.13, 2.09, and
2.04 My, where Mg, is solar mass, for S3b, S4a, S4b, and
S4c, respectively. This shows that all the four parameter sets
give similar mass-radius properties of neutron stars and allow
2M, as a neutron star mass. This observation indicates that the
effect of fourth order €3 term and, in particular, the variation
of the Qp value within the range of Ref. [7] is marginal in the
considered physical quantities.

Now we extend our investigation to the structure of finite
nuclei. To make use of the Kohn-Sham framework, it is most
convenient to transform the EDF to the form of a Skyrme
potential, as described in Sec. Il B. When we expand the EDF
up to N =4, we have 2N parameters that are determined
from the bulk properties of homogeneous SNM and PNM.
However, the effective Skyrme interaction of Eq. (14) has
five additional parameters. With the assumption that y; =
v, =0 and ¢ = ¢’, two parameters, { and W, are yet to be
determined. The fitting of the undetermined parameters ¢ and
Wy is performed using six data points, namely, the energy
per particle (E/A) and charge radius (R.) of *°Ca **Ca, and
208Pb. These are listed in the upper 3 rows in Tables II and the
fitted values of the Skyrme functional parameters are listed
in Table III for models S3b, S4a, S4b, and S4c. We find that
the uncertainties in ¢; are mostly transferred into those in #3;
and t33, and even their signs change depending on the model.
However, the derived physical quantities of the considered
nuclei are rather robust. The resulting effective masses ., and
Wy of Eq. (18) are obtained as p; = 0.99, 1.03, 0.96, and 0.92,
while p, = 0.82, 0.85, 0.79, and 0.77 for S3b, S4a, S4b, and
S4c, respectively. We emphasize again that the effective mass

TABLE II. Binding energies per nucleon and charge radii of selected spherical magic nuclei computed with four EoS parameter sets. Top
three values with an asterisk for “°Ca, “*Ca, and 2®Pb represent input data and the others are predictions. Numbers in parentheses denote the
percentage deviations of predictions from data. Experimental data are from Refs. [16,17].

Nucleus Binding energy per nucleon (£ /A) (MeV) Charge radius (R.) (fm)
Expt. S3b S4a S4b Expt. S3b S4a S4b S4c
“Ca 8.5513* 8.5565 8.5579 8.5544 8.5512 3.4776* 3.4781 3.4799 3.4758 3.4720
(0.060%)  (0.078%)  (0.037%)  (0.001%) (0.014%)  (0.066%)  (0.052%)  (0.161%)
8Ca 8.6667* 8.6564 8.6569 8.6558 8.6549 34771* 3.4867 3.4882 3.4847 3.4813
(0.120%)  (0.113%)  (0.126%)  (0.136%) 0.277%)  (0.319%)  (0.220%)  (0.122%)
208pp 7.8675* 7.8809 7.8816 7.8800 7.8783 5.5012* 5.4887 5.4901 5.4870 5.4840
0.172%)  (0.179%)  (0.160%)  (0.138%) (0.228%)  (0.201%)  (0.259%)  (0.313%)
150 7.9762 7.8684 7.8675 7.8686 7.8678 2.6991 2.7618 2.7643 2.7587 2.7541
(1.35%) (1.36%) (1.35%) (1.36%) (2.322%)  (2.41%) (2.209%)  (2.036%)
B0 - 6.0646 6.0640 6.0650 6.0649 - 2.8371 2.8384 2.8351 2.8315
%Ca - 7.6561 7.6567 7.6552 7.6535 - 3.6465 3.6478 3.6445 3.6411
N7r 8.7100 8.7328 8.7345 8.7309 8.7282 4.2694 4.2476 4.2488 4.2459 4.2428
(0.263%)  (0.281%)  (0.241%)  (0.209%) (0.510%)  (0.482%)  (0.550%)  (0.622%)
13281 8.3549 8.3563 8.3559 8.3565 8.3565 4.7093 4.7089 4.7100 4.7072 4.7044
(0.017%)  (0.013%)  (0.020%)  (0.020%) (0.009%)  (0.015%)  (0.044%)  (0.103%)
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TABLE IIl. Fitted parameters of Skyrme functional parameters.
Here, we sety; =y, = 0 and ¢ is dimensionless.

