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%'e calculate for a model. nucleus the single-particle excitations in the transition from the saddle point
to the scission point in the fission process. The model nucleus consists of a square well potential of
finite depth filled with noninteracting "protons" and "neutrons. " At every stage of the transition

between the saddle point and scission point the shape of the potential surface is equal to the surface of
the fissioning nucleus as predicted by the liquid-drop model but the depth of the potential is held

constant. The rate of change of the nuclear surface is assumed to be equal to that predicted by the

dynamical liquid-drop-model calculations of Nix. It is found that for this time scale there is a small

probability for the particles to be raised to levels above the potential well and thus be emitted from
the nucleus. The calculated number of emitted neutrons and protons is in qualitative agreement with

the experimental results for the emission of scission neutrons and protons. However, there is a large

energy transfer from the collective to the single-particle degrees of freedom and hence the transition

cannot be considered adiabatic for this time scale. The inclusion in the model of a residual interaction
is expected to reduce both the number of particles emitted and the energy transfer from the collective
to single-particle degrees of freedom, thus making the transition more nearly adiabatic.

I. INTRODUCTION

The analogy between the motion of an incompres-
sible charged fluid under the influence of surface
tension and nuclear fission is a basic feature of
the liquid-drop model (LDM) of atomic nuclei. '
The model is essentially a. many-particle model,
in which the particles have a mean free path much
smaller than the total dimension of the system. '
This seems to contradict an independent particle
model (IPM) of fission in which each particle moves
in an average potential wel. l, nea. rly independent of
the other nucleons. Yet since one of the basic fea-
tures of LDM is the use of the over-all shape of
the nucleus as a dynamical variable it is possible
to relate the IPM to the LDM.

Using the shape of the nucleus to determine the
boundaries of the average potential in which the
particles move, Hill and Wheeler' showed that by
an appropriate definition of the nuclear potential
energy it is possible to reproduce approximately
the LDM nuclear surface energy. In the "collec-
tive model" of fission of Hill and Wheeler the di-
rect coupling of the particles with each other is
neglected and the coupling between the particles
and the collective motion of the nucleus is as-
sumed to take place through the motion of the mov-
ing potential well. Consistency of the model re-
quires that the single-particle excitation energy
be small compared to the energy associated with
the collective motion of the fissioning nucleus.
It follows tha. t the justification of the collective
model relies on the a.ssumption that the fission

process is approximately adiabatic. [ The require-
ment for near adiabaticity is manifestly called for
in the dynamical calculations of fission in which
one uses the cranking model for the calculations
of the inertia tensor. ']

In the framework of the pure LDM the inertia
tensor is obtained by treating the nucleus as a
drop of homogenous incompressible nonviscous
fluid. ' Solving the hydrodynamical equations gov-
erning the motion of such a fluid, Nix' was able to
describe the motion of the fissioning nucleus from
the saddle point to the scission point. If this mo-
tion is nonadiabatic then the single-particle excita-
tion energy should be treated as a viscosity term
to be added to the classical hydrodynamic equations.

The emission of light particles in fission is prob-
ably closely connected with the nonadiabaticity of
the transition from saddle shape to scission. It
was first postulated by Halpern' that the fast po-
tential change oeeurring in the neck region between
the two fission fragments is responsible for the
emission of light particles in fission. Hence the
theoretical investigation of the emission of these
particles may help to clarify to what extent the
adiabatic approximation is justified when dealing
with the nuclear motion towards the scission point.

In the present work a single-particle model is
proposed for the calculation of the single-particle
excitation energy and the emission probabilities
of neutrons and protons in fission. We compare
the results of the calculations with the experimen-
tally measured number of particles emitted and
discuss the probability of particle emission for the

8S3



S94 Y. BON EH AND Z. F RAENKE L

time scale predicted by nonviscous liquid-drop
model calculations. Conversely, assuming the par-
ticles are emitted due to a fast potential change,
the measured number of particles emitted deter-
mine the time scale needed for the nucleus to make
the transition from saddle point to the scission
point. For the same time scale, the over-a11 sin-
gle-particle excitation energy may be compared
with the collective kinetic energy and a quantita-
tive measure of the adiabaticity of the fission pro-
cess can be obtained.

