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Isoscalar (IS) monopole and dipole excitations in 16O were investigated by the method of shifted basis
antisymmetrized molecular dynamics combined with the generator coordinate method. Significant strengths of
the IS monopole and dipole transitions were obtained in the low-energy region below the giant resonances. In
addition to the compressive mode, which mainly contributes to the high-energy strengths for the IS dipole giant
resonance, we obtained a variety of low-energy dipole modes such as the vortical dipole mode in the 1−

1 state
of the vibrating tetrahedral 4α and the 12C + α cluster structure in the 1−

2 state. The 1−
1 state contributes to

the significant low-energy strength of the IS dipole transition as 5% of the energy-weighted sum rule, which
describes well the experimental data observed by the α inelastic scattering.
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I. INTRODUCTION

In the past decades, low-energy monopole and dipole exci-
tations have been attracting great interests (see, for example,
reviews in Refs. [1–5] and references therein). A central issue
is possible appearance of new excitation modes decoupled
from collective vibration modes corresponding the giant res-
onances (GRs). In experiments with α inelastic scattering
extensively performed for study of isoscalar (IS) monopole
and dipole excitations, significant low-energy strengths with
the fraction of several percentages of the energy-weighted
sum rule have been observed in various stable nuclei such
as 16O, 40Ca, and 208Pb [6–8]. The questions to be answered
are what is the origin of these IS low-energy dipole (LED)
strengths and how the dipole modes come down to the energy
much lower than the IS giant dipole resonances (GDRs).

In order to understand the IS LED strengths, the vortical
dipole (VD) mode (called also the torus or toroidal mode)
has been studied first with hydrodynamical models [9,10], and
later with microscopic approaches [2,11–18]. The VD mode
is characterized by the nuclear vorticity and has a unique
feature different from the standard IS dipole mode so-called
compressive dipole (CD) in the IS GDR. Since the nuclear
density is conserved in the VD mode, its energy can be lower
than the IS GDR involving compression of nuclear density. As
a measure of the nuclear vorticity in the dipole excitations, the
toroidal dipole (TD) operator has been introduced [9,19]. The
TD operator is given by the rotational component (a curl term)
of the transition current density and the counterpart of the
compressive dipole (CD) operator with the irrotational com-
ponent (a divergence term) of the transition current density,
and has been proved to be a good probe for the low-energy
VD mode [14].

In light nuclei, also cluster states may contribute to the low-
energy IS monopole (IS0) and dipole (IS1) transition strengths
because the IS0 and IS1 operators contain higher-order rλ+2

terms and can excite not only the compressive vibration

modes but also the intercluster motion in the cluster states
as pointed out by Yamada et al. [20] and Chiba et al. [21].
Indeed, the low-energy IS monopole strengths in 16O have
been described well by cluster states with a semimicroscopic
4α-cluster model [20]. It is an important issue to clarify the IS
dipole excitations in 16O, in particular, the cluster and vortical
aspects of the low-energy modes.

Theoretical calculations with cluster models have been
performed for 16O and suggested a variety of cluster structures
such as the tetrahedral 4α and 12C + α structures [20,22–37].
However, there have been no microscopic calculation that
successfully describes the energy spectra of 16O. Recently, we
applied a microscopic model of the antisymmetrized molecu-
lar dynamics (AMD) [38–41] to 16O, and obtained reasonable
reproduction of the energy spectra of 16O such as 0+

2 , 2+
1 , 4+

1 ,
1−

2 , and 3−
2 states in the positive- and negative-parity bands

with the 12C + α structure and 3−
1 and 4+

2 states in the ground
band with the tetrahedral 4α structure [36,42].

Our aim is to investigate the IS dipole excitations in 16O.
Main interest are properties of the IS LED modes such as
the cluster and vortical aspects. For this aim, we apply the
method of the shifted basis AMD (sAMD) [43–45] com-
bined with the cluster generator coordinate method (GCM).
The sAMD+GCM has been recently constructed to describe
both the single-particle excitation and large amplitude cluster
mode. This method has been applied to 12C to discuss the
cluster, vortical, and compressive IS dipole modes, and proved
to be a powerful approach for the IS monopole and dipole
excitations in a wide energy range including the low-energy
states and high-energy GRs. [44,46].

