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Vortices in low-density neutron matter and cold Fermi gases

Lucas Madeira,1,* Stefano Gandolfi,2 Kevin E. Schmidt,3 and Vanderlei S. Bagnato1

1Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, São Carlos, São Paulo 13560-970, Brazil
2Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

3Department of Physics, Arizona State University, Tempe, Arizona 85287, USA

(Received 20 March 2019; published 8 July 2019)

Cold gas experiments can be tuned to achieve strongly-interacting regimes such as that of low-density neutron
matter found in neutron-stars’ crusts. We report T = 0 diffusion Monte Carlo results (i) for the ground state of
both spin-1/2 fermions with short-range interactions and low-density neutron matter in a cylindrical container,
and (ii) properties of these systems with a vortex line excitation. We calculate the equation of state for cold atoms
and low-density neutron matter in the bulk systems, and we contrast it to our results in the cylindrical container.
We compute the vortex line excitation energy for different interaction strengths, and we find agreement between
cold gases and neutron matter for very low densities. We also calculate density profiles, which allow us to
determine the density depletion at the vortex core, which depends strongly on the short-ranged interaction in
cold atomic gases, but it is of ≈25% for neutron matter in the density regimes studied in this work. Our results
can be used to constrain neutron matter properties by using measurements from cold Fermi gases experiments.
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I. INTRODUCTION

Strongly interacting fermionic systems appear in many
contexts, for example: superconductors, cold atomic Fermi
gases, low-density neutron matter, and QCD at high baryon
densities. Shedding light on properties of one of these systems
may contribute to our comprehension of strongly interacting
Fermi systems as a whole.

Cold atom systems provide an example where the interplay
between experiments and theory led to rapid advances in
the field. In these dilute systems, short-range interactions are
characterized by a single parameter kF a, the product of the
Fermi wave number kF and the s-wave scattering length a.
This interaction strength can be tuned using an external
magnetic field near a Feshbach resonance, and the attractive
interactions can span a continuum between the Bardeen-
Cooper-Schrieffer (BCS) limit of superfluidity and the Bose-
Einstein condensation (BEC) of dimers, passing through the
unitary limit of infinite scattering length. Experiments with
cold atoms can provide direct tests of quantities such as
the equation of state and pairing gap, which are currently
inaccessible to their neutron matter counterparts. For a review
on the subject the reader is referred to Ref. [1] and references
therein.

On the other hand, if we compare cold gases to neutron
matter, we find that the neutron-neutron interaction can be
more complicated: short-range repulsion, two-pion exchange
at a intermediate range, and one-pion exchange at large dis-
tances. However, this situation changes in the low-density
regime, which is the case in the exterior of neutron-rich
nuclei and neutron-star crusts. In these systems, the scattering
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length and effective range of the interaction are the most
essential quantities for describing the physical properties, and
properties of neutron matter and cold atoms are similar [2,3].

A neutron matter model with a zero-range interaction
[4] was presented as a many-body challenge proposed by
Bertsch,1 much before cold atom experiments could shed
light on the properties of these systems. In dilute cold gases,
the effective range re between atoms is much smaller than
the interatomic spacing r0, and can be taken to be zero. The
diluteness can guarantee that the scattering length a is much
larger than r0. Comparison with other systems is meaningful if
they also obey |a| � r0 � re. The scattering length of neutron
matter, ann ≈ −18.5 fm, is substantially larger than the inter-
particle distance and the effective range, rnn

e ≈ 2.7 fm, such
that |rnn

e /ann| ≈ 0.15. However, only at very low densities
is the effective range much smaller than the interparticle
distance. If we neglect the effects of a finite effective range
in the neutron-neutron interaction, cold atoms and neutron
matter are universal in the sense that properties depend only
on the product kF a.

Quantum Monte Carlo (QMC) methods have been suc-
cessful at comparing the equation of state and pairing gap
of cold atom systems and low-density neutron matter [5,6].
In the present work we used a similar model to compare
properties of vortices in low-density neutron matter and cold
Fermi gases. One signature of superfluidity is the formation

1The challenge proposed to the participants of the Tenth Interna-
tional Conference on Recent Progress in Many-Body Theories can
be stated as: what are the ground-state properties of the many-body
system composed of spin-1/2 fermions interacting via a zero-range,
infinite scattering length contact interaction?
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of quantized vortices, where the quantization of the flow is
given in units of h/(2m), m being the mass of the fermion.
The microscopic structure of a vortex line in neutron matter
has been studied using Bogoliubov-de Gennes equations [7,8],
and nuclear energy density functional approaches [9]. For cold
atom gases there is an abundance of studies, for example
T = 0 results using Bogoliubov-de Gennes equations at uni-
tarity [10] and throughout the BEC-BCS crossover [11], and
finite temperature calculations [12].

Here we report results for a single vortex line in a cylin-
drical geometry for both low-density neutron matter and cold
Fermi gases using QMC methods. We investigated the conse-
quences of the finite effective range of the neutron-neutron
interaction, in contrast to re ≈ 0 for cold gases. We also
studied effects that go beyond low-energy scattering by using
two potential models for the neutron-neutron interaction, one
based on phenomenology, and another that was tuned to
reproduce the desired low-energy phase shifts. We calculated
the equation of state for cold atoms and low-density neutron
matter in the bulk systems. We show that it is possible to
separate the energy contributions of systems in a cylindrical
container with hard walls into bulk and surface terms. The
excitation energy necessary to produce a vortex line was
computed by using the energy difference between a system
of pairs with angular momentum h̄ and the ground state. We
show that for very low densities there is an agreement between
the excitation energies for vortex-line formation between cold
gases and neutron matter. However, as the density increases
(or as the interaction strength increases in absolute value) they
differ. We also calculated density profiles, which allows us to
determine the density depletion at the vortex core. We found
that the depletion varies from 28% up to 47% for cold gases,
whereas for neutron matter the depletion is approximately
25%, for the density range we studied in this work. Our results
are compared to previous mean-field calculations.

This paper is structured as follows. In Sec. II we intro-
duce our methodology. We discuss aspects of the cylindrical
container in Sec. II A, and low-energy two-body scattering in
Sec. II B. We present the wave functions we built in Sec. II C,
which describe properties of the bulk systems, and systems
in a cylindrical container (both the ground state and systems
with a vortex line). In Sec. II D we give a brief description
of the QMC methods we employed. Section III presents our
results, namely the ground state and vortex excitation energies
in Sec. III A, and density profiles in Sec. III B. An outlook is
provided in Sec. IV. Finally, in Appendix we show how to
obtain an exact relationship between scattering length and the
parameters of the modified Poschl-Teller potential.