II. MODEL

A. General

During the transition from the saddle point to the
scission point the shape of the nucleus changes
rapidly. The fast change in the shape of the nu-
clear potential may cause single-particle excita-
tions in the nucleus. The amount of these single-
particle excitations will depend on the transition
time. For a very slow transition the motion is
adiabatic, i.e., the wave function at any particular
nuclear deformation is given by solutions of the
static SchrMinger equation for this deformation.

Qur model nucleus consists of a finite square-
well potential whose surface in configuration space
is equal to the surface of the nucleus as predicted
by the LDM. The potential well is filled with Z
"protons" and A. —Z "neutrons. " The particles are
assumed to have no residual interaction and no
spin-orbit force.

The neglect of the spin-orbit force is mainly a
matter of convenience. Its inclusion would not
complicate our calculation in any essential way
but would increase the computation time substan-
tially. It is not believed to greatly affect our re-
sults and it was therefore neglected at this stage.
The situation is quite different with respect to the
residual interaction (e.g. , pairing force). As dis-
cussed below, its inclusion will probably change
the results of our calculation quite markedly. How-
ever it would also change the nature of our calcula-
tion from that of a single-particle Hamiltonian to
that of a many-body Hamiltonian. The solution of
this vastly more complicated problem was not at-
tempted in the present calculation.

The depth of the nuclear potential is assumed to
be constant throughout the transition from saddle
point to scission. Its value for neutrons is chosen
so that the neutron binding energy is equal to the
experimental value for an (A, Z) nucleus in its
ground state. Similarly the depth of the proton po-
tential is given by the equation

V(r) = Vc(r) outside the nucleus,

V(r) = -(EF +Ee} inside the nucleus (EF,Ee &0),

where E~ is the proton Fermi energy, E~ is the

experimental proton ground-state binding energy,
and Vc(r) is the actual Coulomb potential for the

given nuclear shape

@~2 g3 rl
Vc(r} = ,
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FIG. 1. The shape of the single-particle potential well
at the saddle point, at an intermediate deformation, and
at the scission point.

r is the radius vector and v is the nuclear volume.

Vc(r} changes therefore along the surface of the de-
formed nucleus and it also changes with the defor-
mation of the nucleus during the fission process.
The surface of the potential weB approximately fol-
lows throughout the transition from saddle point to

scission point the nuclear shape as obtained by the

dynamical LDM calculations of Nix. ' Figure 1

shows this shape for the saddle point, the scission
point, and in an intermediate stage between saddle
point and scission. The nuclear volume is rigor-
ously conserved during the transition.

The time sequence (i.e., change of nuclear shape
as a function of time) of the transition is treated in

the present calculation as an independent function.
The transition time predicted by the nonviscous
LDM' as well as slower and faster transition times
are investigated.

The first stage of the calculation consists of solv-
ing the static Schrodinger equation for the saddle-
point configuration. We thus obtain the single-par-
ticle wave functions of the nucleons at this point,
which is the starting point in our dynamical treat-
ment of the fission process. For definiteness the
nucleus is assumed to be in its ground state. (Our
model can treat an excited nucleus at the saddle
point equally well. )

In the second stage of the calculation the static
solutions of the Schrodinger equation for the saddle
point serve as initial conditions for calculating the
time-dependent single-particle wave functions for
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the transition from the saddle point to the scission
point. This is done by solving the time-dependent
Schr5dinger equation for the transition.

The third stage of the calculation consists of
solving the static Schrodinger equation for the
scission point, and obtaining the static single-par-
ticle wave functions for this configuration. The
overlap integrals between these static solutions
and the time-dependent wave functions yield the
transition probabilities and hence the single-par-
ticle excitations during the saddle-to-scission
transition.

In contrast to most calculations concerned with
various single-particle aspects of the fission pro-
cess, our calculation does not make use of the ex-
pansion of the single-partic1e wave functions into
basis functions but solves the Schr5dinger equation
directly by a numerical method to be discussed
below. The advantage of the present method is
that it is applicable to a nucleus of arbitrary shape
and the accuracy of the method is essentially in-
dependent of the deformation of the nucleus.

