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Electromagnetic properties of the d∗(2380) hexaquark
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Experiments with intense photon and electron beams have the potential to provide access to nontrivial
properties of the recently discovered d∗(2380) hexaquark including its size, structure, magnetic moment, and
quadrupole and octupole deformations. In this paper we investigate the sensitivity of ongoing and planned
experiments to various properties of the d∗(2380), employing models based on both constituent quark and pion
cloud frameworks. Our calculations indicate that for photoinduced reactions on the deuteron, the d∗(2380) is
predominantly produced from the D-wave component of the deuteron. We confirm earlier findings that the
intrinsic quadrupole deformation of the d∗(2380) should be small. We also demonstrate an ability to extract
the d∗(2380) magnetic moment and put constraints on the d∗(2380) M3/E2 ratio.
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The properties of the d∗(2380) hexaquark have been es-
tablished quite rigorously in recent years following its ob-
servation in proton-neutron scattering and pionic fusion re-
actions [1–9]. It has a mass of Md∗ = 2380 MeV, vacuum
width � = 70 MeV, and quantum numbers I (JP ) = 0(3+). It
therefore provides a new bosonic, isoscalar configuration in
the light-quark sector. The internal structure of the d∗(2380)
is quite complicated and to some extent resembles a deuteron
in which the nucleons are substituted with �’s, where �

refers to the lowest lying excited state of the nucleon. The
wave function in such a case is given by |�d∗ 〉 = |6q〉 +
|��S-wave〉 + |��D-wave〉. Each of the components in the
wave function has its own spatial extension [10] with the
|6q〉 configuration the most compact one: Rd∗ (|6q〉) ≈ 0.5 fm
[Rd∗ (|��S-wave〉) ≈ 0.8 fm and Rd∗ (|��D-wave〉) ≈ 1.4 fm].
The |6q〉 compact configuration of the d∗(2380) is predicted
to be dominant (≈69%) while the more extended D-wave
‘molecular” component is of order 2%.

In a very recent work the possibility of d∗(2380) formation
within neutron stars was explored in relativistic mean-field
calculations where the d∗(2380) was introduced as a diffuse
noninteracting and noncondensing gas alongside the standard
(nucleonic and leptonic) constituents of neutron stars. By
solving Tolman-Oppenheimer-Volkoff (TOV) equations using
the resulting equation of state, a significant d∗ formation
was observed: up to 20% of the matter in the center of
heavy stars was predicted to dwell as d∗. The resulting mass-
radius predictions for neutron stars with this d∗ degree of
freedom is currently one of the few that can simultaneously
give agreement with both the mass-radius constraint of the
recent merger event observed by the Laser Interferometer
Gravitational-Wave Observatory (LIGO) [11], while giving
agreement with the maximum observed (and inferred from
gravitational-wave data) neutron star mass of ≈2.17M� [12].
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The influence of the d∗(2380) electromagnetic properties
on neutron stars, such as the contribution of the d∗(2380)
magnetic moment to formation of the neutron star magnetic
field, makes the question of the d∗(2380) size and struc-
ture important to astrophysics as well as nuclear physics.
It was recently shown that the d∗(2380) can be produced
copiously using photon beams of energy Eγ ≈ 570 MeV from
a deuteron target [13–15]. Due to its high spin, JP

d∗ = 3+,
the d∗(2380) requires the contribution of higher multipoles
(E2, M3, or E4) to be photoproduced from the deuteron
[I (JP ) = 0(1+)]. The ratios of the strengths of different multi-
poles in EM transitions are sensitive to the shape and magnetic
moments, as already evidenced for the �+, where it was
possible to extract the intrinsic quadrupole deformation of the
� resonance from ratios of the E2 and M1 multipoles [16,17].
In this work we will employ such methodologies to investigate
the sensitivities that can be achieved for the new d∗(2380).
Our calculations are based on geometrical arguments only,
without any interparticle interaction. The aim of the current
Rapid Communication is to provide rough estimates of some
important properties of d∗ planned to be measured and thus to
motivate the development ofmore refined theoretical models.