Parameter S3b Sda S4b S4c

fo MeV fm?) —1772.04 —1807.17 —1723.84 —1640.50
yo (MeV fm?) —127.52 —162.65  —79.32 4.02
fi MeV fm?) 275.72 262.17 288.94 303.28
> (MeV fm?) —161.50 —167.94 —15490 —146.98
t31 (10* MeV fm*) 1.222 1.338 1.062 0.7855
y31 (10*MeV fm*)  —1.197  —1.081 —-1357  —1.633
132 (MeV fm®) 571.0 —1310.7 32524 8043.0
y3 (10* MeV fm®) 2.949 2704 3.274 3.818
t33 (MeV fm®) - 13172 —1807.8 —4932.8
y33 (10* MeV fm®) —2.296 —2.164 —2.476 —2.789
Z 0.1106 0.1281 0.0931 0.0729
Wy (MeV fm®) 108.35 106.79 109.88 111.55

values can be allowed to vary, if desired, with no deterioration
of the quality of the results on the considered nuclear data.
For example, if we set uy; = 0.7 and ©, = 0.82, then mean
deviations from experiment of E /A and R, are 0.26 and 0.44
in percent, respectively [4]. For the models S3b, S4a, S4b,
and S4c, mean deviations of E /A are 0.33, 0.34, 0.32, and
0.31 in percent, respectively, and 0.56, 0.58, 0.56, and 0.56 in
percent, respectively, for R.. This comparison demonstrates
that a specific value of the effective mass practically does not
affect the basic properties of nuclei considered in this work.
A set of parameters for different combinations of u, and u,
is available in Ref. [4]. We note that giant resonances are
better suited to study the acceptable values of the isoscalar
and isovector effective mass. Currently the optimal values for
describing giant resonances are not settled [18].

The results for '°0, 20, ®Ca, *°Zr, and '3?Sn are also
given in Tables II for each model. For both E/A and R,
fitting quality and predictions of S4a, S4b, and S4c are similar,
and it is hard to distinguish these models. Furthermore, it is
also found that their predictions are similar to those of S3b,
which means that the model with N = 3 is sufficient enough
in practical calculations. This result leads to the conclusion
that the three leading terms in the isospin symmetric part of
the EDF are sufficient to describe not only the bulk properties
of neutron stars but also magic nuclei. Both types of systems
exhibit the same convergence behavior in a single and unified
framework.

IV. EXPANSION IN ASYMMETRIC PART

In this section, we focus on the EDF expansion in
asymmetric nuclear matter. We perform this examination by
retaining the KIDS-ad2 parametrization (N = 3) for SNM,
which was shown to be sufficient in the description of sym-
metric matter. With this constraint we proceed to examine the
expansion behavior in PNM by varying EoS parameters. In
Ref. [1] it was found that at least four terms are needed for
satisfactory description of PNM or nuclear symmetry energy.
In the present work, we increase the order of expansion of
isospin asymmetric part from N =3 to N = 6 and use the
APR PNM EoS as input data because of lack of data for PNM.
Note that the APR pseudodata are not smooth but show a
kink at roughly twice the saturation density. Therefore, as in
Ref. [1], we assign a weight to the data at low energies by
defining cost function x2 as

2 _ _B,. éa(pj)_Dj>2 19
X —;eXP( ,3/0]/,00)( Ty ) (19)

where D; is the data point for density p;, & and .7 are
the nuclear EDF and its the kinetic term given by Eq. (1),
respectively, and we set B = 1. We refer the details on this
form to Ref. [1].

Fitted values of parameters and the corresponding x? de-
fined as [1]

(20)

Xr = x2/ZeXp(—Bpj/po)
j

are shown in Table IV. They are referred to as model PN
for N = (3,4,5,6). For N =6, we find that there may be
more than two sets of parameters that have similar low x?
values. As examples, we give three sets, P6a, P6b, P6c in
Table IV. In particular, P6a is practically equal to PS5 and
it does not have any physical meaning to work with N = 6
or higher for APR pseudodata. This is expected since the
APR EoS for PNM is determined at densities which can
hardly be probed by higher-order terms. The EoS parameters
computed for each model are also shown in Table IV. It can
be found that although values of model parameters ¢; would
heavily depend on model, the resulting physical quantities
or EoS parameters, J, L, Ky, and even Qg are similar
except Reym that depends on the high-order behavior of EDF.
We also carry out this kind of analyses with the quantum
Monte Carlo (QMC) results of Ref. [19] that are obtained
with the AV8’ + UIX interaction and verify this observation.