B. Single-particle eigenfunctions

The SchrMinger equation

V g+ y'(x)/ =ED
2m

was solved numerically by transforming the ellip-
tic differential equation to a system of difference
equations. The method is quite similar to the work
of Brandt and Kelson. ' However, they used an in-
finite potential well for the nuclear potential.

Since the shapes (and thus the potentials) con-
sidered are axially symmetric Eq. (l) is essen-
tially two dimensional. In order to obtain a nu-
merical solution, cylindrical boundary conditions
were imposed on the eigenfunction, i.e., the func-
tions are assumed to vanish on a large cy1.inder
which encloses the nucleus. The added cylindrical
boundary condition has the effect of raising the sin-
gle-particle energies and also changing the shape
of the eigenfunctions. This effect can be made
negl. igibly small by making the dimensions of the
cylinder sufficiently large. In the Appendix the
error due to the finite size of the cylinder is esti-
mated.

The time-dependent equation for the transition
from saddle to scission is

8$ -S~
ik —= V g+P(x, t)g,

which in this case is a complex two-dimensional
elliptic equation. By separating g into its real and
imaginary parts the complex equation is replaced

by two coupled real differential equations,

su -tt, V(x, t) u

Bg O', V(x, t) ~ u

Bf 2m

In order to solve numerically these equations, they
are transformed into difference equations. The ex-
plicit form of the difference equations imposes re-
strictions on the value of At, the time step used in

the numerical differentiation. It has to be chosen
small enough in comparison with the square of the
spatial grid dimensions to ensure the stability of
the solution. ' This difficulty was avoided by using
an implicit form of the difference equations. In

this scheme it was necessary to solve a large sys-
tem of linear equations, repeating the procedure
for each time step. Instead of using an iteration
method to solve this system of equations, the alter-
nating direction method' was used. In this method
the solution of the two-dimensional equations is re-
placed by two successive solutions of much simpler
one-dimensional equations.

The complex time-dependent Schr5dinger equa-
tion was also solved numerically by Fuller' who
used a simplified one-dimensional model to de-
scribe the fission process. In Fuller's work the
explicit formulation was used and the difficulty of
the instability of the solution was overcome by us-
ing a small enough time step.

C. Transition probabilities

Denote by Q, (0} the eigenfunctions for the saddle
shape. As mentioned above these functions serve
as the initial conditions for calculating the time-
dependent eigenfunctions in the transition to the
scission point. Accordingly, we denote by Q, (t)
the functions which evolve in time from the func-
tions Q;(0}. Denote by f, the (static) eigenfunc-
tions for the scission point, and the transition
time from saddle to scission by T. Then

is the probability of transition of a single particle
which was in the ith state for the initial saddle-
point configuration to the jth state at the time of
scission. It was shown by Ful1, er' that the many-
particle transition probability may be obtained by
simply summing up the single-particle probabili-
ties and that the summation does not violate the
Pauli principle.

D. Emission probabilities

%e assume that a particle is emitted from the
nucleus if that particle makes a transition to level
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j at the scission point and the energy Ej of this
new level is greater than V, the depth of the poten-
tial wel. l.

Levels of energy greater than V should be con-
sidered as an approximation to the true continuum
states. These "quasibound" levels are the result
of the cylindrical boundary conditions discussed
before. The approximation of the continuum by
discrete levels has been treated in connection with
the Strutinsky procedure" and recently in the cal-
culations of level densities. " Based on the result
of these authors it is to be expected that as long as
the particles are capable of making transitions only
to levels slightly above the Fermi level the error
introduced by replacing the continuum by a set of
discrete levels is small.

The total number of particles emitted from level
i is thus given by

j=A

where the summation over j extends over all un-
bound levels. The factor of 2 is due to the spin
degeneracy. For protons, k' is the lowest level
above the Coulomb barrier.

The possibility of particle emission after the
scission stage is not treated here. The assump-
tion that the particle is emitted from the nucleus
only upon attaining an energy higher than the total
potential depth is also justified for protons, since,
as seen below, the effect of tunneling through the
Coulomb barrier is negligible. Another effect
which must be considered for both protons and neu-
trons is the reabsorption of the emitted particle by
the moving fragments.