The paper is structured as follows. We first outline the
theoretical framework used to describe the N� transition in
the pion cloud model and then adapt this to the case of the d∗.
We also describe the extraction of the d∗ electric quadrupole
and magnetic octupole moments as well as transition electro-
magnetic moments.

The � in a pion-cloud model. We discuss the earlier
work regarding the � with a view to extending this to the
d∗. It was shown in Ref. [16] that the wave function of
� resonance can be considered as a two-component sum:
|�〉 = α′|�′〉 + β ′|Nπ〉, where �′ is a true compact three-
quark configuration and Nπ is the component deriving from
a nucleon plus pion cloud. The coefficient α′2 gives the
probability to find the � in a three-quark state, while β ′2
corresponds to the probability for the � to be in a pion-cloud
mode. The coefficients are normalized to unity α′2 + β ′2 = 1.
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To agree with existing experimental data the coefficient β ′ is
determined to be −0.52 [16]. The quadrupole moment of the
� resonance can be calculated in this model as 〈�∗

�|Q̂π |��〉
where Q̂π is a quadrupole operator of the form

Q̂π = eπ

√
16π

5
r2
πY 2

0 (r̂π ), (1)

in which eπ is the pion charge operator divided by the unit
charge e, and rπ is the distance between the center of the
quark core and the pion. The wave function for the �+ can
be written in the form

|�+ ↑〉 = α′|�+′ ↑〉 + β ′ 1
3

(
2
∣∣p′ ↑ π0Y 1

0

〉 + √
2
∣∣p′ ↓ π0Y 1

1

〉
+

√
2
∣∣n′ ↑ π+Y 1

0

〉 + ∣∣n′ ↓ π+Y 1
1

〉)
. (2)

All coefficients in Eq. (2) are the simple spin-isospin Clebsch-
Gordan couplings. Since both neutral pions (zero charge) and
the spherically symmetric quark core do not contribute to the
quadrupole deformation, one can simplify the wave function
by omitting the irrelevant terms:

|�+ ↑〉 = β ′ 1
3

(√
2
∣∣n′ ↑ π+Y 1

0

〉 + ∣∣n′ ↓ π+Y 1
1

〉)
(3)

From this, the spectroscopic quadrupole moment of the � can
be derived:

Q�+ = − 2

15
β ′2r2

π . (4)

The proton to � transition quadrupole moment can be calcu-
lated in a similar manner 〈�∗

p|Q̂π |��〉, giving a similar result:

Q�+ = Qp→�+ . (5)

Here the probability of the proton to be in the pion-cloud mode
is assumed to be β = 0.26 and rπ = 1.77 fm, determined from
the experimental data [16].

The d∗(2380) in a pion cloud model. One can apply the
same formalism to calculate the d∗(2380) quadrupole defor-
mation under a pure geometrical approach. For the case of
the d∗ we assume a “Deltaron” structure consisting of two �s
with wave function as outlined earlier. In this noninteracting
case the wave function of the d∗(2380) can be written as

|d∗〉 = |��〉 = (α′|�′〉 + β ′|N ′π〉)(α′|�′〉 + β ′|N ′π〉), (6)

creating three major structures in the wave function:

|d∗〉 = A + B + C, (7)

where

A = α′2|�′�′〉, B = α′β ′|�′N ′π〉, C = β ′2|N ′N ′ππ〉. (8)

For the subsequent analysis we will only consider configura-
tions with two pions in isopin I = 0 state and two nucleons
in I = 0 state, the dominant configurations which encapsulate
80% of the available parameter space [9].1 It is interesting to

1The case with two pions in the I = 1 state and two nucleons in the
I = 1, like ppπ−π 0 and nnπ+π 0, are very interesting since isospin
selection rules also imply lππ = 1 and lNN = 1.