II. METHODS

A. Cylindrical container

The choice of which trapping potential (or geometry) to
use in this problem is not unambiguous, as there is a tradeoff
for each possible candidate. A choice that minimizes surface
effects is to have an array of counter rotating vortices with
periodic boundary conditions. One drawback is that this state
has zero total angular momentum, thus it can decay to the

ground state of the system. Also, from the computational
perspective, this choice is not feasible for fermionic systems.
For example, 4He calculations of Ref. [13] used 300 particles
and four counterrotating vortices in the simulation cell. In
order to use the same number of fermion pairs we would
require a system of 600 fermions. Another possible choice
would involve harmonic traps, which are readily available
in experimental setups, however, the density profiles of cold
gases in harmonic traps can also differ substantially from what
is expected in the thermodynamic limit [14].

Instead, we opted for using a cylindrical container of radius
R and height L, with hard walls, periodic in the axial direc-
tion. This choice is consistent with previous bosonic [15] and
fermionic [16] calculations. Also, this is the generalization
of the two-dimensional (2D) disk geometry to 3D [17–19],
where we made the axial direction periodic. Throughout this
work we use (ρ, ϕ, z) to denote the usual cylindrical coordi-
nates.

In the thermodynamic limit, R, L → ∞, the energy per
particle is independent of the cylinder radius and height,
and it should go to the bulk value. The relationship between
thermodynamic properties of a confined fluid and the shape of
the container is often expressed as a function of the various
curvatures of the container [20]. For these reasons, we chose
the following functional form for the energy per particle in the
cylindrical geometry:

E cyl(R,L) = E cyl
0 + λS

2πRL , (1)

where E cyl
0 represents a bulk contribution to the energy, and

the second term on the right-hand side is a surface contri-
bution. Corrections to this functional form would come in
powers of R−1 and/or L−1, however, we found those do not
improve the description of the results.

One of the complications of introducing hard walls is
the presence of the so-called Friedel oscillations. Fermionic
systems bound by hard walls display density profiles charac-
terized by Friedel oscillations. Although they are present in
three dimensions, they are more pronounced in low-dimension
systems such as 1D [21], and 2D [19]. We would like our
system to exhibit some desirable features with respect to the
energy and density distribution D(ρ). Regarding the den-
sity distribution as a function of the radial coordinate (see
Sec. III B for the normalization and profiles in the interacting
cases), besides a vanishing density at the walls, we want the
profile to be flat close to the axis of the cylinder. This would be
the behavior in the thermodynamic limit, but this is not always
true for finite-size systems. If we fix the number density at
n = k3

F /(3π2), the free Fermi gas density, we have freedom to
choose either the cylinder radius R or the height L. In making
this choice we adopted the following procedure. We calcu-
lated analytically the energy and density profile for the free
gas, and we looked for systems that obeyed the criteria estab-
lished above, that is: (i) the energy of the system for different
particle numbers N is well described by Eq. (1); (ii) the slope
of the density profile in the vicinity of the origin (ρ � ρ0)
is less than a prescribed tolerance, |∂D(ρ)/∂ρ|ρ�ρ0 � ε; (iii)
density oscillations are minimized.
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FIG. 1. Density profile of the free Fermi gas as a function of the
radial coordinate ρ for N = 78 and several radii: 5.0k−1

F long dashed
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F dashed-dotted
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F continuous (black) line. The number density
was kept fixed at the free Fermi gas value, k3

F /(3π 2). Although the
behavior close to ρ = R is similar for all radii, due to the presence of
the hard walls, the profile at the center of the cylinder, ρ � 2.0k−1

F ,
can be quite different. In our simulations we employed R = 9.3k−1

F

for N = 78.

Throughout this work we report energies per particle in
units of the free Fermi gas energy per particle,

EFG = 3

10

h̄2

m

(
3π2 N

V

)2/3

. (2)

We found that for N = {78, 80, 82, 84, 86}, with the radius
R = 9.3k−1

F for N = 78 and 9.4k−1
F for the other systems,

are well described by Eq. (1) with E cyl
0 = 1.02(2)EFG and

λS = 108(8)EFGk−2
F , and the maximum value of ε is of ≈5 ×

10−5k4
F for ρ0 � 2k−1

F . To illustrate how criteria (ii) and (iii)
are not easily met, we plot in Fig. 1 the density profile for
the free Fermi gas with N = 78 and several different values
of R. Our ansatz takes into consideration only the free gas
case, which corresponds to the −kF a → 0 limit. However, we
show in Secs. III A 1 and III B that our choices produced the
desired results in the 0.5 � −kF a � 5.0 range.

B. Scattering

Two-body scattering for a finite range potential V (r) is
described by the Schrödinger equation. We separate the so-
lutions into radial and angular parts, with the latter being a
constant for s-wave scattering. The scattering length a and
the effective range re can be determined from the zero-energy
solution of the radial equation and its asymptotic form. The
low-energy behavior of the phase shift δ(k) can be related to
a and re [22],

k cot δ(k) = −1

a
+ rek2

2
+ O(k4), (3)

hence different potentials that reproduce the same scatter-
ing length and effective range yield the same low-energy
phase-shift behavior. When simulating cold gases, we chose
the modified Poschl-Teller (mPT) potential to describe

interactions between antiparallel spins,

VmPT(r) = −v0
h̄2

mr

μ2

cosh2(μr)
, (4)

where v0 and μ are parameters that can be tuned to reproduce
the desired a and re. We restricted the parameters so that
no bound state is supported. The quantities a, μ, and v0 are
related through (see Appendix)

aμ = π

2
cot

(
πλ

2

)
+ γ + 
(λ), (5)

where γ = 0.577 . . . is the Euler-Mascheroni constant, 
 is
the digamma function, and λ is such that v0 = λ(λ − 1)/2. In
the equation above, the requirement on the number of bound
states, and a fixed re, completely determine the parameters of
the potential for a given scattering length.

For the neutron matter simulations, we employed two
different potential interactions. Our goal with this approach
is to see if there are any relevant effects beyond the low-
energy regime described by Eq. (3). The first interaction
we considered is a modified Poschl-Teller potential, Eq. (4),
tuned so that the scattering length is ann = −18.5 fm and the
effective range is rnn

e = 2.7 fm. The other one is based on the
AV18 nucleon-nucleon pairwise interaction [23], which has
been extensively used in QMC simulations of nucleon systems
[24]. We chose the neutron-neutron interaction between parti-
cles with antiparallel spins to be the s-wave part of AV18. We
fixed the spin-isospin degrees of freedom such that we have
a unpolarized gas of neutrons, hence the potential interaction
becomes spherically symmetrical. The most important feature
of the interaction is that the scattering length ann = −18.5 fm
and effective range rnn

e = 2.7 fm are correctly described by
the potential. In Fig. 2 we compare the potential interactions
we use for cold gases and neutron matter for −kF a = 1.