E. Single-particle excitation energy

The total single-particle energy at the saddle
point is

EI

(E,' is the single-particle energy of level i at the
saddle configuration. ) The summation extends
over all occupied levels.

The expectation value of the energy of a particle
which makes a transition from level i in the saddle
conf iguration is

Denote by E, the total single-particle energy for
the scission ground state, namely, for the case of
the lowest possible levels being occupied at the
scission point

s 2

Clearly E, ~E,, and it is possible to define an ex-
citation energy E,„given by E,„=E,—E,, E,„mea-
sures in general the nonadiabaticity of the fission
process. It is to be expected that the shorter the
time scale for the transition from saddle point to
scission the greater the value of E,„.

Due to the cylindrical symmetry assumed for the
nuclear shape the magnetic quantum number for
the total wave function and parity (in case of sym-
metric fission only) are conserved. In addition
since residual interactions are not incorporated
into the present model, the single-particle mag-
netic quantum number and parity are also con-
served and ean be used to classify energy levels.
The conservation of the single-particle quantum
numbers results in nuclear "excitation" even for
the case of an adiabatic transition since levels
belonging to different quantum numbers may cross
and hence even if the lowest possible levels were
occupied at the saddle point, the nucleus may be
in an "excited state" at the scission point. This
"adiabatic excitation" must be subtracted from the
over-all nuclear excitation E. in order to obtain
the real single-particle energy gain.

Denote by E, the total single-particle energy at
scission for the adiabatic case E, =2+; =, E, . The
summation extends over all l.evels which u ere ot"-
cuPied zn Dze saddle confzguration. The adiabatic
excitation is (E, —E,,) and the "viscous" or non-
adiabatic excitation is given by E„=E, -E, . For
the adiabatic ease E,=-O.

It should be emphasized that the adiabatic excita-
tion (E, —E, ) in our model is the result of the con-
servation of the single-particle quantum numbers.
However for finite transition times a significant
part of this excitation m3y remain even upon the
addition of an appropriate residual interaction be-
cause of "slippage. '"' This question and its pos-
sible connection with the dependence of (E, —E, )
on the nuclear shape and asymmetric fission are
discussed in Ref. 12.

E, =2
i=j. j =1

P~jEj ~

(E),=g~, E

where Ej is the single-particle energy of level j
at the scission configuration. The total single-par-
ticle energy at scission is thus

F. Choice of physical parameters

Our calculations were made for "„'Np since it is
the heaviest nucleus for which there are results of
dynamical LDM calculations. " Figure 1 shows the
saddle-point and scission shapes of this nucleus.
The volume of both shapes is equal to v = Ter, 'A

with r, =1 2249x10 '3 cm. ' The value of the po-
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} (t j —a a,''(t) [a —t, (t)) ' *,(t) a, -
a,'(t)+I),'(t)z' 0 cz ~z,(t). (5)

Six parameters are needed to parametrize the sur-
face (of symmetric shapes). Two of these (e.g. ,
I, and z,} are eliminated by the requirement that
the functions and their first derivatives are con-
tinuous at the point z = z, . Denote by a„, a,-„b„,
and b„, the four parameters needed to describe
the saddle shape and by az„az„b&„and bz, the pa-
rameters for scission. The time-dependent pa-
rameters for the transition stage were obtained by:

The six parameters (including I, and z, ) were di-
vided by a scale factor' in order to insure volume
conservation. P(f) is a continuous function of time,
P(f) =0 for t =0, and P(f) = 1 for f = T, the time of
transition from saddle point to scission.