In our previous work of 16O [42], we have investigated
the cluster states with variation after spin-parity projections
(VAP) [47] combined with the 12C + α-cluster GCM, which
we called the VAP+GCM, but not the IS GDR because the
sAMD bases have not been adopted in the previous work.
The great advantages of the present sAMD+GCM are that it
describes both the low-energy cluster state and the GDR in a

2469-9985/2019/100(1)/014301(9) 014301-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.100.014301&domain=pdf&date_stamp=2019-07-01
https://doi.org/10.1103/PhysRevC.100.014301


YOSHIKO KANADA-EN’YO AND YUKI SHIKATA PHYSICAL REVIEW C 100, 014301 (2019)

unified framework owing to inclusion of one-particle and one-
hole (1p-1h) excitations in the sAMD bases, and is suitable to
discuss details of the IS dipole excitations. In this paper, we
show the IS monopole and dipole strength functions in 16O
in a wide energy range covering the low-lying vortical and
cluster modes, and also the high-energy compressive vibration
modes of the GRs. For detailed analysis of the monopole and
dipole transitions, we calculate the form factors and transition
densities and compare them with experimental data measured
by the electron scattering. We discuss the vortical and cluster
aspects of the IS LED states and clarify properties of the IS
dipole excitations.

The paper is organized as follows. The formulation of the
sAMD+GCM for 16O is explained in Sec. II. Section III
shows the calculated results and discusses the properties of
the IS monopole and dipole modes. Finally, the paper is sum-
marized in Sec. IV. In the Appendix sections, the definitions
of the transition operators, densities, and strengths are given.

II. FORMULATION

In order to calculate the IS monopole and dipole excitations
in 16O, we combine the sAMD with the previous VAP+GCM
model [42]. Namely, we prepare the sAMD wave functions
and combine them with the basis wave functions adopted
in the previous VAP+GCM calculation. We call the present
calculation sAMD+GCM. In this section, we explain the
framework and procedure of the present calculations of 16O.
For details of the VAP+GCM and the sAMD, the reader is
referred to Refs. [42,44,46,48] and references therein.

A. VAP+GCM with AMD wave functions

An AMD wave function is given by a Slater determinant of
single-particle Gaussian wave functions,

�AMD(Z) = 1√
A!

A{ϕ1, ϕ2, . . . , ϕA}, (1)

ϕi = φX iχiτi, (2)

φX i (r j ) =
(

2ν

π

)3/4

exp{−ν(r j − X i )
2}, (3)

χi =
(

1

2
+ ξi

)
χ↑ +

(
1

2
− ξi

)
χ↓. (4)

where A is the antisymmetrizer, φX i , χi, and τi are the spatial,
spin, and isospin functions of the ith single-particle wave
function, respectively. The isospin part is fixed to be up
(proton) or down (neutron). ν is the width parameter, which
is fixed to be ν = 0.19 fm−2 used in the previous calculation.
The condition

∑
i=1,...,A X i/A = 0 is always kept and the con-

tribution of the center of mass motion is exactly removed from
the total system. The AMD wave function is specified by the
set of variational parameters Z ≡ {X 1, . . . , X A, ξ1, . . . , ξA}
for the centroids of single-nucleon Gaussian wave packets and
nucleon-spin orientations, which are determined by the energy
variation.

It should be stressed that, in the AMD model, the existence
of any clusters is not a priori assumed because Gaussian
centroids, X 1, . . . , X A, of all single-nucleon wave packets are

independently treated as variational parameters. Nevertheless,
the model wave function can describe various cluster wave
functions, and also shell-model wave functions because of the
antisymmetrization of Gaussian wave packets.

To obtain the AMD wave function optimized for the Jπ

state, the VAP is performed with respect to the variation of Z
by

δ
〈�|H |�〉
〈�|�〉 = 0, (5)

for the Jπ -projected AMD wave function � = PJπ
MK�AMD(Z),

where PJπ
MK is the spin-parity projection operator. For the

AMD wave function �
16O
AMD(Z) of 16O, we perform the VAP

with Jπ
k = 0+

1,2, 2+
1 , 4+

1,2, 1−
1 , 2−

1 , 3−
1 , and 5−

1 , and obtain nine

configurations of �
16O
AMD(Zopt

β ) with the parameters Zopt
β opti-

mized for each β = Jπ
k state. In the simple VAP calculation,

we superpose the nine configurations.
In the GCM calculation, we adopt the 12C + α cluster

wave functions, where the angular momentum projection and
internal excitations of the subsystem 12C cluster are consid-
ered. We first perform the VAP calculation of the subsystem
12C for three states 12C(0+

1 ), 12C(0+
2 ), and 12C(1−

1 ). Using
the obtained 12C-cluster wave functions, the 12C + α wave
function is constructed as done in Ref. [42]. The relative
distance d between 12C and α clusters is treated as a generator
coordinate. The angular-momentum projection of the subsys-
tem 12C is also practically performed by taking into account
rotation of the 12C cluster.