TABLE IV. Values of ¢;(1) fitted to APR EoS of PNM. The unit of ¢; is MeV fm**' and the units of J, L, Koyms Qsym, and Ry, are MeV.

Model N co(1) ci(1) c2(1) c3(1) cy(1) cs(1) Xo J L Kym  Qym Roym

P3 3 —266.72 133.50 281.38 - - - 53x10™* 32.6 535 —129.7 4223 -—2421.38
P4 4 —407.94 990.09 —1321.86 937.14 - - 1.4 x 107 328 492 —1563 583.1 —2469.7
P5 5 —=22416 —479.28 2814.48 —3963.71 2075.79 - 6.3 x 107 33.0 514 -166.8 461.4 —1388.4
P6a 6 —22481 —473.46 2795.50 —3935.18 2056.11 494 63 x107° 330 514 -166.8 461.6 —1391.7
P6b 6 —283.99 110.63 604.05 —10.59 —131244 1117.76 6.4 x 107° 33.0 51.5 —163.8 450.0 —1545.9
P6c 6 —313.98 400.88  —463.41 1864.00 —2891.61 163037 6.5x 107 33.0 515 -1623 446.6 —1631.2
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TABLE V. Same as Table IV but for QMC EoS of PNM of Ref. [19].

Model N 60(1) Cl(l) 62(1) 63(1) 64(1) 65(1) Xy% J L Ksym stm Rsym

QMCP3 3 —119.01 —424.80 841.72 - - - 1.4x107* 341 625 —59.5 566.0 —3304.7
QMCP4 4 39579 1085.08 —1818.25 1519.80 - - 1.5x107% 345 605 —889 751.2 -30759
QMCPS 5 34956 740.06  —876.85 404.60  484.89 - 1.3x107% 345 60.7 —90.0 7357 —2876.4
QMCP6 6 —293.93 238.03 896.80 —2667.81 3098.48 —874.88 1.3 x10° 345 60.7 -90.8 737.1 —2781.0

The results are presented in Table V. In this case, we find
that there may be more than two sets with similar accuracy
even with N =5, although we do not list them in Table V.
The fit quality hardly improves in P6. We therefore continue
our investigation with models P3, P4, and P5 for the PNM
parameters for further exploration.

We first plot the relative magnitudes of individual interac-
tion terms for PNM in Fig. 4 for models P3, P4, and P5. A
common aspect in all three cases is the suppression of the
&o term at high densities. In particular, in P4 and PS5, this
suppression starts to happen already at the nuclear saturation
density as pointed out in Ref. [1]. This behavior is different
from that of the SNM case and this would indicates so-
phisticated dynamics in PNM, which would imply nontrivial
isospin dependence of dynamics in nuclear matter and causes
huge theoretic uncertainties in nuclear symmetry energy.

Figure 5 shows the energy per particle of PNM for each
model and the obtained results are compared to the APR
pseudodata. This evidently shows that to reproduce the APR
pesudodata up to high density region, we need at least N = 4.
And it also shows that N =5 does not give any noticeable
change from the result of P4.

In Fig. 6, we present the energy per particle of PNM
(Epnm) divided by the free gas energy (Exg) at low densities.
Chiral effective field theory (EFT) results of Ref. [20] are
presented for comparison by a shaded band. Again, the good
agreement with the chiral EFT results is achieved with P4 and
higher-order terms are irrelevant. The irrelevance of higher-
order terms of EDF at low densities is not surprising but it
is worthwhile to note that the parameters fitted at saturation

point can reproduce the results of chiral EFT at densities p >
0.001 fm—3, which is a nontrivial result. Because P4 and P5
have similar EoS, the corresponding neutron star mass-radius
curves are expected to be similar and this is confirmed by the
results shown in Fig. 7. Here again, the maximum neutron star
mass is around 2 M.

From the investigation for infinite nuclear matter properties
and neutron star mass-radius relations, we conclude that at
least four terms are necessary for reasonable descriptions.
Then the next question would be whether the parameters
determined in this way can describe nuclear properties. Here,
we follow the same method and procedure used in Sec. III.
The obtained Skyrme parameters are displayed in Table VI,
which lead to the binding energy per nucleon and charge
radius as presented in Table VII. This shows that there is
no significant difference among the predictions of the three
parameter sets and even P3 can give a reasonable description
of nuclear properties considered in the present work. We also
performed these calculations with the parameter sets QMC P3,
QMC P4, and QMC P5 listed in Table V and they lead to very
similar results and conclusions.