The time sequence P(f} may be so chosen that the
function p(z, t} will reproduce very closely the li-
quid-drop-model time sequence. ' Yet we found it
more convenient to carry out most of the calcula-
tions using the function Pr(t) proposed by Fuller'

)) (tl= —,'}()~ —,
' t( ——1) —(

——)) (6}

P~(t) = 0 for t =0 and P~(27) = 1.. This function has
the advantage of having zero slope not only at t =0
but also at t =27. Due to the peculiar shape of the
function, v rather than 2~ serves a measure for

tential depth for neutrons was chosen so that the

binding energy corresponds to the experimental
value E&=6.95 MeV." In the same way the proton
potential was chosen to yield the experimental
binding energy (Ez =5.4 MeV"). Based on the
above, one obtains for the nuclear potential of the
neutrons V = -46 MeV and for total potential of the
protons V=-37 MeV inside the nucleus and V
= V, (r} outside.

The nuclear shape during the transition from
saddle to scission was obtained by interpolation
between the initial and final configurations while

keeping the volume constant. The nuclear poten-
tial depth, V, was not changed from saddle to
scission, but for protons the Coulomb potential
naturally varied with the nuclear shape.

The parametrization used to describe the nuclear
surface is that used by Nix, ' namely the nuclear
surface is described by three smoothly joined quad-
ratic surfaces of revolution. For shapes with re-
flection symmetry, the generator functions for the

surface are in cylindrical coordinates:

the time interval of the transition to scission. '
The transition time as calculated in Ref. 6 for a
nonviscous fluid is 3.10 "see for an initial excita-
tion (in the fission mode) of 1 MeV at the saddle
conf iguration.

III. RESULTS

In Table I we show the number of emitted neu-
trons N, and the excitation energy F-„for neutrons.
The numbers are grouped according to the mag-
netic quantum number m and parity (symmetric
fission is considered). The "effective" transition
time 7 is 3& 10 "sec. In the table we also show
the total single-particle energies for the saddle
and scission configurations, E, and E( r2), re-
spectively, as well as the total energy E, at scis-
sion for an adiabatic transition.

The total (even plus odd parity) neutron energy
for an adiabatic transition is QE, = 3742. 1 MeV.
This number is to be compared with the total neu-
tron ground state ene-rgy at scission QE,,=3700.5
MeV. Hence the total adiabatic excitation energy
of the neutrons at scission is QE, -QE, =41.6
MeV. [Note that the ground-state energy for neu-
trons at the scission point is higher than that at
the saddle point. The lower total (proton plus neu-
tron) ground-state energy at the scission point is
due to the reduction of the Coulomb energy rather
than that of the nuclear energy. ]

The large excitation energy for the m = 1, odd-
parity group results from the unusual behavior of
the sixth level, the highest occupied level for m =1,
odd parity. This level almost crosses levels lying
above it and a particle occupying this level has an
appreciable probability to make a transition to
these higher levels'4 thus gaining substantial ener-
gy. In Table II the excitation energies and the num-
ber of emitted particles are shown as a function of
the effective transition time v for neutrons and pro-
tons. In view of the fact that the height of the Cou-
lomb barrier is not constant along the nuclear sur-
face we show th. number of protons emitted to lev-
els above the lowest value of the Coulomb barrier
(V ) and above the highest value of the Coulomb
barrier (V ).

For protons we considered the effect of tunneling
through the potential barrier. The integral f(t)
= J,„((Q, (r, t)~'d'r was performed over the volume
outside the nuclear boundary. This integral was
calculated for all the pertinent wave functions Q, .
The potential at the scission point V(r, 2v) was
held constant and the development in time of
P, (r, t) was calculated from t=2v to t=10v. To a
very good approximation f(10m) =f(2v}, (7.= 1.10 "
sec). It follows that for the time scale considered
here the effect of tunneling is negligible.
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TABLE I. The total neutron energy Eo for the saddle ceafigeration; the total neutron energy at the scission configura-
tion for an adiabatic transition, E, ; the total neutron energy for the scission configuration for a finite transition time,
E, (2v); the total viscous" excitation energy E„{2Q= E, (2g -E„and the total number of emitted neutrons N&(27). The
values are given separately for each parity and magnetic quantum number. All values were calculated for 7 =3 x 10
sec. The energies are measured from the bottom of the potaatiaI well.