B. sAMD+GCM: Combination of sAMD with VAP+GCM

In addition to the VAP and 12C + α wave functions, the
sAMD wave functions are also superposed to describe 1p-1h
excitations on the ground state. Starting from the ground-
state wave function �

16O
AMD(Zopt

β=0+
1

) obtained by the VAP, we

consider small variations of single-particle wave functions by
shifting the Gaussian centroid of each single-particle wave
function, X i → X i + εeσ (the spatial position parameters),
of Zopt

β=0+
1

in the AMD wave function. Here ε is an enough

small constant, eσ (σ = 1, . . . , 8) are unit vectors for eight
directions. Spin nonflip and flip states and recoil effects are
taken into account as explained in Ref. [44]. Consequently,
totally 16A = 256 bases of the shifted AMD wave functions
are superposed in addition to the VAP and 12C + α wave
functions in the sAMD+GCM calculation of 0+ and 1− states.

In the present sAMD+GCM calculation, we
use the �

12C
AMD(Zopt

β=0+
1

) + α configuration with the

intercluster distances of d = {1.2, 2.4, . . . , 7.2 fm}
and �

12C
AMD(Zopt

β=0+
2 ,1−

1
) + α configurations with d =

{1.2, 2.4, . . . , 4.8 fm} to save the computational cost.
[�

12C
AMD(Zopt

β=0+
1 ,0+

2 ,1−
1

) + α with d = {1.2, 2.4, . . . , 8.4 fm}

are used in Ref. [36], and �
12C
AMD(Zopt

β=0+
1 ,0+

2
) + α with

d = {1.2, 2.4, . . . , 8.4 fm} and �
12C
AMD(Zopt

β=1−
1

) + α with

d = {1.2, 2.4, . . . , 4.8 fm} are used in Ref. [42].]
The IS0 and IS1 transition strengths are calculated with

the 0+ and 1− states obtained by the sAMD+GCM. The
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TABLE I. Properties of 0+ states; the binding energy (BE),
excitation energies (Ex), rms matter radii (R), and the IS0 matrix
elements [M(E0)]. The present result (sAMD+GCM) and the VAP
and VAP+GCM values from Ref. [42] are shown compared with
the experimental data [49]. The experimental value of the rms radius
of the ground state is deduced from the experimental charge radius
measured by the electron scattering [50].

VAP VAP sAMD Exp
+GCM +GCM

BE (MeV) 123.0 123.5 125.6 127.62

Ex (0+
2 ) (MeV) 13.1 9.7 11.6 6.05

Ex (0+
3 ) (MeV) 15.3 18.6 12.05

Ex (0+
4 ) (MeV) 13.6 15.5 13.6

Ex (0+
5 ) (MeV) 18.3 20.6 14.01

R(0+
1 ) (fm) 2.69 2.73 2.72 2.55

R(0+
2 ) (fm) 2.96 3.29 3.16

R(0+
3 ) (fm) 3.53 3.45

R(0+
4 ) (fm) 3.64 3.21

R(0+
5 ) (fm) 3.53 3.36

M(E0; 0+
1 → 0+

2 ) (e fm2) 1.8 3.5 3.8 3.55(0.21)

M(E0; 0+
1 → 0+

3 ) (e fm2) 3.3 3.9 4.03(0.09)

M(E0; 0+
1 → 0+

4 ) (e fm2) 4.1 4.1

M(E0; 0+
1 → 0+

5 ) (e fm2) 3.0 3.2 3.3(0.7)

form factors and transition densities are also calculated with
these operators. As for the IS dipole excitations, transition
strengths of the CD and TD operators are also calculated. The
definitions of the operators, matrix elements, strengths, form
factors, and transition densities are given in Appendixes.

III. RESULTS

A. Structure properties of low-energy levels of 0+ and 1− states

The sAMD+GCM result of the binding energy, root-mean-
square (rms) matter radii, and excitation energies of low-lying
0+ states are listed in Table I, and those of the 1−

1 and 1−
2 states

are shown in Table II . For comparison, values calculated with
the VAP (without the 12C + α nor sAMD bases) and those
of the VAP+GCM (without the sAMD bases) are also shown
in the tables. These corresponds to the VAP and VAP+GCM
calculations presented in the previous paper [42].

Various cluster states are obtained in the excited 0+
levels in E � 20 MeV. Compared the sAMD+GCM and
VAP+GCM, there is no essential difference between the two
calculations for these states, because the developed cluster
states are dominantly contributed by the GCM bases but not
by the sAMD bases. It is not the case for the ground state, but
the sAMD+GCM obtains 2 MeV energy gain of the 0+

1 state
compared with the VAP+GCM meaning that the sAMD bases
efficiently improve the ground-state correlations. Because of
this additional energy gain of the ground state, the relative
energy position of the excited 0+ states are raised up by
about 2 MeV in the sAMD+GCM. As a result, the agreement
with the experimental energy spectra in the sAMD+GCM is
not as good as the VAP+GCM, but it is much better than

TABLE II. Properties of the 1−
1 and 1−

2 states, excitation energies,
rms radii, the IS1 strengths, and the EWSR ratio PIS1 of the energy-
weighted IS1 strengths. The present result of the sAMD+GCM and
those of the VAP and VAP+GCM calculations from Ref. [42] are
shown compared with the experimental data [49].