As a further test, we repeat the process adopted in Sec. III,
namely, we now vary the fourth derivative in nuclear sym-
metry energy, the kurtosis Ry in this section. Since the
value of Ry, obtained from P4 set is about —2470 MeV, we
consider the variation by 2300 MeV from this value. For other
parameters, we fix J = 32.78 MeV, L =49.25MeV, Ky =
—156.26 MeV, and Qyym = 583.07 MeV. Table VIII presents
the values of parameters c¢;(1) with three different Ry, val-
ues, which defines P5a, P5b, and P5c. For completeness, we

1 T T T 1 T 1 T T T
| s
0.8 . 0.8 s 0.8 | leal /Zlgl ===+ |
" S
. i i | lesl / Zlgl ==
06 ¥ 0.6 jesl / 5leil — -
0-4 0.4 '(\(
_3"
0.2 0.2 fw L=
,s,e_#_/_ -
0 0 7 T =T R
0 0.20.40.60.8 1 0 0.20.40.60.8 1 0 0.20.40.60.8 1
p [fm™3] p [fm™3] p [fm™3]
(a) P3 (b) P4 (c) P5

FIG. 4. Relative magnitude of each interaction potential for symmetric matter for model (a) P3, (b) P4, and (c) P5.
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FIG. 5. Energy per particle of pure neutron matter with models
P3, P4, and P5 presented in Table IV. Here, the symmetric EoS
parameters «; are fixed as model S3b in Table I.

use the values of ¢;(0) determined as S3b in the previous
section.

We first examine the effect of Ry, variations on infinite
nuclear matter by calculating the neutron-star mass-radius
relations. Figure 8 depicts the predictions on the neutron
star mass and radius curves with the models P5a, P5b, and
P5c. All these models predict the maximum mass larger than
2M, which is consistent with the observational constraints of
Refs. [14,15]. To see the origin of this phenomena, we plot the
nuclear symmetry energy for these three models in Fig. 9. This
clearly shows that varying Ry affects the nuclear symmetry
energy only at densities larger than 0.6 ~ 0.7 fm™—>, which
is within the range of maximum central density of neutron

p [fm™3]
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| T o3 - N
1 P4
P5 = = =
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~
=
& 0.6
1N}
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| | |
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FIG. 6. Energy of pure neutron matter Epyy divided by the free
gas energy Erg is compared to chiral EFT results of Ref. [20] at low
densities, where a(= —18.9 fm) is the neutron-neutron scattering
length in free space and ky is the neutron Fermi momentum.
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FIG. 7. Neutron star mass-radius relations for the parameter sets
P3, P4, and P5.

stars [21]. Since R5a, R5b, and R5c give similar symmetry
energy below this density, they would give similar results for
neutron stars.

Inclusion of extra degrees of freedom like hyperons and
kaon condensation or transition to the deconfined quark states
generally softens the EoS state [22,23], and as a result reduces
the maximum mass of the neutron star. Therefore, 2M max-
imum mass is a minimal condition that should be satisfied
by a dense matter model before including the degrees of
freedom other than the nucleon. The nonnucleonic states are
predicted to happen at densities around 3py or more. This
means that there are many and large uncertainties in the
EoS at densities above 3py,. However, density at the center
of canonical stars (1.4My) is predicted to be 3py or less.
Therefore, tidal deformability obtained from the measurement
of gravitational waves in GW 170817 provides new informa-
tion on the nucleonic EoS for p < 3py in which EoS is less
uncertain because of the absence of exotic degrees of freedom.

TABLE VI. Same as Table III but for P3, P4, and P5. Note that
t33 = 33 = 0 as we use S3b for o; = ¢;(0).

Parameter P3 P4 P5

to (MeV fm?) —1772.04 —1772.04 —1772.04
yo (MeV fm?*) —705.16 —140.27 —875.42
i (MeV fm’) 24733 275.83 269.90
f, (MeV fm’) —173.00 —161.48 —163.95
13 (10* MeV fm*) 12216.73 12216.73 12216.73
y31 (10* MeV fm*) 9012.81 —11545.41 23719.36
t (MeV fm®) 1087.14 569.38 678.46
y32 (10 MeV fm°) —10346.18 28700.54 —70692.70
y33 (10* MeV fm®) - —22491.36 95128.93
y34 (10* MeV fm7) - - —49818.87
¢ —0.6931 0.1133 —0.0566
Wo (MeV fm®) 104.12 108.46 108.25
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TABLE VII. Same as Table II but for P3, P4, and P5. The SNM parameters are fixed to the values of model S3b in Table I. The experimental

data are from Refs. [16,17].