Magnetic
quantum
number Number of

particles

Tc4al energy
at saddle

cenfiguraticm

(MeV)

Total energy
at scission

for adiabat)ie
transition

(Mev)

Total
energy

at scission
E (27')

(MeV)

Total "viscous"
excitation energy

E„(27)

(MeV)

Number of
neutrons
emitted

0
1
2
3

Total

2x
2x14
2x 8
2x 6
2x 3

80

368.7
675.5
398.4
355.2
209.7

2007.5

Evee parity

364.0
729.6
449.2-

411.2
237.6

2191.6

367.0
732.4
450.0
411.2
237.6

2198.2

3.0
2.8
0.8

~p
~p

6.6

Q. 002
0.211
0.043
0.035
P.014
0.31

0
1
2
3
4

Total

2x 8
2x 12
2x 6
2x 4
2x 2

64

346.4
601.3
2M. 1
231 ~ 2
140.4

1609.4

Odd parity

294.5
571.2
294.2
243.2
147.4

1550.5

299.1
588.4
294.2
243.2
147.4

1572.3

4.6
17.2
~0
~p
~p
21.8

~p
~p
~0
~p
~0

0

IV. DISCUSSION

The experimental value for the number of the
"scission" neutrons emitted in the spontaneous
fission of "2Cf is estimated to be 0.25-0.35 neu-
trons per fission"'" whereas the number of pro-
tons emitted is 5x I ' protons per fission. " We
assume that these so-called scission particles are
emitted during the transition from saddle point to
the scission point. ' The experimental numbers are
therefore to be compared arith our calculated re-
sults (Table II). It is seen that for the transition
time 7 =ex 3.0 "sec the number of neutrons and
protons emitted are of the same order of rnagni-
tude as the experimental values. For the same
transition time, the total excitation energy E„is
approximately 35 MeV. This number is to be com-
pared with the difference in the potential energy
between the saddle point and the scission point
which is 40 MeV according to liquid-drop-model
calculations. ' The excitation energy is therefore
evidently very high since it is close to the poten-
tial energy available for the transition.

The number of particles emitted as given in Ta-
bles I and II was calculated by assuming that once
a particle gains an energy higher than the poten-
tial barrier the particle is emitted irrespective of
the spatial distribution of its wave function. In or-
der to estimate the effect of the reabsorption of
the particles by the fragments we consider the

probability of a particle which was in the ith state
at the saddle point to be outside the nuclear vol-
ume at the moment of scission. This probability
may be written in the form

k-1 2

+Otlt ~ff 4f
5=0

2 3- ~

+ c&&g& d r+ interference term,
OQt

TABLE II. Number of neutrons and protons emitted
and the excitation energies E„as a function of ~.

Transition
time 7.

(sec}

Number of
particles

Protons
Neutrons Vm~ V ~

Excitation energy
E„(MeV)

Neutrons Protons

1.5x10-2i 2 09 0 02 0 09
x 10 0.31 gx 10 0.01

6 x10 2' 0.10 1x10 4 7x 10~

44.4
28.4
22.8

30.5
26.7
12.3

sphere the expansion coefficients c&& are defined by
Eq. (4), k is the first unbound level, and the inte-
I;ration is carried out over the space outside the
nucleus at scission. The first term of Eq. (7) is
related to the (small) probability of bound particles
to be outside the nucleus. The second term gives
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TABLE III. Number of neutrons emitted based on the
integral of the @rave function outside the nucleus.

T {sec) Number of neutrons

1.5x10 2~

3.0x10 2~

x10 2~

0.44
0.06

~0

approximately (except for the interference term)
the probability of unbound nucleons to be outside
the nuclear volume at the moment of scission. It
is this term which is of interest in the present dis-
cussion. Calculations show that the interference
term is small. Hence we may consider the second
term of Eq. (7) to be a lower limit for the emis-
sion probability of the particle. In Table III the
number of neutrons emitted according to the last
assumption is shown. It is seen from the table
that only for the time scale 1.5X10 "sec does the
calculated number agree with the experimental re-
su1.ts. Since the number of protons emitted is
smaller by three orders of magnitude, we could
not calculate this number for protons.