C. Wave functions

The BCS wave function, which includes pairing explicitly,
projected to a fixed number of particles N (half with spin-
up and half with spin-down), can be written as an antisym-
metrized product [25]. Since neither the Hamiltonian or any
operators in the quantities we calculate flip the spins, we
adopt hereafter the convention of primed indices to denote
spin-down particles and unprimed ones to refer to spin-up
particles. Thus, the BCS wave function reduces to

ψBCS(R, S) = A[φ(r1, s1, r1′ , s1′ )φ(r2, s2, r2′ , s2′ ) . . .

φ(rN/2, sN/2, rN/2′ , sN/2′ )], (6)

where R is a vector containing the particle positions ri, S
stands for the spins si, and the antisymmetrization is over spin-
up and spin-down particles only [26]. This wave function can
be calculated efficiently as a determinant. The φ are pairing
functions, which have the form

φ(r, s, r′, s′) = φ̃(r, r′)
[ 〈s s′|↑↓〉 − 〈s s′|↓↑〉√

2

]
, (7)

where we have explicitly included the spin part to impose
singlet pairing. The assumed expressions for φ̃ depend on the
system being studied, see Secs. II C 1, II C 2, and II C 3.
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FIG. 2. Comparison between the pairwise interactions employed
in this work for −kF a = 1. The continuous (red) line denotes the
modified Poschl-Teller potential, Eq. (4), with kF re = 0.05, the
dashed (green) line the s-wave component of AV18, and the dotted-
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F /(3π 2).

The BCS wave function accounts for the long-range behav-
ior. Short-range correlations are included in the form of a two-
body Jastrow factor f (ri j′ ), ri j′ = |ri − r j′ |, which accounts
for correlations between antiparallel spins. It is obtained from
solutions of the two-body Schrödinger-like equation,[

− h̄2

m
∇2 + V (r)

]
f (r < d ) = λ f (r < d ), (8)

where V (r) is specified for cold gases and neutron matter
in Sec. II B, and the boundary conditions are f (r > d ) = 1
and f ′(r = d ) = 0, d being a variational parameter, and λ is
adjusted so that f (r) is nodeless. The total trial wave function
is written as

ψT(R, S) =
∏
i, j′

f (ri j′ )ψBCS(R, S). (9)

1. Bulk system

We employed the same pairing function for the bulk case
as Ref. [26],

φ̃bulk (r, r′) =
nc∑

n=1

αneikn·(r−r′ ) + β̃(|r − r′|), (10)

where αn are variational parameters, and contributions from
momentum states up to a level nc are included. The β̃ function
describes contributions with n > nc,

β̃(r) =
{

β(r) + β(L − r) − 2β(L/2) for r � L/2

0 for r > L/2
(11)

with

β(r) = [1 + cbr][1 − e−dbr]
e−br

dbr
, (12)

where r = |r − r′| and b, c, and d are variational parameters.
We considered b = 0.5 kF , d = 5, and c is adjusted so that
∂β̃/∂r = 0 at r = 0. This functional form of β(r) describes
the short-distance (high-momentum) correlation of particles
with antiparallel spins.

2. Cylinder

The free-particle solution of the Schrödinger equation in
a cylinder or radius R, height L, finite at ρ = 0, and with
periodic conditions along the z axis is

�nνp(ρ, ϕ, z) = NνpJν (kνpρ) exp[i(kzz + νϕ)], (13)

where Nνp is a normalization constant, Jν are Bessel func-
tions, kνp = jνp/R, jνp is the pth zero of Jν , and kz = 2πn/L.
The eigenvalues are Enνp = h̄2(k2

νp + k2
z )/(2m). The quantum

numbers n and ν can take the values 0,±1,±2, . . ., and p =
1, 2, . . ..

The pairing function for the cylinder geometry is con-
structed using the single-particle orbitals of Eq. (13) coupled
with their time-reversed counterparts. This ansatz has been
used before in the unitary Fermi gas [16]. We assume the
pairing function to be

φ̃cyl(r, r′) =
qc∑

q=1

α̃qN 2
νpJν

(
jνp

R ρ

)
Jν

(
jνp

R ρ ′
)

× eiν(ϕ−ϕ′ )eikz (z−z′ ) + β̄(r, r′), (14)

where the α̃q are variational parameters, and q is a label for
the cylinder momentum shells, such that different states with
the same energy have the same variational parameter. The
β̄ function is a modification of β̃ such that the hard wall
boundary condition is met,

β̄(r, r′) =

⎧⎪⎨
⎪⎩
N 2

01J0
( j01ρ

R
)
J0

( j01ρ
′

R
)

×[β(r) + β(2R − r) − 2β(R)] for r � R
0 for r > R

(15)

and β is given by Eq. (12).

3. Vortex

The vortex line excitation is accomplished by considering
pairing orbitals, which are eigenstates of Lz with eigenvalues
±h̄. This is achieved by coupling single-particle states with
angular quantum numbers ν differing by one. Explicitly, we
are considering (n, ν, p) paired with (−n,−ν + 1, p), such
that the pairing orbitals take the form

φ̃vortex(r, r′)

=
qc∑

q=1

ᾱqNνpNν−1;p

×
{

Jν

(
jνp

R ρ

)
Jν−1

(
jν−1;p

R ρ ′
)

ei(νϕ−(ν−1)ϕ′ )eikz (z−z′ )

+ Jν

(
jνp

R ρ ′
)

Jν−1

(
jν−1;p

R ρ

)
ei(νϕ′−(ν−1)ϕ)eikz (z′−z)

}
,

(16)
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where q is a label for the vortex shells, and ᾱq are variational
parameters. Equation (16) is symmetric under interchange of
the prime and unprimed coordinates, as required for singlet
pairing.