Nuclei Energy per particle (MeV) Charge radius (fm)
Expt. P3 P4 P5 Expt. P3 P4 P5
0Ca 8.5513* 8.5573 8.5564 8.5561 3.4776 3.4785 3.4781 3.4782
(0.070%) (0.059%) (0.056%) (0.026%) (0.014%) (0.015%)
8Ca 8.6667* 8.6556 8.6565 8.6581 3.4771* 3.4891 3.4867 3.4870
(0.129%) (0.118%) (0.099%) (0.345%) (0.277%) (0.285%)
208pp 7.8675* 7.8849 7.8806 7.8793 5.5012* 5.4934 5.4886 5.4891
(0.222%) (0.167%) (0.151%) (0.141%) (0.228%) (0.221%)
10 7.9762 7.8641 7.8683 7.8669 2.6991 27634 27618 27621
(1.405%) (1.353%) (1.371%) (2.382%) (2.322%) (2.335%)
20 - 6.0705 6.0628 6.0585 - 2.8435 2.8371 2.8396
OCa - 7.6659 7.6548 7.6513 - 3.6511 3.6465 3.6478
N7r 8.7100 8.7336 8.7330 8.7344 4.2694 4.2489 4.2476 42476
(0.272%) (0.264%) (0.280%) (0.480%) (0.510%) (0.511%)
1328n 8.3549 8.3592 8.3559 8.3549 47093 47133 4.7088 4.7090
(0.052%) (0.013%) (0.001%) (0.085%) (0.010%) (0.006%)

The effect of varying Ry, can also be explored in low-
mass neutron stars by considering the tidal deformability. For
a neutron star with a mass of 1.4M, we found that P5a, P5b,
and P5c models give the dimensionless tidal deformability of
315.8, 304.1, and 289.4, respectively. These values are well
below the upper limit of the observation, A(1.4Mg) < 800,
which again originates from the similarities of symmetry
energy of the three models below 0.6 ~ 0.7 fm .

Tables IX and X show the fitted parameters and resulting
properties of nuclei. Here again, we find that the three models
give similar results, which leads us to conclude that nuclear
properties are quite insensitive to Rgyp. To illustrate the point
visually, we compare in Fig. 10 the neutron skin thickness
Ary,, obtained with P3, P4 (baseline set), P5, P5a, P5b, P5c,
together with the results for E£/A and R.. The similarities
shown in Fig. 10 imply that the higher-order terms in EDF
cannot be constrained by normal nuclear data.?

V. DISCUSSION

Following the above-detailed presentation of results, let
us recapitulate what we have done and learned and discuss
how our work relates to other current undertakings of similar
scope.

First, we have confirmed that seven EoS parameters suffice
for a description of nuclei as well as homogeneous matter in
a broad range of densities. The number is consistent, on one
hand, with the four EoS parameters (plus the surface tension)
required in the “minimal nuclear energy functional” [27]
which only concerns finite nuclei; and, on the other hand, with
the conclusions of the recently proposed “metamodeling”
approach for neutron stars [28], namely that the skewness of

3We also investigated the dependence of nuclear properties on the
value of Ry, by allowing more than &1, 000 MeV from the value of
P5b to confirm that the nuclear properties are not sensitive to Ry,.

the EoS plays a nonnegligible role, but a less significant one
than low-order parameters in the description of neutron stars.

The analytical form of the KIDS EoS and EDF for homo-
geneous matter, namely an expansion in powers of the cubic
root of the density [1], was inspired by quantum many-body
theories and effective field theories. The analytical form al-
lows a straightforward, analytical mapping between the KIDS
parameters and an equal number of EoS parameters, see, e.g.,
Egs. (9)—(13). Thus, we can vary any of the EoS parameters
at will and examine its effect on observables. In addition, we
are able to vary the effective mass values at will [4], which
gives KIDS unprecedented flexibility. So far we have applied
the KIDS EDF at the Hartree-Fock level for nuclear ground
states, but studies of excitations within the random phase
approximation are also possible and in progress. In this sense
our approach goes well beyond the metamodeling, whose ap-
plications in nuclei have been limited to semiclassical results
for bulk ground-state nuclear properties [29,30].