The transition probabilities for neutrons were
calculated for several. levels near the Fermi ener-
gy using the Landau-Zener approximation. " The
results" agree only qualitiatively with the transi-
tion probabilities obtained by the present numeri-
cal method. This is to be expected since the con-
ditions justifying the use of the Landau-Zener ap-
proximation" are only partially fulfilled for the
level structure and time scale considered here.

As already mentioned a spin-orbit force was not
included in the model. The inclusion of a spin-or-
bit term would affect to some extent the position
of the energy levels and hence would also change
the number of emitted particles and the excitation
energy. Yet the addition of the spin-orbit force
would not change the essential features of our mod-
el since this force does not change significantly
with deformation. '

The inclusion of residual interactions will pre-
vent single-particle excitations for infinite transi-
tion times from saddle to scission. In addition,
the residual interaction will increase the minimum
distance between the neighboring levels and so re-
duce the transition probability between these levels.
Hence the number of particles emitted and the ex-
citation energies shown in Table II will be smaller
if a residual interaction is incorporated into the
model.

Despite the deficiencies of our model, the emis-
sion probabilities calculated here seem to support
the assumption that neutrons and protons are emit-
ted as the result of the nonadiabaticity of the nu-
clear transition from saddle point to scission point.

The number of protons and neutrons emitted is in
reasonable agreement with the experimental values
for the time scale predicted by the liquid-drop mod-
el. The results also indicate that some internal
nuclear excitation arises as a result of the rapid
nuclear transition from saddle to scission. Hence
the time interval predicted for this transition by
the liquid-drop model without the inclusion of a vis-
cosity term is probably too short. In order to give
a better estimate for the transition time both spin-
orbit and residual interactions must be added to
the model proposed here.
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APPENDIX. NUMERICAL ACCURACY

The accuracy of the calculations was checked
separately for the static and the time-dependent
calculations. The results given here were ob-
tained by using a grid with 40~30 mesh points in
the z and p directions, respectively. For sym-
metric fission it is possible, by using appropriate
boundary conditions, to treat only one half of the
nuclear shape and due to the cylindircal symmetry
only the upper right hand part of the (p, z) plane
need be considered. The dimensions of the cylin-
der enclosing the nucleus was taken to be z, =20
&10 " cm and p, =7X 10 "cm in comparison with
z =18.82X10 "and p =5.43&10 " cm, the
maximum (half) length ar d the maximum radius of
the nucleus considered.

The error in the calculated energies is estimated
to be less than 1%. This estimate was obtained by
comparing the known energies for a spherical po-
tential well avithout cylindrical boundary conditions
with the ones calculated by the grid method includ-
ing cylindrical boundary conditions. Using this
method we obtained at once an estimate for the er-
ror due to both the finite size of the outer cylinder
and the finite number of mesh points used in the
calculations. The effect of the large cylinder en-
closing the nucleus was also checked by repeating
our calculations using a cylinder whose dimensions
were z, =23&10 " cm and p, =8&10 ~ cm. The re-
sults were essentially the same as those obtained
for the dimensions used in the rest of the calcula
tions.

The time steps used were chosen according to
the transition time considered. For the transition
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time 7. =3x10 "sec the time step was taken to be
4t =3.0&10 '4 sec. The error was estimated by
calculating the norm i Q(r, t)( Q(r, f)) which should
be equal to unity. It was found that the error was
smaller than 0.1%, namely (P(r, t)i P(r, f)) =1.0
+ (0.5&& 10 '). For the other time steps used, the
error did not exceed 0.3%.

The conservation of the volume of an infinite po-
tential well does not guarantee the conservation of
the nuclear density. Thus when changing the shape
of the potential well an appropriate correction
must be introduced to the energies calculated. %'e

calculated directly the nuclear density for the sad-
dle shape

p(r}=2 QI y, (r, o)l',
i=&

the scission shape

p, (r)=2 P l(&(r)l',

and the density,

p(r, ») = 2 g ~ 4 & (r, ») I' .

It was found that the nuclear density remained con-
stant to a very good approximation for the three
cases considered. Thus in our case it is not neces-
sary to correct the energies calculated upon vary-
ing the shape of the potential mell. The fact that
the nuclear density follows the shape of the poten-
tial also serves as an indication of the consistency
of the model.
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