note that this primitive model gives rise to all the major d∗
structures proposed to date. The first term, A, can be related
to a six-quark configuration of the d∗. However, it should be
noted that this configuration is only one out of five possible 6q
configurations proposed [18,19]. The second term resembles
a “pion-assisted” dibaryon configuration as proposed by Gal
et al. [20]. The third term can be further decomposed into
two cases: C1 two pions in a relative S-wave, pion pair in a
relative D wave to the S = 1 nuclear core, and C2 two pions
in a relative D-wave, pion pair in a relative S wave to the S = 1
nuclear core. The C1 case resembles the σ -cloud model of the
d∗ by Kukulin et al. [21]. The C2 term is analogous to the
D-wave �� configuration [22].

To calculate the quadrupole deformation of the d∗ we will
use the same ansatz as for the �: 〈�∗

d∗ |Q̂π |�d∗ 〉. Considering
the contributions to the d∗ wave function [Eqs. (7) and (8)],
the A term is spherically symmetric, hence does not give a
contribution to the quadrupole moment. The B term represents
the quadrupole moment of a single �+ multiplied by the α′2
factor:

〈B|Q̂π |B〉 = α′2Q�+ = (1 − β ′2)Q�+ ≈ 0.73Q�+ . (9)

It can be seen that the N�π term is responsible for the non-
sphericity of the d∗, producing a small oblate shape similar
in character to that of a single �. Recent experiments have set
limits on a possible d∗ → NNπ decay branch and indicate the
N�π term in the d∗ wave function is likely to be very small,
if it exists at all [23]. The resulting suppression of the B term
would further reduce the d∗ quadrupole deformation.

The C1 term (D-wave σ cloud) would not contribute to the
quadrupole moment due to the zero net charge of the pion pair.
To calculate the C2 term we adopt a relative coordinate system
in which r̂π is substituted by r̂π−π , the separation between
the two pions. The rπ is related to rπ−π by rπ−π = √

2rπ , the
relative distance between the pions instead of the pion-core
distance. Similarly eπ would be transformed to 2: (eπ+ − eπ− ).
To simplify the integration we employ the spherical harmonics
addition theorem, decomposing Y 2

0 (r̂π−π ) into the product
Y 2

m (r̂π1 )Y 2
−m(−r̂π2 ).

Y 2
0 (r̂π−π ) =

√
5

16π

2∑
m=−2

(−1)mY 2
m

(
r̂π1

)
Y 2

−m

( − r̂π2

)
. (10)

The few nonzero elements in these calculations are shown
together with their resulting weights below:

(a)
〈
Y 1

1 Y 1
−1

∣∣Y 2
0

∣∣Y 1
1 Y 1

−1

〉
:

−1

16
√

5π3
,

(b)
〈
Y 1

0 Y 1
0

∣∣Y 2
0

∣∣Y 1
0 Y 1

0

〉
:

−1

4
√

5π3
,

(c)
〈
Y 1

1 Y 1
0

∣∣Y 2
0

∣∣Y 1
1 Y 1

0

〉
:

1

8
√

5π3
,

(d)
〈
Y 1

1 Y 1
1

∣∣Y 2
0

∣∣Y 1
1 Y 1

1

〉
:

1

16
√

5π3
. (11)

Summing these contributions gives

〈C|Q̂π |C〉 = −0.52Q�+ . (12)
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FIG. 1. d∗(2380) quadrupole deformation produced by (b) N�π (B term), (c) double-pionic cloud (C term), and (a) the total effect.

The double-pion cloud produces a prolate quadrupole de-
formation, similar to that observed for the case of the nucleon.
Note that the B and C terms have opposite signs. Combining
all terms and taking Q�+ = 0.043 e fm2 from Ref. [24],2 one
gets Qd∗ ∼ 0.21Q�+ = 0.009 e fm2 with a magnitude mainly
arising from the B-C term cancellations. It should be noted
that as discussed earlier, experimental decay studies suggest a
small contribution from the B term (N�π ) to the d∗ wave
function. With this assumption the quadrupole moment of
the d∗ might be smaller or even change the sign. There is
a calculation for the d∗ quadrupole deformation from the
Beijing group [25]. In their case the main contribution to the
d∗ quadrupole moment comes from the interference between
the S-wave �� configuration and the small D-wave ��

component of the d∗ wave function. In such an approach
the d∗ should have a prolate shape with Qd∗ = 0.025 e fm2,
similar in magnitude and sign to the result derived here from
the C term alone.