VAP VAP sAMD exp
+GCM +GCM

Ex (1−
1 ) (MeV) 10.3 9.4 9.6 7.12

Ex (1−
2 ) (MeV) 17.0 12.1 14.4 9.59

R(1−
1 ) (fm) 2.76 2.87 2.80

R(1−
2 ) (fm) 2.96 3.58 3.37

B(IS1; 0+
1 → 1−

1 ) 124.5 165.5 169.8
PIS1(1−

1 ) 0.042 0.048 0.051 0.42a

B(IS1; 0+
1 → 1−

2 ) 7.9 2.9 10.2
PIS1(1−

2 ) 0.0044 0.0011 0.0045

aThe experimental data of the EWSR ratio PIS1(1−
1 ) is the value from

Ref. [6] of α inelastic scattering analysis.

the preceding microscopic cluster model calculations. We
note that the calculated fourth 0+ state with the 12C(2+

1 ) + α

cluster structure should be assigned to the experimental 0+
3

state, because the sAMD+GCM and VAP+GCM calculations
eventually give the opposite ordering of the 0+

3 and 0+
4 states

as discussed in the previous paper.
In the calculated 1− levels, the 1−

1 and 1−
2 states are

obtained in E < 15 MeV. The higher state (1−
2 ) is the well-

developed cluster state and regarded as the band-head state
of the Kπ = 0− 12C + α band, which is the parity doublet of
the Kπ = 0+

2
12C + α band built on the band-head 0+

2 state.
The lower state (1−

1 ) has the small rms radius comparable
to that of the ground state and shows less prominent cluster
structure than the 1−

2 and 0+
2,3,4,5 states. Comparing with the

VAP+GCM, the sAMD+GCM gives the smaller radius of the
1−

1 state. Moreover, the excitation energy of the 1−
1 state is

almost same between the sAMD+GCM and VAP+GCM cal-
culations indicating that the sAMD bases describe additional
correlations contributing the size shrinkage and the 2 MeV
energy gain comparable to that of the ground state.

B. Cluster structures of low-lying states

Cluster aspects of the low-lying states have been investi-
gated in Ref. [42]. We here briefly review the cluster structures
of the 0+

1 , 0+
2 , 1−

1 , and 1−
2 states following the discussions in

the previous paper based on the analysis of the intrinsic wave
functions, �

16O
AMD(Zopt

β=Jπ
k

), obtained by the VAP calculation.

Figure 1 shows the intrinsic density distribution of the 0+
1 ,

0+
2 , and 1−

2 states. The 0+
1 state shows the tetrahedral 4α

cluster structure, in which three αs form the triangle shape on
the X -Y plane and the last α cluster is sitting on the Z (vertical)
axis [Fig. 1(a)]. Its cluster development is not so remarkable
as seen in the compact density distribution. The 1−

1 state
also has a tetrahedral 4α clustering with a compact density
distribution similar to the 0+

1 state, but the orientation of the
triangle 3α part is somewhat tilted from the 0+

1 . This tilting
motion of the triangle 3α produces the dipole excitation with
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FIG. 1. Density distributions in the intrinsic states obtained by
the VAP for the 0+

1 , 0+
2 , and 1−

1 states. The densities integrated along
the Y , X , and Z axes are plotted on the (left) X -Z , (middle) Y -Z ,
and (right) X -Y planes, respectively. Figures corresponds to those of
Ref. [42], but are reconstructed from the wave functions.

Kπ = 1− in the 1−
1 . This mode is similar to the vibration mode

of the tetrahedral 4α discussed by the algebraic 4α cluster
model [51,52]. However, the 0+

1 and 1−
1 states obtained in the

present calculation are not the equilateral tetrahedral states but
the prolately deformed one with the 3α + α configuration and
contain the α breaking component.

The 0+
2 state has the developed 12C + α cluster structure, in

which 4α clusters are arranged in a planarlike configuration.
Because of the remarkably developed 12C + α clustering, the
0+

2 state shows a largely deformed intrinsic density compared
with the 0+

1 . The developed 12C + α clustering constructs the
Kπ = 0+ band and the parity-partner Kπ = 0− band starting
from the the band-head 1−

2 state.
We should note that, even though the 0+

1 , 0+
2 , 1−

1 , and 1−
2

show the formation of four α clusters, the clusters are not
necessarily the ideal α clusters with the (0s)4 configuration
but contain the α-cluster breaking because of the spin-orbit in-
teraction. We can evaluate the α-cluster breaking component
from the expectation value of the squared proton spin 〈S2

p〉
because it measures the S = 1 mixing induced by the the α

breaking. The values calculated with the VAP are 〈S2
p〉 = 0.07,

0.71, 0.35, and 0.79 for the 0+
1 , 0+

2 , 1−
1 , and 1−

2 , respectively,
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FIG. 2. The EWSR ratio of the IS0 and IS1 transition strengths
calculated with the sAMD+GCM.

indicating the slight breaking in the 0+
1 and the significant α

breaking in the 0+
2 , 1−

1 , and 1−
2 .

