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H. J. Weber and J. M. Eisenberg
Department of Physics, University of Virginia, Charlottesville, Virginia 22901

(Received 7 March 1974)

A modified solution is presented for the Chew-Low equations in nuclei, in the. presence of Pauli
blocking. The resulting scattering amplitude has more satisfactory behavior at low energies (for pionic
atoms), while supporting use of a blocked amplitude in the region of the 3,3 resonance.

NUCLEAR SCATTERING A (~, 7r},8 -150-250 MeV; calculated scattering am-
plitudes. Role of Pauli principle, dispersion theory.
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for pion momentum q=(+2-p')'~', and Fermi mo-
mentum p~ the crossed term will generally be
ignored in the following. Although H depends on
both m and q, unfortunately the Chem-Lom ap-
proach does not allow inclusion of this separate
dependence; we thus approximate E also by its on-
shell value. Equation (1) was then solved treating
E as a regular function, which we feel to be an
acceptable rough approximation in the 2, 8 region
where me are far above threshold. The solution
may be written as

H(~) =N(~)/D(~),

where

Much attention" has recently been devoted to
the effects of Pauli blocking in pion-nucleus scat-
tering. In particular, one may consider' modifying
the Chem-Low formalism4 for the description, in
the nuclear medium, of the pion-nucleon scattering
in the 3, 3 channel, which is important from
threshold on up through a fem hundred MeV. The
Born term (for T= 2, Z = 2) is then suppressed'
due to the exclusion principle, "although the nu-
merical consequences of this suppression are rel-
atively small' inasmuch as high intermediate pion
momenta predominate in the dispersion integral of
Chem-Lom theory. Previously, ' me discussed this
effect by considering the Chem-Low equation for
the 2, 2 channel amplitude H(&u),

H((o) =—+ d(u-~p'v'(p) IH(~~) '
(d W (dp-(0 K

+ crossed term,

where X is the coupling constant, v'(p) is the nu-
cleon cut-off function, and E is the Pauli suppres-
sion factor, taken in Refs. 1 and 3 as

y'(~) =, 0(Ms p, ,
cg +M' (6)

which embodies the usual constraints that F(p) =0
and F(~»2pr)= I, since fortuitously p~-2p (but
tends to over-block}. The N/D formalism gives
a solution of the form of Eq. (2}with

)
'd P( )( )

1r (dp —(d —lE

where P(~~) is defined with reference to

H(~) =- d(u~-
g ~ Q)p-(d K

&„P'IH(~~} I'v'(P)
8' Jp Mp —(d-Z6

Then, for the E(&u) of Eq. (6),

D(~) =D.(~)

X(v dcUpp' v'(p)E
p (dp2 (dp 4) —g6

The factor E in Eq. (4) clearly precludes' the use
of this result near threshoM, since F vanishes
there.

In order to construct a solution which is valid
near threshold, the singularities of I' can no
longer be ignored. Near threshold, F of Eq. (2)
involves branch cuts starting at +=a p, ; the right-
hand cut coincides with the physical region, and
the left-hand cut we approximate by a pole, as in
the usual treatment of effective range approxima-
tions in dispersion theory. It is convenient to use
as simple a parametrization for the blocking fac-
tor as possible, for example

N ((o) = N, ((u) = ZF/&u, - (4) 4 (~,) = "6(~,) — (i vq/~+)6(~, +Nf), (10)

10



926 H. J. %EBER AND J. M. EISENBERG

TABLE I. Amplitude for 3, 3 channel, in units of p, 3, as a function of pion total lab energy.

Unblocked (E = 1} Blocked {C= 0.28)
(MeV) ReH ImH ReH ImH

Original ~ F Blocked ' {C= 0) Blocked '
ReH ImH ReH ImH ReH ImH

200
250
300
350
400

0.176 0.034
0.149 0.118
0.039 0.135

-0.006 0.082
-0.011 0.050

0,106 0,012
0.139 0.089
0.019 0.144

-0.023 0.076
-0.019 0.044

0.079 0.007
0.123 0.062
0.036 0.136

-0.015 0.080
—0.016 0.047

0.041 0.002
0.062 0.013
0.068 0.047
0.029 0.070
0.008 0.052

0.128 0.018
0.144 0.102
0.034 0.138

-0.009 0.082
-0.012 0.049

These results refer to the use of F {co}of Eq. (6) in Eqs. (11)-(13).
~ This column is based on Eq. (2), as used in Ref. 3.
'As given by Eqs. (2) and (14)-(16).

and Eqs. (I) and (8) yield

N(&u) = N, (&u) +
A. C

D((o) = D, ((u)—

where

"
dcu~p' v'(p)

u (d~ ((dp+M)(QI~ —(d —fe) ' (12)

N((u) =N, ((u) Z+C'( I-F((o)), (14)

XC'&u "d(opP' v'(P)(l -F((up)}
r IJ Col, (OD —(d —ie

(15)

d(alpp 2( } (
}F((dp) —F(p, )

(16)

Due to the linear dependence of D(&u) on &u, these

a
( )

" d(upP' v'(P)F(arp)

p (dp h}p+M

Z(M+p, ) "d(u~ p'v'(p)
7F p (d~ ((d~+M)

(13)

Equations (11) and (12) exhibit the corrections
brought about by the singularity structure of E.
The quantity C, which measures these corrections,
is C =0.28/p' for the case M =0, which will be pur-
sued in the numerical results presented below.
For that case, the net effect of the correction is
to replace F(v) by F(&u)+ C.

We note that one can rewrite Eqs. (11)-(13)so
as to eliminate the specific one-pole form in favor
of functional dependence of F(&u) only, that is

equations preserve a useful feature of Eqs. (3)-(5)
in that they exhibit explicitly the change in position
and width of the resonance. Equations (14)-(16)
can then be used with nonanalytic parametrizations
of F, such as that of Eq. (2), in order to estimate
the consequences of more realistic forms which do
not block as drastically as that of Eq. (6}.

Table I shows the consequences of evaluating'
the 3, 3 channel amplitude for various cases. The
simplistic choice of F in Eq. (6) leads to overly
drastic blocking from threshold through the 3, 3
region. Nonetheless, one can infer from it the
consequences of including or omitting the correc-
tions due to the singularity structure of F (i.e.,
Co 0 versus C =0), and they are sizable. It
emerges, however, that the blocked case, with

F(e) of Eq. (6) and C =0.28/p, ', bears close re-
semblance to our original, approximate solution. '
Very near to threshold (~ —p, &10 MeV}, the over-
ly-strong blocking, arising from Eq. (6), is again
evident in a reduction of BeH, , by a factor of about
3, but, of course, the solution is nonzero there;
this would not be the case for the approximate
solution of Eqs. (3)-(5), which is directly propor-
tional to I'.

With Eqs. (2} and (14}-(16), one obtains the re-
sults shown in the last column of Table I, which
we consider to be the most realistic approximation
from the viewpoint of the degree of blocking.
Again, the main blocking effect occurs below the
resonance energy. At threshold, the amplitude is
reduced by a factor of only about 2, in contrast to
the situation arising from Eq. (6).

In summary, we believe that our original ap-
proach' of Eqs. (4) and (5) overestimated the
blocking effects on the low-energy side of the res-
onance. However, due to high absorption in the
nuclear interior, the pion scattering is mostly
sensitive to the nuclear surface, where effective
densities are low. ' " Therefore, in the situation
of real nuclei, the blocking, as well as ef-
fectss, zo, xz of pion quenching and changes in the
pion momentum in the nuclear medium, all prove
to have rather small numerical consequences.
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