The description of nuclei was achieved by reverse-
engineering a convenient Skyrme-type functional. In the pro-
cess, the amount of momentum dependence (encoded, for
example, in the effective mass value and gradient terms) ver-
sus genuine density dependence (encoding correlations and
three-nucleon forces) needs to be determined. Although we
have found that static, bulk nuclear properties are practically

TABLE VIII. Values of c¢;(6) with § =1 fitted to the sym-
metry energy parameters J = 32.78 MeV, L =49.25MeV, Ky, =
—156.26 MeV, Qgm = 583.07MeV, and three Ry, values. The unit
of Ry, is MeV and ¢; is in the unit of MeV fm3+.

Model  Rym  co(1) (1) c2(1) c3(1) ey (1)

PSa 2170 —329.19 411.12 275.64 —1022.73  901.92
P5b  —2470 —407.32 986.75 —1314.84 930.40 2.50
P5c  —2770 —485.44 1562.38 —2905.32 2883.52 —896.92
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FIG. 8. Neutron star mass-radius relations: Results correspond-
ing to the parameter sets P5a, P5b, and P5c.

independent of the effective mass [4], the same may not
be true for dynamic phenomena such as giant resonances.
Studies are in progress [31]. Nevertheless, the small amount of
momentum relative to density dependence generally favored
by our studies so far, undermines the possibility to eliminate
density-dependent couplings completely, as is attempted in
certain generalizations of the Skyrme functional based on
high-order momentum-dependent terms and on the density-
matrix expansion [32,33].

Based on our present results we may conclude that a fit
of more than the above seven EoS parameters to nuclear
data would make little sense. (On the contrary, a free fit of
all parameters could lead to overfitting.) Although further
EoS parameters and a strong momentum dependence are
not desired or required, to achieve precision, it does make
sense to explore extensions of the KIDS EDF for nuclei
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FIG. 9. Symmetry energy obtained with the parameter sets P5a,
P5b, and P5c.

TABLE IX. Same as Table IV but for P5a, P5b, and P5c. Here,
t33 = t33 = 0 as we use S3b for o; = ¢;(0)

Parameter P5a P5b P5c

fo MeV fm?) —1772.04 —1772.04 —1772.04
yo (MeV fm®) —455.27 —142.77 169.73
fi MeV fm?) 246.82 275.85 273.68
t, (MeV fm?) —173.35 —161.47 —162.34
t31 (10* MeV fm*) 12216.73 12216.73 12216.73
y31 (10* MeV fm*) 2349.81 —11465.31 —25280.43
13> (MeV fm?®) 1099.03 569.01 608.27
y32 (10* MeV fm?) —10223.47 28532.42 66660.82
y33 (10* MeV fm®) 24545.47 —22329.53 —69204.53
y34 (10* MeV fm®) —21646.05 —59.93 21526.20
¢ —-0.7116 0.1139 0.0527
Wo (MeV fm®) 105.57 108.49 107.90

by including additional effects which are not active (or are
weakly active) in homogeneous matter. One of them, already
included, is the spin-orbit term. Another interesting possibility
is the tensor force, as already pursued in modern Skyrme
functionals [34]. Time-odd terms are also unconstrained at
present. Our preferred approach would be to use pseudodata
for polarized homogeneous matter. For the closed-shell nuclei
considered in this work, the effect of pairing is inactive. In
a recent publication [35], various properties of neutron drops
confined in a harmonic oscillator trap have been considered.
Pairing effects are incorporated in recently developed EFT-
inspired EDFs, YGLO [36], EYLO [37], and KIDS. The
results indicate that YGLO and KIDS are in good agreement
with ab initio results. A work investigating the properties of
open-shell nuclei with the pairing correlations is in progress.

VI. SUMMARY AND CONCLUSION

The main purpose of this work was to validate the opti-
mal number of EoS parameters required for a description of
nuclei and homogeneous matter in a broad range of densi-
ties. Previous work in the framework of the KIDS EDF had
indicated that symmetric nuclear matter could be efficiently
modeled with three low-order parameters in an expansion in
Fermi momentum and that PNM requires four parameters.
The conclusion was based solely on a statistical analysis of
fits to pseudodata for homogeneous matter. In this work, to
confirm the expansion and its convergence, we explored the
role of widely used parameters characterizing the EoS at the
saturation point. In particular, we fixed the saturation density,
the energy at saturation and the compression modulus K, of
symmetric matter, as well as the symmetry energy at satu-
ration density J, its slope L and its curvature and skewness,
to baseline values and varied the EoS skewness in symmetric
matter at saturation, Qp, and the kurtosis of the symmetry
energy, Rym. We examined the effect in dilute and dense
matter (neutron star properties) and on nuclear structure.