It should be also commented that these VAP configurations
couple with other configurations such as the 12C-cluster rota-
tion and 1p-1h excitations in the sAMD+GCM calculation,
but they still give significant contributions and roughly de-
scribe main properties of the 0+

1 , 0+
2 , 1−

1 , and 1−
2 states.

C. Transition strengths

The calculated IS0 and IS1 transition strengths to the
0+

2,3,4,5 and 1−
1,2 states are listed in Tables I and II. Here the

strengths B(E0) = B(IS0)/4 are compared with the experi-
mental data. The observed B(E0) of the 0+

2 , 0+
3 , and 0+

5 state
are reproduced well by the sAMD+GCM calculation. In the
dipole excitations, the remarkably large B(IS1) is obtained for
the 1−

1 with the energy weighted sum rule ratio of 5%, whereas
the much weaker IS1 transition is obtained for the 1−

2 state in
the 12C + α band. The relatively weak IS1 transition to the
cluster state seems to contradict the naive expectation that the
compressive operator could excite cluster states, but it is not
true for the case of the 1−

2 state. As mentioned previously, the
1−

2 state in the 12C + α band has the planarlike configuration
and shows the different orientation of the triangle 12C cluster
from the initial 0+

1 . Therefore, the 0+
1 to 1−

2 excitation involves
not only the intercluster excitation but also the 12C-cluster
rotation, which can not be directly excited by the IS1 operator.

The IS0 and IS1 strength functions up to E = 60 MeV are
shown in Fig. 2. The energy-weighted sum rule ratios calcu-
lated with the sAMD+GCM are plotted. In the IS0 strength
function, a large fraction of the strengths are distributed in
E � 40 MeV. The cluster states significantly contribute to the
lower part of the strengths in E � 20 MeV, which are not
clearly separated from the GMR strengths. On the other hand,
in the IS1 strength function, the 1−

1 state contributes to the
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FIG. 3. The elastic and inelastic form factors of the IS0 and IS1
transitions calculated with the sAMD+GCM. The experimental data
are electron scattering form factors from Ref. [53].

significant low-energy strength separated from the IS GDR
peak around 40 MeV.

D. Form factors and transition densities

Figure 3 shows the calculated elastic and inelastic form
factors of the IS0 and IS1 transitions from the ground state
to the 0+

1,2,3 and 1−
1,2 states in comparison with experimental

data observed by electron scattering [53]. The calculated form
factors of the 0+

1,2,3 states are in good agreement with the
experimental data in the low-momentum region. In the shape
of the observed inelastic form factors, a difference can be
seen between the 0+

2 and 0+
3 states. The form factor of the

0+
2 drops off at the smaller transfer momentum q than the

0+
3 reflecting the broader radius dependence of the transition

density of the 0+
2 . This trend is qualitatively described in the

present calculation and understood by the difference in the
cluster structures between the 0+

2 and 0+
3 states: the dominant
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FIG. 4. Transition densities of the IS0 and IS1 transitions, 0+
1 →

0+
k and 0+

1 → 1−
k , calculated with the sAMD+GCM. The densities

for the transitions with significant strengths as B(IS0 : 0+
1 → 0+

k ) �
10 fm4 and B(IS1 : 0+

1 → 1−
k ) � 10 fm6 are plotted. The transition

densities for the first and second excited states are shown by blue
dashed and magenta dash-dotted lines, respectively. The IS0 transi-
tion density of 0+ states in 15 < E < 22 MeV and the IS1 transition
density of 1− states in 15 < E < 30 MeV are shown by black solid
lines in (a) and (b) and those of the 0+ states in 22 < E MeV and 1−

states in 40 < E < 44 MeV are shown by green dotted lines in (a)
and (c).

12C(0+
1 ) + α component in the 0+

2 state and the 12C(2+
1 ) + α

component in the 0+
3 state.

