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In agreement arith recent results it is shown that the pion-nucleon absorption operator depends on the
nucleon single-particle potential s Lorentz transformation properties. This is essentially the same result
as for the nuclear magnetic moment problem, these terms being of relativistic order [i.e. , (v/c)
correctionsj in both problems. There exists a unitary equivalence of various forms of the absorption
operator, but if handled consistently this leads to the same physical results.

Interest has been recently rekindled in the
problem of the form of the pion- (single-) nucleon
absorption operator. It was shown several years
ago by Barnhill' and Cheon' that there was an
ambiguity in the form of this operator. Recently
Miller' and Bolsterli, Gibbs, Gibson, and
Stephenson4 showed that a definite result could
be obtained using a straightforward procedure.
The latter authors also showed that the operator
depends on the form of the nucleon single-particle
potential in a puzzling way. These authors also
suggest several alternative conclusions that one
may draw from their results. %e have indepen-
dently confirmed their results and would like to
offer our own somewhat stronger conclusions as
well as tie together some loose ends which relate
all of the various approaches mentioned above. In
particular, we would like to show that the some-
what puzzl. ing result of Bolsterli et al. is to be
expected.

Conventionally one adopts the model of the pion
interacting with the nucleon through one of two
forms of vertex arrived at by appeal to Lorentz
invariance and symmetry arguments. These
vertices are the ps-ps (y,}and the ps-pv (y„y,},
while much of the interest has settled on the
former. ' ' The problem is to reduce a relativistic
description to a "nonrelativistic" form, where
complicated momentum-dependent operators
together with nonrelativistic wave functions pre-
sumably provide an adequate description of the
absorption (or emission) process. The procedure
most often utilized is analogous to that used in
developing effective charge and current operators
for the electromagnetic interaction from the
relativistic form of the nucleon current. "%e
adopt for simplicity a single-nucleon picture of
the pion interaction with each nucleon in the nucleus
and hope that some appropriate generalization of
this picture is physically realistic. Each nucleon
therefore is described by a Dirac equation inter-
acting with fixed potentials V, (a scalar) and V„
(the fourth component of a vector, like the Coulomb

case) and a pion field P(t } (an isotopic vector)

—
g =[ o. p+Pm+P V, + V„+igPy, (r ~ p)]g

using the conventions of Ref. 6.
%e could possibly add additional potential terms,

but this would not add much to the argument. The
usual procedure" is to omit all potential terms.
(The present author is guilty of this omission in
another context. ') We will include them, however,
and keep all terms in the reduction of (1) to non-
relativistic (two-component} form up to order
(I/m)'. In our convention we regard the potentials
as being of order (1/m) since the nucleus is weakly
bound. %e also regard all time derivatives of the
pion field as order (1/m), since energy conserva-
tion demands that this essentially equals the energy
difference of the final and initial nuclear states,
and each of these is order (1/m). For this con-
vention to make sense, we must rule out absorption
of extremely energetic pions. Proceeding in the
usual fashion (Ref. 6) we perform a Foldy-
Wouthuysen' reduction of (1) to order (1/m)', keep
only terms of order g, and using (IE)

-=T. P obtain

2 4
H= H'+ m+ — + V-=Q'+Q

2m Syn'

H'=- g o iy — ~, (8 p, y]

+4 ~ l2o &(4V. ) —4& &V]

where V= V, + V„plus relativistic corrections to
the potential of order V/m'. The same procedure
(assuming the nucleus is weakly bound or equiv-
alently that the binding energy is much smaller
than the nucleon mass) allows us to write for the
eigenfunctions of H, (g,'} in terms of the eigenfunc-
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tions in (1) with g= 0 (denoted g,)

(I +p'/Sm')y, ,
1+P

so that only the upper two components contribute
(we are dealing, of course, with positive energy
solutions). The extra factor is needed to preserve
a proper normalization. The same reduction to
two-component form is possible by means of a
Pauli reduction, but care must be taken to pre-
serve the normalization and treat initial and final
states symmetrically so that the Hermiticity of
the effective (two-component) Hamiltonian is
preserved. This has not always been done in the
past. "'" The reduction (2) removes the anti-
nucleon states from the effective Hilbert space
of the problem, so that positive energy nucleon
states are the only ones we need in constructing
intermediate states in perturbation theory. Since
the Foldy-Wouthuysen transformation leads to
operators which do not mix upper and lower com-
ponents (called "even"), starting with a positive
energy state (3) cannot lead to a negative energy
state (with only lower components). The &ffec&

of such states is included in the complicated
effective Hamiltonian (2). In particular, the
potential (V, or V„) can excite a nucleon-anti-
nucleon pair which is deexcited by the external
pion field. The effect of this, when expanded in
terms of powers of (1/m), is to lowest order
just the QV terms in (2). Similar things occur
in the electromagnetic problem. "

Although H' in (2) depends on V in an obvious
way, it aj.so unfortunately depends on V„as
shown in Ref. 4. Such a result for the nuclear
electromagnetic current operator has been known

for over 20 years and has severely hampered
analysis of the deuteron magnetic moment. '
The nuclear magnetic moment I(x which is propor-
tional to (1/m) in the nonrelativistic approxima-
tion has relativistic corrections of order (1/m)'
which depend on the potential in general and on
the type of potential as well, just as in (2). That
the magnetic moment depends on V is not sur-
prising since the relativistic corrections to the
potential are of order V/m' and are momentum
dependent, leading to a current in the usual way.
The reason why the dependence of p. on the poten-
tial is not the same for V, as for V„was pointed
out by Lipkin and Tavkhelidze. " We follow them
and write the Dirac equation for a particle inter-
acting with a vector electromagnetic potential
A and &0nstant scalar and vector nucleon poten-
tials V,* and V„~

a(p —eA)q+P(m+ V„*)q=(E - V„*)q . (4)