In regard to the uncertainty from Qy, its effect is negli-
gible up to p ~ 0.4 fm—3 (~2.5p0). The maximum mass of
neutron stars shows nonnegligible dependence on Qy, but the
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TABLE X. Same as Table VII but for P5a, PSb, and P5c. The SNM parameters are fixed to the values of model S3b in Table I. The

experimental data are from Refs. [16,17].

Nuclei Binding energy per nucleon [MeV]

Charge radius [fm]

Expt. P5a P5b P5c

Expt. P5a P5b P5c

“Ca 8.5513* 8.5567
(0.063%)
8.6575
(0.106%)
7.8800
(0.159%)
7.8633
(1.42%)
6.0467
7.6470
8.7357
(0.295%)
8.3539
(0.012%)

8.5564
(0.060%)
8.6566
(0.117%)
7.8806
(0.167%)
7.8683
(1.35%)
6.0623
7.6545
8.7330
(0.265%)
8.3559
(0.013%)

®Ca 8.6667*
208py 7.8675*
150 7.9762
280y _
Goca _

N7zr 8.7100

1328n 8.3549

8.5564
(0.060%)
8.6560
(0.123%)
7.8808
(0.170%)
7.8679
(1.36%)
6.0746
7.6611
8.7322
(0.255%)
8.3564
(0.019%)

3.4776% 3.4786
(0.029%)
3.4872
(0.291%)
5.4891
(0.221%)
2.7636
(2.39%)

- 2.8381

- 3.6475
42694 42474
(0.516%)
47093
(0.000%)

3.4781
(0.014%)
3.4867
(0.276%)
5.4886
(0.229%)
2.7618
(2.32%)
2.8371
3.6465
4.2476
(0.511%)
4.7088
(0.010%)

3.4782
(0.018%)
3.4863
(0.264%)
5.4880
(0.240%)
2.7619
(2.33%)
2.8353
3.6451
4.2474
(0.516%)
4.7082
(0.024%)

3.4771%

5.5012*

2.6991

4.7093

E/A [MeV]

Rc [fm]

Arpp [fm]

0 40 80 120 160 200

Atomic number A

FIG. 10. Results for E /A, R., and neutron skin thickness Ar,,,.
Neutron skin thickness data are from Refs. [24-26].

uncertainty is not significant enough to affect the consistency
with existing observations. No effect on bulk nuclear proper-
ties was discerned.

In the extension of expansion of isospin asymmetric part of
EDF, the results for N = 6 showed symptoms of overfitting so
we stopped at the fifth term. Comparison of N = 3 fitting re-
sult to input data demonstrated that three terms in asymmetric
part are insufficient to guarantee the reproduction of input data
but the fits saturate at N = 5. The interpretation is consistent
with the EoS of dilute neutron matter (down to a fraction
of saturation density), symmetry energy at suprasaturation
densities, and mass-radius curves of neutron stars (at least
when streangeness is neglected). Again, the choice of kurtosis
values Ry, did not affect the description of nuclear properties.

Bulk properties of spherical magic nuclei were calculated.
Results turned out to be independent of Qy values, and the
number of terms in asymmetric part of EDF did not affect the
prediction for nuclei. Similar conclusions hold for Ryp,.

From the present results we conclude that three terms in
the symmetric part, and four terms in the asymmetric part of
the EoS are sufficient for a unified description of both infinite
(unpolarized) nuclear matter and finite nuclei in a single
framework. Fitting a nuclear EDF with more than the seven
necessary EoS parameters to nuclear data can arguably lead to
overtraining and loss of predictive power. The determination
of the most realistic values for the minimal EoS parameters
can of course be persued with the help of data and statistical
analyses. In addition, extended density dependencies of non-
local terms can be explored [13,38,39]. The EoS of polarized
matter is yet another topic to be considered. But attempts
at refining the nuclear EDF beyond that number of terms
must focus on parameters which are not active (or strongly
active) in static properties of unpolarized homogeneous matter
examined here, for example, the effective tensor force, time-
odd terms, and the pairing correlations.
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