For the dipole transition to the 1−
1 , the magnitude and shape

of the experimental form factor are nicely reproduced by the
present calculation. Compared to the 1−

1 , the calculated IS1
transition to the 1−

2 is quite weak. At the maximum peak,
the form factor of the 0+

1 → 1−
2 transition is about two orders

less than that of the 0+
1 → 1−

1 transition. Moreover, the shape
of the form factor is different between the 1−

1 and 1−
2 states

because of the structure difference. The form factor of the 1−
2

in the 12C + α band shows a two-peak structure with a dip at
q ≈ 2 fm−2, which can not be seen in the form factor of the
1−

1 state with the compact tetrahedral 4α.
For further discussions of the IS0 and IS1 transitions, we

show the transition densities for the 0+ and 1− states with
B(IS0) > 10 fm4 and B(IS1) > 10 fm6 in Fig. 4. The transi-
tion density of the 0+ states in Fig. 4(a) shows qualitatively
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similar behavior with one node around r = 2.5–3.0 fm, but
one can see a quantitative difference between the 0+

2 and
high-energy 0+ states. The transition density in the 0+

2 state
is expanded outward and its node is located at the largest
position r ≈ 3 fm due to the developed 12C(0+

1 ) + α cluster
structure. Conversely, the transition density of higher states
in E > 22 MeV is contracted inward. This trend can be un-
derstood by the character of small amplitude vibration in the
high-energy monopole excitations. The transition density for
other 0+ states in 15 < E < 22 MeV shows the intermediate
feature.

Compared with the monopole transitions, the IS1 transi-
tion density sensitively reflects different characters of dipole
excitations. In particular, one can see clear differences in the
transition density between the 1−

1 , 1−
2 , and high-energy GDR.

The transition density in the 1−
1 with the compact 4α structure

shows the most contracted distribution with a node at r < 3
fm and the surface peak at r ≈ 4 fm. On the other hand, in the
1−

2 state assigned to the 12C + α band, the transition density
has two nodes and shows the broadly stretched distribution
with the surface peak at r ≈ 5 fm. In the high-energy GDR
transition, which is contributed by the 1− states in 40 < E <

44 MeV, the transition density shows the intermediate feature
with one node at r ≈ 3.5 fm and the surface peak at 4 � r �
4.5 fm. In 15 < E < 30 MeV, most of the 1− states have the
GDR-like transition density but a few states show the 1−

1 -like
contracted behavior.

E. Vortical nature of dipole excitations

In order to clarify properties of the LED and GDR states,
we calculate the transition strengths with the CD and TD
operators. Note that the CD strength, which is in principle
equivalent to the IS1 strength, is sensitive to the compression
dipole mode, whereas the TD strength can probe the nuclear
vorticity in the dipole excitation.

The calculated CD and TD strength functions are shown in
Fig. 5. In the CD transitions, we obtain the significant strength
below 10 MeV for the 1−

1 state and the huge peak around
E = 40 MeV for the IS GDR. In contract to the CD strength,
there is no remarkable TD strength in the high-energy region
for the IS GDR. From this result, it is concluded that the
IS GDRs do not have the vortical feature but is the normal
compressive mode. Instead, the TD strength is concentrated

 0

 2000

 4000

 6000

 0  10  20  30  40  50  60

E
dB

(C
D

,T
D

)/
dE

 (
fm

6 )

Energy (MeV)

CD
TD

FIG. 5. The energy weighted strength functions of the CD
and TD transitions calculated with the sAMD+GCM. The scaled
strengths B̃(D) of discrete states are smeared by Gaussian with the
range γ = 1/

√
π MeV.

on the 1−
1 state probing the vortical nature. The 1−

2 in the
12C + α band has the weak CD and TD transitions because
this state is the intercluster excitation involving the 12C-cluster
rotation and is weakly excited by the CD and TD operators.

The present result indicates quite different characters of the
dipole excitations between the 1−

1 , 1−
2 , and IS GDR states: the

strong CD and TD transitions in the 1−
1 , weak CD and TD

transitions in the 1−
2 , and strong CD but weak TD transitions

in the IS GDR. In particular, one of the prominent features
of the 1−

1 is the strong TD strength. In the analysis of the
intrinsic wave functions, we find that the TD strength in the
0+

1 → 1−
1 is contributed by the dominant K = 1 component

of the prolately deformed 3α + α structure of the 1−
1 . On

the other hand, the CD strength in the 0+
1 → 1−

1 is mainly
contributed by the K = 0 component. In the 4α structure, the
K = 1 and K = 0 components have large overlap and mixes
to each other because of the bosonic symmetry of α clusters.
This is a unique feature of the dipole excitation in 16O, in
which the 1−

1 state has the strong TD and CD strengths.
To illustrate the vortical and compressive natures of the

1−
1 , we show in Fig. 6 the transition current density of the

0+
1 → 1−

1 transition in the intrinsic frame calculated using
the wave functions �

16O
AMD(Zopt

β=0+
1

) and �
16O
AMD(Zopt

β=1−
1

) obtained

by the VAP. Here, the transition current density before the
K and parity projections at the Y = 0 and X = 0 planes,
[Figs. 6(c) and 6(d)] that after the K projection before the
parity projection, and [Figs. 6(e) and 6(f)] that after the K
and parity projections are shown. The nuclear matter density
of the 0+

1 and 1−
1 states are also shown by solid and dashed

lines, respectively. Note that, the parity (axial) symmetry is
broken in the intrinsic states before the parity projection (K
projection) but it is restored after the projection.