D. Quantum Monte Carlo

The Hamiltonian of the two-component Fermi gas, or spin-
up/spin-down neutron matter, is given by

H = − h̄2

2m

⎡
⎣ N↑∑

i=1

∇2
i +

N↓∑
i= j′

∇2
j′

⎤
⎦ +

∑
i, j′

V (ri j′ ), (17)

with N = N↑ + N↓. The diffusion Monte Carlo (DMC)
method projects out the lowest-energy state of H present in
a initial state ψT (obtained from variational Monte Carlo
simulations). The propagation, in imaginary time τ , can be
written as

ψ (τ ) = e−(H−ET )τψT , (18)

where ET is an energy offset. In the τ → ∞ limit, only the
lowest-energy component �0 survives

lim
τ→∞ ψ (τ ) = �0. (19)

The imaginary time evolution can be written in the integral
form

ψ (R, τ ) =
∫

dR′G(R, R′, τ )ψT (R′), (20)

where G(R, R′, τ ) is the Green’s function associated with
H . We solve an important sampled version of Eq. (20) it-
eratively, using the Trotter-Suzuki approximation to evaluate
G(R, R′, τ ), which requires the time steps δτ = τ/N to be
small. We circumvent the fermion-sign problem by using the
fixed-node approximation, which restricts transitions across a
nodal surface defined by ψT , making our estimates of energy
expectation values upper bounds. For a detailed explanation of
the algorithm, the reader is referred to Ref. [27] and references
therein.

The direct calculation of the expectation value of an oper-
ator O(R) from �0(R) corresponds to the mixed estimator

〈O(R)〉m = 〈
T (R)|O(R)|�0(R)〉
〈
T (R)|�0(R)〉 , (21)

which is exact only when O commutes with the Hamiltonian
H . There are several methods to compute expectation values
of quantities, such as the density, that do not commute with H .
One of them is the extrapolation method where the results of
diffusion and variational simulations are combined. However,
the accuracy of the extrapolation method relies completely on
the trial wave function. Moreover, even in the case of accurate
trial wave functions, the bias of the extrapolated estimator is
difficult to calculate. For these reasons we used the forward
walking method, which is discussed in detail in Ref. [28],
to evaluate the density profiles. This method relies on the
calculation of the asymptotic offspring of walkers coming
from the branching term to compute the exact estimator,

〈O(R)〉e = 〈�0(R)|O(R)|�0(R)〉
〈�0(R)|�0(R)〉 . (22)

The variational parameters in Eqs. (10), (14), and (16) were
determined using the linear method [29]. In this method, pa-
rameter variations are found by diagonalizing a nonsymmetric
estimator of the Hamiltonian matrix in the basis of the wave
function and its derivatives with respect to the parameters. We
also adopted the heuristic procedure of Ref. [30], which sup-
presses instabilities that arise from the nonlinear dependence
of the wave function on the variational parameters.

III. RESULTS

Comparison between cold atom systems and low-density
neutron matter is achieved by expressing energies (per par-
ticle) in units of the free Fermi gas energy, see Eq. (2),
and distances in units of k−1

F . For the cold gases systems
we keep the effective range fixed at kF re = 0.05, which is
much smaller than the interparticle spacing and the scattering
lengths involved in the simulations. The number density is
kept constant at n = k3

F /(3π2). For bulk systems this cor-
responds to n = N/L3, and for cylindrical containers n =
N/(πR2L). The interaction strengths we considered for cold
gas systems are −kF a = {0.5, 1.0, 2.0, 3.3, 5.0}, while we do
not include the −kF a = 0.5 case for neutron matter because
it is extremely dilute, and Friedel oscillations prevent any
meaningful analysis of the density profiles.

A. Energy

1. Ground-state energy

The ground-state energy per particle of the bulk systems for
several values of kF a was calculated using the pairing function
of Eq. (10), and the results are shown in Table I and also
in Fig. 3. The energy per particle of the cold atoms systems
is lower than the neutron matter systems, for the same value
of kF a, in accordance with previous simulations. In fact, our
results for cold atoms are lower than those reported in Ref. [5]
because we chose a smaller effective range, kF re = 0.05,
than the value employed by them. As for the bulk energies
comparing the two models for the neutron matter interactions,
the values obtained using the modified Poschl-Teller potential
are slightly larger than the ones using the s-wave part of AV18,
although the relative difference is 2% at most.

We used the pairing functions of Eq. (14) to calculate
the ground-state energy of the cylindrical systems for N =
{78, 80, 82, 84, 86}. Then we fitted the results to the func-
tional form of Eq. (1), and we report the parameters E cyl

0 and
λS in Table I. Ideally we would like to have E cyl

0 match the
bulk value for every interaction strength, meaning that we can
separate the ground-state energy of the fermionic systems into
a bulk component and a surface term. For both cold gases and
low-density neutron matter, and most interaction strengths,
the results are within the error bars. For the s-wave part of
the AV18 model the agreement is quite good. The relative
difference does not exceed 11%, and most values agree within
error bars. It is worth pointing out that the values of λS are
negative for these systems due to the repulsive core of the
interaction, see Fig. 2, a feature that is absent in the purely
attractive potentials employed in the other cases. For the
modified Poschl-Teller potential, the fitting procedure yielded

014001-5



MADEIRA, GANDOLFI, SCHMIDT, AND BAGNATO PHYSICAL REVIEW C 100, 014001 (2019)

TABLE I. Bulk energies per particle and the parameters E cyl
0 and λS fitted to the functional form of Eq. (1). The bulk energies and E cyl

0 are
reported in units of the free Fermi gas energy, EFG [see Eq. (2)], while λS is reported in units of EFGk−2

F .

Cold gases Neutron matter

−kF a bulk E cyl
0 λS s-wave AV18 modified Poschl-Teller

bulk E cyl
0 λS bulk E cyl

0 λS

0.5 0.8636(1) 0.90(3) 95(15)
1.0 0.7864(2) 0.79(1) 99(7) 0.814(5) 0.76(2) −78(9) 0.821(4) 0.98(9) 204(54)
2.0 0.6806(2) 0.72(4) 70(19) 0.748(2) 0.75(4) −242(10) 0.749(3) 0.70(7) 117(30)
3.3 0.5979(2) 0.66(1) 58(4) 0.667(2) 0.67(2) −365(70) 0.681(2) 0.68(5) 85(24)
5.0 0.5407(2) 0.60(1) 64(5) 0.598(2) 0.60(5) −445(80) 0.608(1) 0.61(3) 85(14)

larger errors. Also, the results for −kF a = 1 do not follow the
trend, most probably due to the diluteness of the system. In
Fig. 3 we compare the bulk energies of cold gases and neutron
matter with the corresponding values of E cyl