The result is an equation for a particle of mass

m+ V,* and energy E —V„*. Performing a non-
relativistic reduction, ' we see that V~ does not
contribute to the current, while V,* merely
changes the nucleon mass to an effective mass.
The magnetic moment thus changes from p/2m
to (g/2m)(1- V,*/m). The identical effect is seen
in (2) by neglecting derivatives of V„and V„
since the effective coupling constant g/2m then
changes to (g/2m)(1 —V, /m).

Working within the framework of the Breit equa-
tion with two body interactions does not alter the
situation as has been shown by Breit' '" and
Sachs" and in an analogous fashion by Close and
Osborn" and Faustov. " The additional contribu-
tions to the magnetic moment are more readily
identifiable in terms of the type of exchanged
particle, however.

There is an additional freedom in doing the
Foldy-Wouthuysen (F-W) transformation as was
pointed out by Barnhill' and Cheon. ' The F-W
transformation is not unique, since after trans-
forming the original Hamiltonian to "even" form,
a unitary transformation can be made of the new

Hamiltonian which will also be even if the unitary
operator is even. Using a transformation of the
form

H- —=e~ ~& v
(5)8f

with & =gpss, [o 'p, p)/4m', working to O(l/m)'
and O(g) yields a new interaction Hamiltonian
H" for positive energy nucleons

H" =H'+i p[U, H, ], —pU

(i +I/2)gI- -
&~~&'p~ 0

+ 2, F V(pV,)+, p(o ~ V)V.

The parameter g is completely arbitrary. We
can eliminate the potential term proportional to
V by choosing jL(, =-,', at the cost of introducing
a new term proportional to p, , which vanishes
if we take p =0. This case (y, =-,') is very popular
in the literature, since selective neglect of terms
of order (1/m) [i.e., order (u/c) corrections]
leads to the "Galilean-invariant" operator. To
get this we neglect all terms in (6) but the first
and second and evaluate the time derivative for
a slowly moving meson. This gives for p. =-,'

H" =——
2 [o ~ pp -m, (o ~ p, yj/2m] .

We note that while the meson to be absorbed may



10 PION-NUCLEON ABSORPTION OPERATOR AMBIGUITY

be slowly moving, conservation of energy guar-
antees that the final nuclear state will be highly
excited and the terms we have neglected in (I}
could possibly be large. One can in fact entirely
eliminate the time-derivative term by choosing

There is no reason a /mimi for believing
that the terms of relativistic order should preserve
or be of Galiliean-invariant form. In the electro-
magnetic problem, the three relativistic correc-
tions of lowest order to the charge operator of nu-
cleons are due to Zitterbewegung, Thomas preces-
sion, and the electric dipole interaction of a mov-
ing magnetic dipole. All these phenomena are
manifestly relativistic in origin. It may appear
on first sight that the second term in (7) is not a
(u/c)' correction, since it involves the ratio of
two masses. Energy conservation states that the
pion energy (including its mass) equals the energy
difference of the final and initial nuclear states,
and this is adequately represented by a nonrela-
tivistic treatment of the kinematics involved if the
initial pion is not moving rapidly [i.e. , it is of or-
der (I/m)]. If the pion mass were much larger,
the expansion scheme itself would break down en-
tirely.

Our last remark is a fairly obvious one which
seems not to have been made before in this prob-
lem. Although there is an "ambiguity" in the
form of the interaction caused by the freedom
of doing a unitary transformation, there is no
ambiguity from this cause in the physical results.
[The additional p-dependent terms in (6}do not
change the transition probability to order g, as
one can see by doing first-order perturbation

theory on these terms. ] Thus, the unitary free-
dom to change the form of the operator does not
change the physics so long as one includes the
potential in the commutator in (6). If this is
left out and the transition probability is then
calculated using wave functions which depend on
V, the results mill indeed depend on p. This was
in fact the case in some previous analyses. "
The use of the Pauli reduction leads to an un-
ambiguous result for H' (which can then be uni-
tarily transformed}. If one does the Pauli reduc-
tion care must be exercised in preserving normal-
ization and Hermiticity.

In summary we draw the following conclusions.
Assuming the y, interaction of pions with nucleons
we have calculated the (v/c)' corrections to the
lowest order (g/2m} operator describing pion
absorption on a single nucleon. This operator
depends on the form of the nucleon's potential
(i.e., its Lorents-transformation properties) in

a nontrivial way in agreement with Ref. 4. This
unpleasant result is to be expected. There is,
furthermore, no reason to expect Galilean in
variance if one includes the (v/c)' terms. Re-
sorting to a model which uses two-body potentials
rather than effective scalar and vector single-
particle interactions will not affect the re-
sult. ' ' ~ " ' There is an ambiguity in the form
of the interaction due to a unitary equivalence,
but this will not affect the physics. A similar
reduction of the (ps-pu) interaction yields (6) with

p = —,
' and without the pV, term, One will undoubt-

edly have to live with this situation until more is
known about the pion-nucleon interaction.
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