In the transition current density before the K and parity
projections, a vortex is created at the lower part by the
tilting motion of the triangle 3α in the tetrahedral 4α con-
figuration as seen in Fig. 6(a) and 6(b). After the K = 1
projection, where the nuclear current is averaged around the
Z axis, a K = 1 vortex appears clearly at the bottom part
of Fig. 6(c). Then, after the parity projection, the vortical
current is duplicated and two vortices appear in the bottom
and top parts. The K = 1 vortices aligned along the pro-
late deformation is the feature of the K = 1 VD mode in
the prolately deformed system. This mode differs from the
torus-shape vortex, which has been originally proposed in
the K = 0 dipole excitation (obviously, the torus current is
allowed only in the K = 0 dipole excitation because of the
mathematical condition.) The geometrical shape of the current
in the K = 1 VD mode is described in detail in our previous
paper [54].

Let us turn to the nuclear current in the K = 0 component
shown in Figs. 6(d) and 6(f) before and after the parity projec-
tion, respectively. The 0+

1 → 1−
1 excitation also contains the

relative motion between the last α cluster and the 3α. In the
K = 0 component, this corresponds to the L = 1 excitation of
the 3α-α relative distance. The relative oscillation of the last α

cluster against the 3α induces the compressive nuclear current
as seen in Figs. 6(d) and 6(f) and contributes to the significant
CD strength in the 0+

1 → 1−
1 transition.
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FIG. 6. Transition current density of the 0+
1 → 1−

1 in the intrin-
sic frame calculated using the wave functions �

16O
AMD(Zopt

β=0+
1

) and

�
16O
AMD(Zopt

β=1−
1

) obtained by the VAP. The vector plot of the transition

current density before the K and parity projections at the (a) Y = 0
on the X -Z plane and (b) X = 0 on the Y -Z plane, (c), (d) that after
the K projection before the parity projection, and (e), (f) after the K
and parity projections are shown. Red solid and magenta dashed lines
indicate contours for the matter densities ρ(X, 0, Z ) = 0.08 fm−3 of
the initial (0+

1 ) and final (1−
1 ) states, respectively.

Strictly speaking, it is not be able to uniquely define the
intrinsic frame for physical states with eigenvalues of angular
momentum, but in the present case that the system has the
prolate deformation because of the tetrahedral 3α + α config-
uration, the discussion in the intrinsic frame can be useful to
get the intuitive understanding.

IV. SUMMARY AND OUTLOOK

The IS monopole and dipole excitations in 16O were inves-
tigated with the sAMD+GCM. The significant IS0 and IS1
transition strengths were obtained in the low-energy region in
addition to the GRs. The 1−

1 state contributes to the significant
low-energy strength of the IS1 transition with 5% of the
energy-weighted sum rule, which describes well the experi-

mental data observed by α inelastic scattering. The calculated
form factors of the inelastic transitions to the 0+

2 , 0+
3 , and

1−
1 states reproduce the experimental electron scattering form

factors. The transition densities were also analyzed.
The different characters of the dipole excitations were

found in the 1−
1 , 1−

2 , and IS GDR: the strong CD and TD
transitions in the 1−

1 , the weak CD and TD transitions in the
1−

2 , and the strong CD but weak TD transitions in the IS
GDR. Cluster and vortical aspects of the low-energy dipole
states were investigated. In conclusion, we regard the 1−

1 as
the vortical vibration mode with the tetrahedral 4α structure,
the 1−

2 as the 12C + α cluster mode, and the IS GDR as the
collective vibration of the compressive dipole mode.
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APPENDIX A: TRANSITION DENSITIES

The density and current density operators for the nuclear
matter are defined as

ρ(r) =
∑

k

δ(r − rk ), (A1)

j(r) = − ih̄

2m

∑
k

∇kδ(r − rk ) + δ(r − rk )∇k. (A2)

Here, j(r) includes only the convection term of the nuclear
current but not the spin term of magnetization. The transition
density and current density for the |0〉 → | f 〉 transition are
given as

ρ
(tr)
0→ f (r) = 〈 f |ρ(r)|0〉, (A3)

δ j(r) = 〈 f | j(r)|0〉. (A4)

The λth transition density is obtained from the multipole
decomposition of the transition density,

ρ
(tr)
0→ f (r) = 1√

2Jf + 1

∑
λ

ρ
(tr)
λ;0→ f (r) (A5)

×
∑

μ

Y ∗
λμ(r̂)(JiMiλμ|Jf M f ), (A6)

where Ji and Mi (Jf and M f ) are the spin quantum numbers of
the initial |0〉 (final | f 〉) state. The λth multipole component of
the so-called longitudinal form factor is related to the Fourier-
Bessel transform of the transition charge density ρch

λ;0→ f (r) by

F (q) =
√

4π

Z

1√
2Ji + 1

∫
drr2 jλ(qr)ρch

λ;0→ f (r), (A7)
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where ρch
λ;0→ f (r) is calculated by taking into account the

proton charge radius and assuming the mirror symmetry.