0 .
In Sec. II B we presented the potential interaction used

for neutrons of antiparallel spins, and we set the interaction
between particles of the same spin to zero. In doing so, we
neglected the interaction of the M = ±1 triplet states. Previ-
ous QMC simulations of bulk low-density neutron matter [5],
using a similar formalism to ours, found that, perturbatively,
corrections for the artificial attraction in the M = 0 triplet
state account for 10% of the total energy in the −kF a = 10
case. The corrections become even lower for lower densities,
such that in the range considered in this work they are of
order of a few percent. Later calculations [6] compared results
using the pure s-wave interaction with the AV4′ [31] potential,
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FIG. 3. Equation of state for cold atoms and low-density neutron
matter. The bulk energies per particle for the cold gases, closed (red)
squares, were obtained using the modified Poschl-Teller potential
with kF re = 0.05. For neutron matter, the bulk energies per particle
using the s-wave part of AV18 are denoted by closed (blue) circles,
and the model using a modified Poschl-Teller potential with ann =
−18.5 fm and rnn

e = 2.7 fm is represented by closed (cyan) triangles.
We also plot the fitted parameters E cyl

0 of Eq. (1) for cold gases and
neutron matter (s-wave part of AV18 and modified Poschl-Teller)
with open symbols: (green) squares, (magenta) circles, (black) tri-
angles, respectively. In the top x axis we plot the corresponding kF

for neutron matter.

which yielded ≈7% difference for −kF a = 10, ≈1% for
−kF a = 5, and essentially the same results for lower densi-
ties. These results in the bulk neutron matter systems justify
our approach because, besides vanishing small corrections to
the total energy as the density is lowered, one of our goals is
to calculate the vortex excitation energy, which is an energy
difference, and thus the corrections is expected to cancel.

2. Vortex excitation energy

The energy of the systems with a vortex line was calculated
using the pairing functions of Eq. (16). The excitation energy
was computed using the energy difference between those
systems and the ground state of the cylinder. The results
were averaged for N = {78, 80, 82, 84, 86}. Figure 4 shows
the excitation energy for low-density neutron matter and cold
atoms as a function of kF a.
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FIG. 4. Excitation energy per particle as a function of the inter-
action strength for both cold gases and neutron matter. The (red)
squares denote the results for cold gases, i.e., using the modified
Poschl-Teller potential with kF re = 0.05. For neutron matter, the
results using the s-wave part of AV18 are denoted by (green) circles,
and the model using a modified Poschl-Teller potential with ann =
−18.5 fm and rnn

e = 2.7 fm is represented by (blue) triangles. In
the top x axis we plot the corresponding kF for neutron matter. We
can see that the excitation energies are comparable for −kF a = 1,
however, when the density (or −kF a) increases, they start to differ.
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Although several results are within error bars, we can
see that for −kF a = 1 the vortex excitation energy for cold
gases and neutron matter (both models) is comparable. As
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FIG. 5. Density profile of the ground state as a function of the
radial coordinate ρ for N = 84 for (a) cold gases, (b) neutron matter
using the s-wave part of AV18, and (c) the modified Poschl-Teller
potential. The interaction strengths −kF a = {0.5, 1.0, 2.0, 3.3, 5.0}
correspond to the short-dashed (red) line, dashed (green) line,
dashed-dotted (blue) line, solid (magenta) line, and long-dashed
(cyan) line, respectively.

the interaction strength increases, we can clearly see that the
excitation energy is higher for cold gases systems compared
to low-density neutron matter. The results for neutron matter,
using both models, seem to be much less dependent on the
interaction strength for this density regime. As was the case in
the previous section, the errors associated with the modified
Poschl-Teller potential for neutron matter are larger than the
other two cases, however, it is still possible to see that the
results for the two neutron matter models are close.

B. Density profiles

The density profile D(ρ) was calculated averaging the
angular (ϕ) and axial (z) directions. We chose a normalization
such that ∫

V
d3rD(ρ) = 1, (23)

where the integral is over the volume V = πR2L of the
cylinder. We show our results for the ground-state density
of the cylindrical container in Fig. 5. The results for cold
gases, Fig. 5(a), follow a similar trend, with the exception
of −kF a = 5.0, the largest interaction strength considered.
Nonetheless, the Friedel oscillations are much smoother than
in the neutron matter systems, Figs. 5(b) and 5(c). The results
using the s wave of the AV18 model show a very pronounced
oscillation near ≈2.0k−1

F for −kF a = 1.0, and it is less intense
for stronger interactions.

The hard wall condition introduces a characteristic density
behavior close to it as it was discussed in Sec. II A, and as
seen in Fig. 5. We were able to separate two contributions to

 0
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FIG. 6. Particle number η a distance R from the z axis, see
Eq. (24), for the ground state and N = 84 for (a) cold gases and
(b) neutron matter using the s-wave part of AV18. The legend
conventions are the same as the ones employed in Fig. 5. The
deviations between the behavior of different interaction strengths, or
cold gases and neutron matter, are very small. Also, the differences
between the two models for the neutron-neutron interactions are so
minute that we chose to plot only one of them. An inspection of Fig. 5
reveals a characteristic behavior of the density, due to the presence
of hard walls, at ρ ≈ 6.0k−1

F . For R 
 6.0k−1
F , η � 45, meaning that

we have approximately this number of particles in the bulk portion
of the cylinder, where effects of the hard walls are mitigated.
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FIG. 7. Density profile of the vortex and ground state of cold gases and neutron matter as a function of the radial coordinate ρ for N = 84.
(a) corresponds to an interaction strength of −kF a = 1.0, and (b) to −kF a = 2.0. The cold gases vortex and ground state profiles are represented
by continuous (red) lines and short-dashed (green) lines, respectively. The results for neutron matter using the s-wave part of AV18 are plotted
with dashed (blue) lines, and long-dashed (magenta) lines, while the modified Poschl-Teller model is represented by long dashed-dotted (cyan)
lines and short dashed-dotted black lines. We also plot the results from Ref. [11] for cold gases, using dotted short dashed-dotted (orange)
lines, where we changed their normalization so that both systems have the same number of particles inside the ρ � 6.0k−1

F region.

the ground-state energy of the cylindrical systems, which we
identified as bulk and surface terms, Sec. III A 1. However,
this analysis requires that there is a sufficient number of
particles in the central region of the cylinder, away from
the walls. To this end, we define the particle number η(R) a
distance R from the z axis,

η(R) = N
∫ L

0
dz

∫ 2π

0
dϕ

∫ R

0
dρρD(ρ), (24)

such that η(R = R) = N . In Fig. 6 we plot η(R) for cold
gases and neutron matter systems using N = 84 particles,
which show essentially the same behavior, independently of
the interaction strength. Figure 5 suggests that the hard walls
affect the systems at ρ � 6.0k−1

F . As we can see in Fig. 6,
η(≈6.0k−1

F ) � 45, meaning that we have approximately this
number of particles in the bulk portion of the cylinder. For
systems with a vortex line this number is lower, ≈42. Previous
QMC simulations of bulk properties have employed N = 38
[26] and N = 40 [32], hence the number of particles we

have in the center of the cylinder is larger than in those bulk
calculations.