In Fig. 1, the individual shapes of the B and C terms and
the resulting distribution are plotted.

Calculation of the transition quadrupole moment. To cal-
culate the E2(γ d → d∗) transition probability we need to
calculate the Qd→d∗ quadrupole transition moment Qd→d∗ =
〈�∗

d |Q̂|�d∗ 〉. Before tackling the complicated d → d∗ case,
we first consider the deuteron itself. The wave function of the
deuteron can be written as

|�d〉 = α
∣∣�S

d

〉 + β
∣∣�D

d

〉
, α2 + β2 = 1. (13)

Here |�S
d 〉 is the S-wave component of pn inside the deuteron

and |�D
d 〉 is the D wave. The D-wave probability in the

deuteron is small, with PD = β2 ≈ 4%. To calculate the
deuteron quadrupole moment we need to fold the quadrupole
operator into the deuteron wave functions Qd = 〈�∗

d |Q̂|�d〉.
Since Q̂ ∼ Y 2

0 then it follows that 〈(�S
d )∗|Q̂|�S

d 〉 = 0 due to
the sphericity of the S-wave component. The 〈(�D

d )∗|Q̂|�D
d 〉

term would be suppressed by the low PD probability in

2We used Q�+ = −0.043 e fm2 from Ref. [24] because it is
closer to the experimentally determined value, instead of Q�+ =
−0.113 e fm2 from Ref. [17], calculated within the pion cloud for-
malism.

the wave function, so the main contribution to the deuteron
quadrupole moment arises from the 〈(�D

d )∗|Q̂|�S
d 〉 term.

It should be noted that the nucleon has a small intrinsic
quadrupole deformation [16], as the S-wave component is not
fully spherical. However, this is a small effect compared to the
contributions calculated here and is neglected.

The S-wave part of the d∗ is assumed to be essentially
spherical, as also assumed in calculations of the deuteron.
Therefore the dominant term contributing to the transition
quadrupole moment, and therefore the E2 transition probabil-
ity, is 〈(�D

d )∗|Q̂|�d∗ 〉. The d∗ is excited from the D-wave part
of the deuteron only. The deuteron to d∗ transition quadrupole
moment can then be written as

Qd→d∗ = Qd
〈RdD |Rd∗ 〉
〈RdD |RdS 〉 , (14)

where RdS and RdD are the radial parts of a deuteron S-wave
and D-wave wave function, and Rd∗ is a radial part of the
d∗ wave function. By measuring the transition quadrupole
moment we directly measure the d∗ compactness in terms
of the deuteron size. Therefore the strength of d∗ production
via an E2 transition, which can be extracted in photoproduc-
tion experiments using double-polarization measurements in
which photon and deuteron spins are aligned, has the potential
to provide measurement of the d∗ compactness. Taking the
known deuteron wave function and combining it with the
d∗(��) wave function from Ref. [25] one can evaluate

〈RdD |Rd∗ 〉
〈RdD |RdS 〉 ≈ 0.15

0.22
≈ 0.7; Qd→d∗ ≈ 0.20 e fm2. (15)

Note that neither the S-wave or D-wave part of deuteron can
be excited directly into the |6q〉 part of the d∗ (one cannot
transfer two color bags into one with a colorless photon), so
only the �� part will be relevant to the d∗ production. If the
�� part is indeed 1/3 of the d∗ wave function, as predicted
in Ref. [10], then the transition quadrupole moment would be
further suppressed by this factor.