APPENDIX B: IS MONOPOLE AND DIPOLE OPERATORS
AND TRANSITION STRENGTHS

The standard compressive-type ISλ operators of the IS
monopole and dipole excitations are defined as

MIS0 ≡
∫

drρ(r)r2, (B1)

MIS1(μ) ≡
∫

drρ(r)r3Y1μ(r̂). (B2)

The IS0 and IS1 transition strengths for |0+
1 〉 → |Jπ

k 〉 are given
by the reduced matrix elements as

B(ISλ) = 1

2Ji + 1

∣∣〈Jπ
k

∣∣|MISλ||0+
1 〉∣∣2

, (B3)

where the angular momentum of the initial state is Ji and
that of the final state is Jπ

k = 0+
k and 1−

k for λ = 0 and 1,
respectively. The reduced matrix elements are related to the
transition densities as

〈
Jπ

k

∣∣|MISλ||0+
1 〉 =

√
4π

∫
drr2rλ+2ρ

(tr)
λ;0→ f (r) (B4)

for the IS0 transition and

〈
Jπ

k

∣∣|MISλ||0+
1 〉 =

∫
drr2rλ+2ρ

(tr)
λ;0→ f (r) (B5)

for the IS1 transition.
The energy-weighted sum rule of the IS0 operator is

∑
k

(Ek − E0)B(IS0; 0+
1 → 0+

k ) = 2h̄2A

m
〈r2〉 (B6)

with the mean square radius 〈r2〉 = 〈0+
1 | ∑i r2

i |0+
1 〉/A of the

ground state. For the IS1 operator, we use the following
energy-weighted sum rule from Ref. [6],∑

k

(Ek − E0)B(IS1; 0+
1 → 1−

k )

= 3h̄2A

32mπ

(
11〈r4〉 − 25

3
〈r2〉2 − 10ε〈r2〉

)
, (B7)

where 〈r4〉 = 〈0+
1 | ∑i r4

i |0+
1 〉/A and ε = (4/E2 +

5/E0)h̄2/3mA. Here E2 and E0 are the IS GQR and GMR
energies, for which the empirical values of E2 = 63A−1/3

MeV and E0 = 80A−1/3 MeV are used, respectively.

APPENDIX C: CD AND TD STRENGTHS

In the analysis of isoscalar dipole excitations, the CD and
TD operators are used as done in Refs. [43,46]. The former
(CD) corresponds to the standard IS1 operator and sensitive
to the compressive dipole excitations, and the latter (TD) has
been proved to be a good measure of the nuclear vorticity
in the dipole excitations as discussed in Ref. [14]. They are
defined as

MCD(μ)

= −i

2
√

3c

∫
dr j(r) ·

[
2
√

2

5
r2Y 12μ(r̂) − r2Y 10μ(r̂)

]
,

(C1)

MTD(μ)

= −i

2
√

3c

∫
dr j(r) ·

[√
2

5
r2Y 12μ(r̂) + r2Y 10μ(r̂)

]
,

(C2)

where Y λLμ is the vector spherical harmonics.
The matrix elements of these IS dipole operators for the

|0+
1 〉 → |1−

k 〉 transitions are given as

〈1−
k |MCD(μ)|0+

1 〉

= −i

2
√

3c

∫
drδ j(r) ·

[
2
√

2

5
r2Y 12μ(r̂) − r2Y 10μ(r̂)

]
,

(C3)

〈1−
k |MTD(μ)|0+

1 〉

= −i

2
√

3c

∫
drδ j(r) ·

[√
2

5
r2Y 12μ(r̂) + r2Y 10μ(r̂)

]
.

(C4)

Using the continuity equation, the CD matrix element is
related to the matrix element of the standard IS1 operator MIS1

as

〈1−
k |MCD(μ)|0+

1 〉 = − E

10h̄c
〈1−

k |MIS1(μ)|0+
1 〉. (C5)

The CD and TD strengths, which are scaled with the factor
( 10h̄c

E )
2
, are defined as

B̃(CD,TD; 0+
1 → 1−

k ) ≡
(

10h̄c

E

)2

|〈1−
k ||MCD,TD||0+

1 〉|2.

(C6)
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