In Figs. 7 and 8 we plot the density profiles for −kF a =
{0.5, 1.0, 2.0, 3.3, 5.0} of the ground and vortex line states
for cold atoms and neutron matter. We compared the density
profiles of cold gases for −kF a = 1.0 and 2.0, Fig. 7, with the
Bogoliubov-de Gennes calculations of Ref. [11]. They used
a different geometry than ours, so to compare the results we
changed their normalization to match our number of particles
in the ρ � 6.0k−1

F region of the cylinder. Their results are
closer to ours in the −kF a = 1.0 case, as expected. In the
low-density neutron matter case, we compared our results
for −kF a = 3.3, 5.0 with the mean-field results of Ref. [9],
see Fig. 8. In a similar fashion to what we did in the cold
atoms case, we matched the normalizations to ensure the same
number of particles in the ρ � 24.5 fm region.

A direct comparison of the density profiles for cold gases
and neutron matter, or the two models we used for neutron
matter, is difficult due to the different position of the os-
cillations in the profiles. However, a quantity of interest in
both rotating superfluid cold gases systems and neutron matter

FIG. 8. Density profile of the vortex and ground state of cold gases and neutron matter as a function of the radial coordinate ρ for N = 84.
(a) corresponds to an interaction strength of −kF a = 3.3, and (b) to −kF a = 5.0. The legend conventions for our results are the same as the
ones employed in Fig. 7. We compare our results with Ref. [9] for neutron matter, short dashed-dotted (orange) lines, where we changed their
normalization so that both systems have the same number of particles inside the ρ � 24.5 fm region.
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is the density depletion at the vortex core, which depends
only on the density near the origin. In the BCS limit the
density should be close to the ground-state one, while in
the BEC regime the core should be completely depleted. We
found that, in the cold gases case, the ratio of the density at
ρ = 0 for the system with a vortex line and the ground state
of the cylindrical container decreases from 72% (−kF a =
0.5) to 53% (−kF a = 5.0), with the values 71%, 62%, and
59% for −kF a = 1.0, 2.0, 3.3, respectively. The mean-field
calculation of Ref. [11] finds a much higher density close to
the BCS limit, 94% at −kF a = 1.0. However, their result for
−kF a = 2.0 is comparable with ours, 60%. For low-density
neutron matter using the modified Poschl-Teller potential, we
found a density at the core of approximately 75%, 71%, 76%,
and 78% of the ground-state density for −kF a = 1.0, 2.0,3.3,
and 5.0, respectively. The s-wave part of AV18 model for
neutron matter yields 75% of the ground-state density for
−kF a = 1.0, 2.0. For −kF a = 5.0 this ratio is 65%, close to
the value of 60% of Ref. [9]. For −kF a = 3.3 we see a small
depletion, but that is an artifact of the density oscillations near
the origin, so we chose not to include this interaction strength
in the density at the core discussion.

IV. SUMMARY AND OUTLOOK

In this work we compare properties of vortices in low-
density neutron matter and cold atomic dilute Fermi gases.
Our goal is not to show that they are identical, but rather to
draw a parallel between their properties such that measuring
quantities in cold Fermi gases can help to constrain properties
of vortices in neutron matter, as previously done for the
ground state [3].

Although the ground-state energies per particle of the bulk
systems were lower for cold gases than for neutron matter,
for a given kF a, the difference becomes smaller as we move
toward more dilute systems. This was the main motivation to
expect that vortices in the low-density regime show a duality
between cold gases and neutron matter. The excitation energy
for the formation of a vortex line is comparable when the
density is low enough. However, it is higher for cold gases
than in neutron matter, so that must be accounted for when
comparing the two systems.

We chose to analyze the density depletion at the vortex
core, because it only depends on the density behavior close to
the axis of the cylinder, away from the hard walls. Again, we
found an agreement between the values for very low densities,
although the density at the vortex core tends to remain close to
75% of the ground-state density for neutron matter, whereas
we can clearly see it dropping from 72%–53% for cold gases.

We found an excellent agreement when comparing the two
models we employed for the neutron-neutron interactions. It
seems remarkable that two potentials of completely different
shapes, see Fig. 2, give us the same physical properties.
However, the fact that they have the same scattering length
and effective range is the key feature. This indicates that
the low-energy limit of Eq. (3) is also valid for low-density
neutron matter.

Our results can help to relate cold atom experiments with
properties of low-density neutron matter. The extraction of

bulk properties from experiments is extremely difficult when
they employ harmonic traps. However, boxlike traps [33] have
been successfully implemented in Bose systems, and they can
help pave the way to determining the equation of state for
cold gases. That, in turn, could be contrasted with Fig. 3 to
constraint the low-density neutron matter equation of state.
Vortices in fermionic gases on both BCS and BEC sides of
the crossover, and also at unitarity, have been observed [34].

Our approach is valid for the low-density regime of neutron
matter. However, it would be interesting to investigate vortex
properties at higher densities. In Sec. III A 1 we discussed
possible corrections to account for our choice of neutron-
neutron interaction potential. We showed that they would
be small in the bulk case, thus justifying our approach, but
they increase with the density. Instead of carefully including
corrections, it seems more promising to consider realistic
nuclear Hamiltonians. There are calculations using auxiliary-
field diffusion Monte Carlo (AFDMC) [35,36] where bulk
properties of neutron matter are calculated, at higher densities
than in this present work, using realistic nuclear Hamiltonians.
A possible extension of our work is to generalize the wave
functions we presented by including spin correlations, and
perform AFDMC simulations. The comparison of the results
using both methods should enlighten how important spin
correlations are when describing low-density neutron matter.
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APPENDIX: EQUATION (5)

The two-body problem of three-dimensional scattering
with the modified Poschl-Teller potential, Eq. (4), can be
solved analytically. At low energies, we have an expression
for the phase shift [37],

lim
q→0

δ0

2q
= 1

λ
− π

2
cot

(
πλ

2

)
+

∞∑
n=1

(
1

λ + n
− 1

n

)

= 1

λ
− π

2
cot

(
πλ

2

)
+

∞∑
n=1

−λ

n(λ + n)
, (A1)

014001-9



MADEIRA, GANDOLFI, SCHMIDT, AND BAGNATO PHYSICAL REVIEW C 100, 014001 (2019)

where q = k/(2μ). We can use the following relations [38],


(1 + z) = −γ +
∞∑

n=1

z

n(n + z)
(z �= −1,−2, . . .),


(1 + z) = 
(z) + 1

z
, (A2)

to cast the Eq. (A1) in the form

lim
q→0

δ0

2q
= −π

2
cot

(
πλ

2

)
− γ − 
(λ). (A3)

Approximating δ0 ≈ −ka yields Eq. (5).