Octupole magnetic moment. As shown in Ref. [26] the
octupole magnetic moment can be evaluated within a pion
cloud model using the octupole moment operator


̂ = eπ

√
16π

5
r2
πY 2

0 (r̂π )μ̂τN
z σ N

z = Q̂μ̂. (16)
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Here the quadrupole operator acts on a pion cloud and the
magnetic moment operator acts on the core. The quadrupole
moment has been calculated in the previous discussion, so it
is possible to calculate the magnetic moment of the d∗ in a
simple quark model: The d∗ wave function on a quark level
can be written as

|d∗〉 = |u ↑ u ↑ u ↑ d ↑ d ↑ d ↑〉. (17)

Therefore the magnetic moment of the d∗ can be calculated as

μd∗ = 3μu + 3μd , μu = 2

3

eh̄

2Mqc
, μd = −1

3

eh̄

2Mqc
,

with Mq = MN/3, μu = 2μN , μd = −2μN ,

μd∗ = 3μN ∼ μp. (18)

To calculate the d∗ octupole moment we also need to evaluate
the magnetic moment of a deuteron core and a �N core
(the C and B terms in the quadrupole moment calculations,
respectively). The “deuteron core” has only a deuteron S-wave
component, so its magnetic moment would be μC-term = μp +
μn = μN . For the B term we have μB-term = μ�0 + μn =
μn = −2μN . The double-pion cloud and the N�π terms
have opposite signs. In quadrupole moment they cancel each
other, but in octupole moment they add up. In ultimate
situation we can have zero quadrupole moment and large
octupole moment. Also the octupole moment of the d∗ is
positive.


d∗ = (
QC-term

d∗ − 2QB-term
d∗

)
μN

∼ −1.98Q�+μN = 0.0089 e fm3. (19)

In the work of Ref. [25] the octupole moment is calculated
to be 
d∗ = −0.00567 e fm3, the opposite sign and smaller
magnitude. However, it should be noted that their magnetic
moment is about twice as large μd∗ = 7.6μN , so having large
magnetic moment and a C term only, one can reproduce
the result of Ref. [25]. The estimation of magnetic octupole
moment magnitude is important for the feasibility studies
of upcoming experiments at photon beam facilities. While
experimental determination of the 
d∗ might be challenging
with rather poor accuracy of the magnitude determination.
The 
d∗ sign evaluation should be straightforward.

Transition octupole magnetic moment. The transition oc-
tupole moment can be calculated the same way as the tran-
sition quadrupole moment. The argument about the exclusive
deuteron D-wave contribution holds also for this case. The
D-wave part of the deuteron wave function contributes to
the magnetic moment in two ways: from the spin of the
constituents and from the orbital motion of the charged proton
μD-wave

d = − 3
2 (μp + μn − 1/2). The orbital part is irrelevant

to our calculations3 and the spin part has opposite sign due to
the anti-alignment of nucleon and deuteron spins in the case of
the D-wave component. Since we consider the deuteron to d∗
transition for the following spin state |Sd = 1, Sz

d = +1〉 →

3It gives rise to the structure 〈Y 2
0 |Y 1

0 |Y 0
0 〉 = 0.

|Sd∗ = 3, Sz
d∗ = +1〉 we need to reevaluate the magnetic mo-

ment for another d∗ spin state

|d∗〉(S = 3, Sz = 1) = 1/3(|u ↓ u ↓ u ↑ d ↑ d ↑ d ↑〉
+|u ↑ u ↑ u ↓ d ↓ d ↑ d ↑〉
+|u ↑ u ↑ u ↑ d ↑ d ↓ d ↓〉), (20)

μd∗ (Sz = 1) = 1/3(−μu + 3μd + μu + μd + 3μu − μd )

= μu + μd = μN . (21)

The transition moment can be roughly evaluated as


d→d∗ = −Qd→d∗
√

(μp + μn)μ∗
d (Sz = 1) ∼ −Qd→d∗μN

= −0.021 e fm3. (22)

Double-polarized photoproduction measurements with a
tensor polarized deuteron target should be an ideal tool to
access the d∗ magnetic octupole transition moment and the
extraction of the d∗ magnetic moment. Such a target is
planned to be used at the CEBAF large acceptance spec-
trometer (CLAS) detector at the Thomas Jefferson National
Accelerator Facility in the near future. The experiments at
CLAS are planned to be done with an electron beam, allowing
the potential extraction of the magnetic octupole form factor
and not just GM3(0).