[1] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys.
80, 1215 (2008).

[2] J. Carlson, S. Gandolfi, and A. Gezerlis, Prog. Theor. Exp. Phys.
2012, 01A209 (2012).

[3] S. Gandolfi, A. Gezerlis, and J. Carlson, Ann. Rev. 65, 303
(2015).

[4] G. A. Baker, Int. J. Mod. Phys. B 15, 1314 (2001).
[5] A. Gezerlis and J. Carlson, Phys. Rev. C 77, 032801(R) (2008).
[6] A. Gezerlis and J. Carlson, Phys. Rev. C 81, 025803 (2010).
[7] F. V. De Blasio and O. Elgarøy, Phys. Rev. Lett. 82, 1815

(1999).
[8] Ø. Elgarøy and F. V. De Blasio, A&A 370, 939 (2001).
[9] Y. Yu and A. Bulgac, Phys. Rev. Lett. 90, 161101 (2003).

[10] A. Bulgac and Y. Yu, Phys. Rev. Lett. 91, 190404 (2003).
[11] R. Sensarma, M. Randeria, and T.-L. Ho, Phys. Rev. Lett. 96,

090403 (2006).
[12] S. Simonucci, P. Pieri, and G. C. Strinati, Phys. Rev. B 87,

214507 (2013).
[13] M. Sadd, G. V. Chester, and L. Reatto, Phys. Rev. Lett. 79, 2490

(1997).
[14] S. Y. Chang and G. F. Bertsch, Phys. Rev. A 76, 021603(R)

(2007).
[15] S. A. Vitiello, L. Reatto, G. V. Chester, and M. H. Kalos,

Phys. Rev. B 54, 1205 (1996).
[16] L. Madeira, S. A. Vitiello, S. Gandolfi, and K. E. Schmidt,

Phys. Rev. A 93, 043604 (2016).
[17] G. Ortiz and D. M. Ceperley, Phys. Rev. Lett. 75, 4642 (1995).
[18] S. Giorgini, J. Boronat, and J. Casulleras, Phys. Rev. Lett. 77,

2754 (1996).
[19] L. Madeira, S. Gandolfi, and K. E. Schmidt, Phys. Rev. A 95,

053603 (2017).
[20] P.-M. König, R. Roth, and K. R. Mecke, Phys. Rev. Lett. 93,

160601 (2004).
[21] J. R. McKenney, C. R. Shill, W. J. Porter, and J. E. Drut, J. Phys.

B: At., Mol. Opt. Phys. 49, 225001 (2016).

[22] H. A. Bethe, Phys. Rev. 76, 38 (1949).
[23] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C

51, 38 (1995).
[24] J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schiavilla,

K. E. Schmidt, and R. B. Wiringa, Rev. Mod. Phys. 87, 1067
(2015).

[25] J. P. Bouchaud, A. Georges, and C. Lhuillier, J. Phys. France
49, 553 (1988).

[26] J. Carlson, S.-Y. Chang, V. R. Pandharipande, and K. E.
Schmidt, Phys. Rev. Lett. 91, 050401 (2003).

[27] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal,
Rev. Mod. Phys. 73, 33 (2001).

[28] J. Casulleras and J. Boronat, Phys. Rev. B 52, 3654 (1995).
[29] J. Toulouse and C. J. Umrigar, J. Chem. Phys. 126, 084102

(2007).
[30] L. Contessi, A. Lovato, F. Pederiva, A. Roggero, J. Kirscher,

and U. van Kolck, Phys. Lett. B 772, 839 (2017).
[31] R. B. Wiringa and S. C. Pieper, Phys. Rev. Lett. 89, 182501

(2002).
[32] M. M. Forbes, S. Gandolfi, and A. Gezerlis, Phys. Rev. Lett.

106, 235303 (2011).
[33] A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and

Z. Hadzibabic, Phys. Rev. Lett. 110, 200406 (2013).
[34] M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H.

Schunck, and W. Ketterle, Nature (London) 435, 1047 (2005).
[35] S. Gandolfi, A. Y. Illarionov, S. Fantoni, F. Pederiva, and K. E.

Schmidt, Phys. Rev. Lett. 101, 132501 (2008).
[36] S. Gandolfi, A. Y. Illarionov, F. Pederiva, K. E. Schmidt, and S.

Fantoni, Phys. Rev. C 80, 045802 (2009).
[37] S. Flugge, Practical Quantum Mechanics, Classics in Mathe-

matics (Springer, Berlin, 1994).
[38] M. Abramowitz and I. Stegun, Handbook of Mathematical

Functions: With Formulas, Graphs, and Mathematical Ta-
bles, Applied mathematics series (Dover Publications, Mineola,
1964).

014001-10

https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1093/ptep/pts031
https://doi.org/10.1093/ptep/pts031
https://doi.org/10.1093/ptep/pts031
https://doi.org/10.1093/ptep/pts031
https://doi.org/10.1146/annurev-nucl-102014-021957
https://doi.org/10.1146/annurev-nucl-102014-021957
https://doi.org/10.1146/annurev-nucl-102014-021957
https://doi.org/10.1146/annurev-nucl-102014-021957
https://doi.org/10.1142/S0217979201005775
https://doi.org/10.1142/S0217979201005775
https://doi.org/10.1142/S0217979201005775
https://doi.org/10.1142/S0217979201005775
https://doi.org/10.1103/PhysRevC.77.032801
https://doi.org/10.1103/PhysRevC.77.032801
https://doi.org/10.1103/PhysRevC.77.032801
https://doi.org/10.1103/PhysRevC.77.032801
https://doi.org/10.1103/PhysRevC.81.025803
https://doi.org/10.1103/PhysRevC.81.025803
https://doi.org/10.1103/PhysRevC.81.025803
https://doi.org/10.1103/PhysRevC.81.025803
https://doi.org/10.1103/PhysRevLett.82.1815
https://doi.org/10.1103/PhysRevLett.82.1815
https://doi.org/10.1103/PhysRevLett.82.1815
https://doi.org/10.1103/PhysRevLett.82.1815
https://doi.org/10.1051/0004-6361:20010160
https://doi.org/10.1051/0004-6361:20010160
https://doi.org/10.1051/0004-6361:20010160
https://doi.org/10.1051/0004-6361:20010160
https://doi.org/10.1103/PhysRevLett.90.161101
https://doi.org/10.1103/PhysRevLett.90.161101
https://doi.org/10.1103/PhysRevLett.90.161101
https://doi.org/10.1103/PhysRevLett.90.161101
https://doi.org/10.1103/PhysRevLett.91.190404
https://doi.org/10.1103/PhysRevLett.91.190404
https://doi.org/10.1103/PhysRevLett.91.190404
https://doi.org/10.1103/PhysRevLett.91.190404
https://doi.org/10.1103/PhysRevLett.96.090403
https://doi.org/10.1103/PhysRevLett.96.090403
https://doi.org/10.1103/PhysRevLett.96.090403
https://doi.org/10.1103/PhysRevLett.96.090403
https://doi.org/10.1103/PhysRevB.87.214507
https://doi.org/10.1103/PhysRevB.87.214507
https://doi.org/10.1103/PhysRevB.87.214507
https://doi.org/10.1103/PhysRevB.87.214507
https://doi.org/10.1103/PhysRevLett.79.2490
https://doi.org/10.1103/PhysRevLett.79.2490
https://doi.org/10.1103/PhysRevLett.79.2490
https://doi.org/10.1103/PhysRevLett.79.2490
https://doi.org/10.1103/PhysRevA.76.021603
https://doi.org/10.1103/PhysRevA.76.021603
https://doi.org/10.1103/PhysRevA.76.021603
https://doi.org/10.1103/PhysRevA.76.021603
https://doi.org/10.1103/PhysRevB.54.1205
https://doi.org/10.1103/PhysRevB.54.1205
https://doi.org/10.1103/PhysRevB.54.1205
https://doi.org/10.1103/PhysRevB.54.1205
https://doi.org/10.1103/PhysRevA.93.043604
https://doi.org/10.1103/PhysRevA.93.043604
https://doi.org/10.1103/PhysRevA.93.043604
https://doi.org/10.1103/PhysRevA.93.043604
https://doi.org/10.1103/PhysRevLett.75.4642
https://doi.org/10.1103/PhysRevLett.75.4642
https://doi.org/10.1103/PhysRevLett.75.4642
https://doi.org/10.1103/PhysRevLett.75.4642
https://doi.org/10.1103/PhysRevLett.77.2754
https://doi.org/10.1103/PhysRevLett.77.2754
https://doi.org/10.1103/PhysRevLett.77.2754
https://doi.org/10.1103/PhysRevLett.77.2754
https://doi.org/10.1103/PhysRevA.95.053603
https://doi.org/10.1103/PhysRevA.95.053603
https://doi.org/10.1103/PhysRevA.95.053603
https://doi.org/10.1103/PhysRevA.95.053603
https://doi.org/10.1103/PhysRevLett.93.160601
https://doi.org/10.1103/PhysRevLett.93.160601
https://doi.org/10.1103/PhysRevLett.93.160601
https://doi.org/10.1103/PhysRevLett.93.160601
https://doi.org/10.1088/0953-4075/49/22/225001
https://doi.org/10.1088/0953-4075/49/22/225001
https://doi.org/10.1088/0953-4075/49/22/225001
https://doi.org/10.1088/0953-4075/49/22/225001
https://doi.org/10.1103/PhysRev.76.38
https://doi.org/10.1103/PhysRev.76.38
https://doi.org/10.1103/PhysRev.76.38
https://doi.org/10.1103/PhysRev.76.38
https://doi.org/10.1103/PhysRevC.51.38
https://doi.org/10.1103/PhysRevC.51.38
https://doi.org/10.1103/PhysRevC.51.38
https://doi.org/10.1103/PhysRevC.51.38
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1051/jphys:01988004904055300
https://doi.org/10.1051/jphys:01988004904055300
https://doi.org/10.1051/jphys:01988004904055300
https://doi.org/10.1051/jphys:01988004904055300
https://doi.org/10.1103/PhysRevLett.91.050401
https://doi.org/10.1103/PhysRevLett.91.050401
https://doi.org/10.1103/PhysRevLett.91.050401
https://doi.org/10.1103/PhysRevLett.91.050401
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1103/PhysRevB.52.3654
https://doi.org/10.1103/PhysRevB.52.3654
https://doi.org/10.1103/PhysRevB.52.3654
https://doi.org/10.1103/PhysRevB.52.3654
https://doi.org/10.1063/1.2437215
https://doi.org/10.1063/1.2437215
https://doi.org/10.1063/1.2437215
https://doi.org/10.1063/1.2437215
https://doi.org/10.1016/j.physletb.2017.07.048
https://doi.org/10.1016/j.physletb.2017.07.048
https://doi.org/10.1016/j.physletb.2017.07.048
https://doi.org/10.1016/j.physletb.2017.07.048
https://doi.org/10.1103/PhysRevLett.89.182501
https://doi.org/10.1103/PhysRevLett.89.182501
https://doi.org/10.1103/PhysRevLett.89.182501
https://doi.org/10.1103/PhysRevLett.89.182501
https://doi.org/10.1103/PhysRevLett.106.235303
https://doi.org/10.1103/PhysRevLett.106.235303
https://doi.org/10.1103/PhysRevLett.106.235303
https://doi.org/10.1103/PhysRevLett.106.235303
https://doi.org/10.1103/PhysRevLett.110.200406
https://doi.org/10.1103/PhysRevLett.110.200406
https://doi.org/10.1103/PhysRevLett.110.200406
https://doi.org/10.1103/PhysRevLett.110.200406
https://doi.org/10.1038/nature03858
https://doi.org/10.1038/nature03858
https://doi.org/10.1038/nature03858
https://doi.org/10.1038/nature03858
https://doi.org/10.1103/PhysRevLett.101.132501
https://doi.org/10.1103/PhysRevLett.101.132501
https://doi.org/10.1103/PhysRevLett.101.132501
https://doi.org/10.1103/PhysRevLett.101.132501
https://doi.org/10.1103/PhysRevC.80.045802
https://doi.org/10.1103/PhysRevC.80.045802
https://doi.org/10.1103/PhysRevC.80.045802
https://doi.org/10.1103/PhysRevC.80.045802