The M3/E2 ratio. It was demonstrated with � photoexci-
tation that the ratio of multipole transitions can be calculated
and measured more precisely than the transitions themselves.
For the case of the p → � transition, the E2/M1 ratio can be
accessed:

E2

M1
(p → �) = MNωγ Qp→�

6μp→�

≈ 3%. (23)

It is interesting to note that one of the first attempts to
calculate the p → � E2/M1 ratio was done in the 1960’s
using Weisskopf widths from nuclear physics and it gave
remarkable agreement [27].

E2

M1
(p → �) = 2.4 × 10−8R4k5

2.1 × 10−2k3
= 1.14×10−6R4k2 ≈ 3%.

(24)
Here R = 0.8 fm is the radius of the proton and k is the photon
momentum. For the M3/E2 transition the Weisskopf width
dependence would be [28]

M3

E2
(d → d∗) ∼ R4k7

R4k5
=

(
ωγ

MN

)2(
μp − 1

4

)2 8

392
≈ 5%,

(25)
in which the size term cancels. However, from nuclear physics
moments measurements we know that large deformation can
lead to sizable deviation from Weisskopf coefficients. In such
a case one needs to substitute them by a transition moment:

Bw(M3)

Bw(E2)
= 250μ2

N

144e2
≈ 1.9 × 10−2 → 
d→d∗

Qd→d∗
≈ 0.11,

(26)

M3

E2
(d → d∗) ∼ ω2

γ 
d→d∗

Qd→d∗
∼ ω2

γ Qd→d∗μd→d∗

Qd→d∗

∼ ω2
γ μd→d∗ ≈ 30%. (27)
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In the M3/E2 ratio the size term from the quadrupole moment
cancels leaving a proportionality to the transition magnetic
moment. In the case of d → d∗ one can assess one more
type of excitation, E4, which may give sensitivity to the D-
wave configuration inside the d∗. This could be accessed with
double-polarized photoproduction measurements, in which
the deuteron and photon spins are anti-aligned. The produc-
tion cross section is expected to be small, but such information
would be very valuable. One word of caution needs to be
offered here. In our calculations of transition quadrupole and
octupole moments as well as the M3/E2 ratio the main
dependence came from deuteron. However, if we compare the
strength of transition moments with the d∗ moments we see a
sizable difference:

∣∣∣∣ 
d∗


d→d∗

∣∣∣∣ ≈ 0.43,

∣∣∣∣ Qd∗

Qd→d∗

∣∣∣∣ ≈ 0.045. (28)

An order of magnitude difference in these ratios can point us
to a possible further suppression of E2 transition in favor of
M3. If the d∗ magnetic moment is indeed μd∗ = 7.6μN as
anticipated in Ref. [25], the M3/E2 ratio gets as high as 80%.

Summary. We have calculated the d∗ electromagnetic prop-
erties exploiting simple theoretical models. The quadrupole
and octupole moments were calculated in a pion cloud model
and reasonable agreement was obtained with the Resonating
Group Method of Ref. [25]. The electromagnetic transition
moments from the deuteron to the d∗ were also calculated for
the first time. These results will help guide future experimen-
tal investigations of d∗ with electromagnetic beams, where
there is the potential to reveal important new information on
the d∗ structure. Particularly, sensitivities may be obtained
from measurements of photoproduction from a tensor polar-
ized deuteron target. We hope these initial theoretical studies
will motivate more detailed theoretical work in the future.
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